2018年广西自治区南宁市中考数学试卷含答案
- 格式:doc
- 大小:429.50 KB
- 文档页数:16
2018年广西南宁市中考权威预测模拟数学试卷(一)一、选择题(共12小题,每小题3分,满分36分)1.2018的倒数是()A.2018 B.﹣2018 C.D.﹣2.由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是()A.B.C.D.3.下列运算正确的是()A.(2a2)3=6a6B.﹣x6÷x2=﹣x4C.2x+2y=4xy D.(x﹣1)2=x2﹣124.一组数据1,3,2,5,8,7,1的中位数是()A.1 B.2 C.3 D.55.若等腰三角形有两条边的长度为2和5,则此等腰三角形的周长为()A.9 B.12 C.9或12 D.106.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.7.把分式方程的两边同时乘以(x﹣3),约去分母,得()A.1+(1﹣x)=1 B.1﹣(1﹣x)=1 C.1+(1﹣x)=x﹣3 D.1﹣(1﹣x)=x﹣38.若x1,x2是一元二次方程x2+ax﹣8=0的两个根,则x1•x2的值是()A.a B.﹣a C.8 D.﹣89.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°10.如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()A.22 B.18 C.14 D.1111.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个12.如图,反比例函数的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为()A.1 B.2 C.3 D.4二、填空题(共6小题,每小题3分,满分18分)13.因式分解:a3﹣9a=.14.使在实数范围内有意义,x的取值范围是.15.将抛物线y=2(x﹣1)2+1向上平移3个单位,那么平移后得到的抛物线的解析式是.16.如图,在△ABC中∠C=90°,AC=BC=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为.17.如图,正方形ABCD的边长为10cm,E是AB上一点,BE=4cm,P是对角线AC上一动点,则PB+PE的最小值是cm.18.如图,在Rt△OBC中,OB与x轴正半轴重合,∠OBC=90°,且OC=2,BC=,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC,得到△OB2C2,…,如此继续下去,得到△OB2018C2018,则点C2018的坐标为.三、解答题(共8小题,满分66分)19.计算:()﹣1﹣(5﹣π)0﹣|﹣|+4sin60°.20.先化简:(1﹣)÷,再选择一个恰当的a值代入求值.21.如图,在△ABC中,AB=AC,D为BC边的中点,AE∥BC.(1)作∠ADC的平分线DF,与AE交于点F;(用尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=2,求DF的长.22.某中学在“你最喜爱的球类运动”调查中,随机调查了若干名学生(2014•哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C 点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).24.某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式;(2)求销售单价为多少元时,该商品每天的销售利润最大;(3)商场的营销部在调控价格方面,提出了A,B两种营销方案.方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元.请比较哪种方案的最大利润更高,并说明理由.25.如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)求证:EF2=4OD•OP;(3)若BC=6,tan∠F=,求AC的长.26.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(﹣3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;(3)点Q在直线BC上方的抛物线上,且点Q到直线BC的距离最远,求点Q坐标.2018年广西南宁市中考权威预测模拟数学试卷(一)参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.2018的倒数是()A.2018 B.﹣2018 C.D.﹣【考点】倒数.【分析】直接利用倒数的定义分析得出答案.【解答】解:2018的倒数是.故选C.【点评】此题主要考查了倒数的定义,正确把握互为倒数之间关系是解题关键.2.由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面看可得到第一层为2个正方形,第二层左面有一个正方形.故选A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.下列运算正确的是()A.(2a2)3=6a6B.﹣x6÷x2=﹣x4C.2x+2y=4xy D.(x﹣1)2=x2﹣12【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据积的乘方等于乘方的积;单项式的除法,系数除以系数,同底数的幂相除;合并同类项系数相加字母及指数不变;差的平方等于平方和减积的二倍,可得答案.【解答】解:A、积的乘方等于乘方的积,故A错误;B、单项式的除法,系数除以系数,同底数的幂相除,故B正确;C、不是同类项不能合并,故C错误;D、差的平方等于平方和减积的二倍,故D错误;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.一组数据1,3,2,5,8,7,1的中位数是()A.1 B.2 C.3 D.5【考点】中位数.【分析】根据中位数的定义求解即可.【解答】解:这组数据按顺序排列为:1,1,2,3,5,7,8,故中位数为:34.故选C.【点评】本题考查了中位数的知识,属于基础题,解答本题的关键是熟练掌握中位数的定义.5.若等腰三角形有两条边的长度为2和5,则此等腰三角形的周长为()A.9 B.12 C.9或12 D.10【考点】等腰三角形的性质;三角形三边关系.【分析】因为已知长度为2和5两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当5为底时,其它两边都为2,∵2+2<5,∴不能构成三角形,故舍去,当5为腰时,其它两边为2和5,5、5、2可以构成三角形,周长为12.故选B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.【考点】一次函数图象与系数的关系.【分析】利用一次函数的性质进行判断.【解答】解:∵一次函数y=kx+b,y随着x的增大而减小∴k<0又∵kb<0∴b>0∴此一次函数图形过第一,二,四象限.故选A.【点评】熟练掌握一次函数的性质.k>0,图象过第1,3象限;k<0,图象过第2,4象限.b>o,图象与y轴正半轴相交;b=0,图象过原点;b<0,图象与y轴负半轴相交.7.把分式方程的两边同时乘以(x﹣3),约去分母,得()A.1+(1﹣x)=1 B.1﹣(1﹣x)=1 C.1+(1﹣x)=x﹣3 D.1﹣(1﹣x)=x﹣3【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母得到结果,即可作出判断.【解答】解:分式方程变形得:+=1,去分母得:1+(x﹣1)=x﹣3,即1﹣(1﹣x)=x﹣3,故选D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.若x1,x2是一元二次方程x2+ax﹣8=0的两个根,则x1•x2的值是()A.a B.﹣a C.8 D.﹣8【考点】根与系数的关系.【分析】由根与系数的关系可得x1•x2=,套入数据即可得出结论.【解答】解:∵x1,x2是一元二次方程x2+ax﹣8=0的两个根,∴x1•x2===﹣8.故选D.【点评】本题考查了根与系数的关系,解题的关键是找出x1•x2=.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之积与系数的关系,再套入数据即可.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.10.如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()A.22 B.18 C.14 D.11【考点】菱形的性质;平行四边形的判定与性质.【专题】几何图形问题.【分析】根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB,然后求出EC,同理可得AF,然后判断出四边形AECF 是平行四边形,再根据周长的定义列式计算即可得解.【解答】解:在菱形ABCD中,∠BAC=∠BCA,∵AE⊥AC,∴∠BAC+∠BAE=∠BCA+∠E=90°,∴∠BAE=∠E,∴BE=AB=4,∴EC=BE+BC=4+4=8,同理可得AF=8,∵AD∥BC,∴四边形AECF是平行四边形,∴四边形AECF的周长=2(AE+EC)=2(3+8)=22.故选:A.【点评】本题考查了菱形的对角线平分一组对角的性质,等角的余角相等的性质,平行四边形的判定与性质,熟记性质并求出EC的长度是解题的关键.11.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系;抛物线与x轴的交点.【专题】数形结合.【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=﹣1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(﹣1,2)得a﹣b+c=2,由抛物线的对称轴为直线x=﹣=﹣1得b=2a,所以c﹣a=2;根据二次函数的最大值问题,当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,所以说方程ax2+bx+c﹣2=0有两个相等的实数根.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,所以①错误;∵顶点为D(﹣1,2),∴抛物线的对称轴为直线x=﹣1,∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(﹣1,2),∴a﹣b+c=2,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,∴a﹣2a+c=2,即c﹣a=2,所以③正确;∵当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.故选:C.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.12.如图,反比例函数的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为()A.1 B.2 C.3 D.4【考点】反比例函数系数k的几何意义.【分析】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、□OABC的面积与|k|的关系,列出等式求出k值.【解答】解:由题意得:E、M、D位于反比例函数图象上,则S△OCE=,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,则S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++6=4k,k=2.故选B.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.二、填空题(共6小题,每小题3分,满分18分)13.因式分解:a3﹣9a=a(a+3)(a﹣3).【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣9)=a(a+3)(a﹣3),故答案为:a(a+3)(a﹣3).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.使在实数范围内有意义,x的取值范围是x≥2.【考点】二次根式有意义的条件.【专题】探究型.【分析】先根据二次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.【解答】解:∵使在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.15.将抛物线y=2(x﹣1)2+1向上平移3个单位,那么平移后得到的抛物线的解析式是y=2(x ﹣1)2+4.【考点】二次函数图象与几何变换.【分析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【解答】解:抛物线y=2(x﹣1)2+1的顶点坐标是(1,1),则抛物线y=2(x﹣1)2+1向上平移3个单位后的顶点坐标是(1,4),所以,平移后得到的抛物线的解析式是y=2(x ﹣1)2+4. 故答案为:y=2(x ﹣1)2+4.【点评】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.16.如图,在△ABC 中∠C=90°,AC=BC=2,O 是AB 的中点,以O 为圆心,线段OC 的长为半径画圆心角为90°的扇形OEF ,弧EF 经过点C ,则图中阴影部分的面积为π﹣1 .【考点】扇形面积的计算.【分析】连接OC ,作OM ⊥BC ,ON ⊥AC ,证明△OMG ≌△ONH ,则S 四边形OGCH =S 四边形OMCN ,求得扇形FOE 的面积,则阴影部分的面积即可求得. 【解答】解:连接OC ,作OM ⊥BC ,ON ⊥AC . ∵CA=CB=2,∠ACB=90°, ∴AB=2,∵点O 为AB 的中点, ∴OC=AB=,四边形OMCN 是正方形,OM=1,则扇形FOE 的面积是: =π,∵OA=OB ,∠AOB=90°,点D 为AB 的中点, ∴OC 平分∠BCA , 又∵OM ⊥BC ,ON ⊥AC , ∴OM=ON ,∵∠GOH=∠MON=90°, ∴∠GOM=∠HON , 则在△OMG 和△ONH 中,,∴△OMG ≌△ONH (AAS ), ∴S 四边形OGCH =S 四边形OMCN =1. 则阴影部分的面积是:π﹣1, 故答案为:π﹣1.【点评】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△OMG ≌△ONH ,得到S 四边形OGCH =S 四边形OMCN 是解题的关键.17.如图,正方形ABCD 的边长为10cm ,E 是AB 上一点,BE=4cm ,P 是对角线AC 上一动点,则PB+PE 的最小值是 2cm .【考点】轴对称-最短路线问题;正方形的性质.【分析】直接利用正方形的性质,得出B ,D 点关于直线AC 对称,连接BD ,ED ,BP ,进而利用勾股定理得出答案.【解答】解:如图所示:连接BD ,DE ,BP ,由题意可得:B ,D 点关于直线AC 对称,则P 点是ED 与AC 的交点, ∵正方形ABCD 的边长为10cm ,BE=4cm , ∴AE=6cm ,AD=10cm ,则EP+BP=ED==2(cm ).故答案为:2.【点评】此题主要考查了利用轴对称求最短路线以及正方形的性质,正确得出P点位置是解题关键.18.如图,在Rt△OBC中,OB与x轴正半轴重合,∠OBC=90°,且OC=2,BC=,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC,得到△OB2C2,…,如此继续下去,得到△OB2018C2018,则点C2018的坐标为(22018,•22018).【考点】坐标与图形变化-旋转.【专题】规律型.【分析】先解直角三角形求出∠BOC=60°,再求出OC1、OC2、OC3、…、OC2018的长度,再根据周角等于360°,每6次为一个循环,求出点C2018是第几个循环组的第几个点,再根据变化规律写出点的坐标即可.【解答】解:∵∠OBC=90°,且OC=2,BC=,∴sin∠BOC==,∴∠BOC=60°,∵将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,∴OC1=2OC=2×2=4=22,OC2=2OC1=2×4=8=23,OC3=2OC2=2×8=16=24,…,OC n=2n+1,∴OC2018=22018,∵2018÷6=336,∴点C2018与点C在同一射线上,∴OB2018=OC2018=22018,C2018B2018=OB2018=•22018,∴点C2018的坐标为(22018,•22018).故答案为(22018,•22018).【点评】本题考查了坐标与图形变换:旋转图形的坐标:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了30°角所对的直角边等于斜边的一半.三、解答题(共8小题,满分66分)19.计算:()﹣1﹣(5﹣π)0﹣|﹣|+4sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣1﹣3+4×=2﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简:(1﹣)÷,再选择一个恰当的a值代入求值.【考点】分式的化简求值.【分析】先算括号里面的减法,再算除法,选出合适的a的值代入进行计算即可.【解答】解:原式=•=,当a=0时,原式=1.【点评】本题考查的是分式的化简求值,在解答此类问题时要注意a的取值保证分式有意义.21.如图,在△ABC中,AB=AC,D为BC边的中点,AE∥BC.(1)作∠ADC的平分线DF,与AE交于点F;(用尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=2,求DF的长.【考点】作图—基本作图;等腰三角形的性质;等腰直角三角形.【分析】(1)利用角平分线的作法进而得出即可;(2)利用角平分线的性质得出△ADF为等腰直角三角形,进而得出答案.【解答】解:(1)如图所示:(2)∵AB=AC,D为BC边的中点,∴AD⊥BC 即∠ADC=90°,又∵DF平分∠ADC,∴∠ADF=45°,又∵AE∥BC,∴∠DAF=∠ADC=90°,∴△ADF为等腰直角三角形,又∵AD=2,∴DF=2.【点评】此题主要考查了角平分线的性质与画法,得出△ADF为等腰直角三角形是解题关键.22.某中学在“你最喜爱的球类运动”调查中,随机调查了若干名学生(2014•哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C 点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【专题】几何图形问题.【分析】(1)根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC 中利用∠FAC=30°求得CF,然后即可求得CD的长.【解答】解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60,∴两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=60,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20,又∵FD=60,∴CD=60﹣20,∴建筑物CD的高度为(60﹣20)米.【点评】考查解直角三角形的应用;得到以AF为公共边的2个直角三角形是解决本题的突破点.24.某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式;(2)求销售单价为多少元时,该商品每天的销售利润最大;(3)商场的营销部在调控价格方面,提出了A,B两种营销方案.方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元.请比较哪种方案的最大利润更高,并说明理由.【考点】二次函数的应用.【分析】(1)利用销量×每件利润=总利润,进而求出即可;(2)利用二次函数的性质得出销售单价;(3)分别求出两种方案的最值进而比较得出答案.【解答】解:(1)根据题意得:w=(25+x﹣20)(250﹣10x)即:w=﹣10x2+200x+1250或w=﹣10(x﹣10)2+2250(0≤x≤25)(2)∵﹣10<0,∴抛物线开口向下,二次函数有最大值,当时,销售利润最大此时销售单价为:10+25=35(元)答:销售单价为35元时,该商品每天的销售利润最大.(3)由(2)可知,抛物线对称轴是直线x=10,开口向下,对称轴左侧w随x的增大而增大,对称轴右侧w随x的增大而减小方案A:根据题意得,x≤5,则0≤x≤5当x=5时,利润最大最大利润为w=﹣10×52+200×5+1250=2000(元),方案B:根据题意得,25+x﹣20≥16,解得:x≥11则11≤x≤25,故当x=11时,利润最大,最大利润为w=﹣10×112+200×11+1250=2240(元),∵2240>2000,∴综上所述,方案B最大利润更高.【点评】此题主要考查了二次函数的应用,根据题意利用函数性质得出最值是解题关键.25.如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)求证:EF2=4OD•OP;(3)若BC=6,tan∠F=,求AC的长.【考点】圆的综合题.【分析】(1)连接OA,由OP垂直于AB,利用垂径定理得到D为AB的中点,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP与三角形BOP全等,由PA为圆的切线,得到OA垂直于AP,利用全等三角形的对应角相等及垂直的定义得到OB垂直于BP,即PB为圆O的切线;(2)由一对直角相等,一对公共角,得出三角形AOD与三角形OAP相似,由相似得比例,列出关系式,由OA为EF的一半,等量代换即可得证.(3)根据OA=OC,AD=BD,BC=6,得到OD=BC=3.设AD=x,从而得到tan∠F=,表示出FD=2x,OA=OF=2x﹣3.在Rt△AOD中,由勾股定理求得x后即可求得半径,从而求得直径.【解答】解:(1)连接OB,∵PB是⊙O的切线,∴∠PBO=90°.∵OA=OB,BA⊥PO于D∴AD=BD,∠POA=∠POB.又∵PO=PO,∴△PAO≌△PBO.∴∠PAO=∠PBO=90°∴直线PA为⊙O的切线.(2)∵∠PAO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OPA+∠AOP=90°.∴∠OAD=∠OPA,∴△OAD∽△OPA,∴=,即OA2=OD•OP.又∵EF=2OA,∴EF2=4OD•OP;(3)∵OA=OC,AD=BD,BC=6,∴OD=BC=3.设AD=x,∵tan∠F=,∴FD=2x,OA=OF=2x﹣3.在Rt△AOD中,由勾股定理,得(2x﹣3)2=x2+32.解之得,x1=4,x2=0(不合题意,舍去).AD=4,OA=2x﹣3=5.∵AC是⊙O的直径,∴AC=2OA=10.【点评】此题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数关系等知识,熟练掌握切线的判定与性质是解本题的关键.26.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(﹣3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;(3)点Q在直线BC上方的抛物线上,且点Q到直线BC的距离最远,求点Q坐标.【考点】二次函数综合题.【专题】综合题;压轴题.【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值;(2)根据(1)得到的函数解析式,可求出D、C的坐标;易证得△OBC是等腰Rt△,若过A作BC的垂线,设垂足为E,在Rt△ABE中,根据∠ABE的度数及AB的长即可求出AE、BE、CE的长;连接AC,设抛物线的对称轴与x轴的交点为F,若∠APD=∠ACB,那么△AEC与△AFP,根据得到的比例线段,即可求出PF的长,也就求得了P点的坐标;(3)当Q到直线BC的距离最远时,△QBC的面积最大(因为BC是定长),可过Q作y轴的平行线,交BC于S;根据B、C的坐标,易求出直线BC的解析式,可设出Q点的坐标,根据抛物线和直线BC的解析式,分别表示出Q、S的纵坐标,即可得到关于QS的长以及Q点横坐标的函数关系式,以QS为底,B、C横坐标差的绝对值为高可得到△QBC的面积,由于B、C横坐标差的绝对值为定值,那么QS最长时,△QBC的面积最大,此时Q离BC的距离最远;可根据上面得到的函数的性质求出QS的最大值及对应的Q点横坐标,然后将其代入抛物线的解析式中,即可求出Q点的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(﹣3,0),∴解得:∴抛物线的解析式为y=﹣x2﹣4x﹣3(2)由y=﹣x2﹣4x﹣3可得D(﹣2,1),C(0,﹣3)∴OB=3,OC=3,OA=1,AB=2可得△OBC是等腰直角三角形∴∠OBC=45°,如图,设抛物线对称轴与x轴交于点F,∴过点A作AE⊥BC于点E∴∠AEB=90°可得,在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,∴△AEC∽△AFP∴,,解得PF=2∵点P在抛物线的对称轴上,∴点P的坐标为(﹣2,2)或(﹣2,﹣2)(3)设直线BC的解析式y=kx+b,直线BC经过B(﹣3,0),C(0,﹣3),∴解得:k=﹣1,b=﹣3,∴直线BC的解析式y=﹣x﹣3设点Q(m,n),过点Q作QH⊥BC于H,并过点Q作QS∥y轴交直线BC于点S,则S点坐标为(m,﹣m﹣3)∴QS=n﹣(﹣m﹣3)=n+m+3∵点Q(m,n)在抛物线y=﹣x2﹣4x﹣3上,∴n=﹣m2﹣4m﹣3∴QS=﹣m2﹣4m﹣3+m+3=﹣m2﹣3m=当m=时,QS有最大值∵BO=OC,∠BOC=90°,∴∠OCB=45°∵QS∥y轴,∴∠QSH=45°∴△QHS是等腰直角三角形;∴当斜边QS最大时QH最大;∵当m=时,QS最大,∴此时n=﹣m2﹣4m﹣3=﹣+6﹣3=;∴Q(﹣,);∴Q点的坐标为(﹣,)时,点Q到直线BC的距离最远.(注:1、如果学生有不同的解题方法,只要正确,可参考评分标准,酌情给分;2、对第(3)题,如果只用△=0求解,扣.理由:△=0判断只有一个交点,不是充分条件)【点评】此题考查了二次函数解析式的确定、相似三角形的判定和性质、函数图象交点及图形面积的求法等知识,综合性强,难度较大.。
广西南宁市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018七上·台州期中) -3的倒数的绝对值是()A .B .C .D .2. (2分)北京时间2012年3月8日凌晨,苹果在美国旧金山芳草地艺术中心发布第三代iPad,采用A5X 处理器,配500万像素后置摄像头。
将500万用科学记数法表示应为()A .B .C .D .3. (2分) (2016七上·高密期末) 下列计算正确的是()A . 3a+2b=5abB . 5y﹣3y=2C . 7a+a=7a2D . 6xy2﹣3y2x=3xy24. (2分)若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465.则由1,2,3这三个数字构成的,数字不重复的三位数是“凸数”的概率是()A .B .C .D .5. (2分)点P(3,4)关于y轴对称的点的坐标是()A . (3,﹣4)B . (﹣3,4)C . (﹣4,﹣3)D . (﹣4,3)6. (2分)下列说法中①一个角的两边分别垂直于另一个角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a,b分别是方程x2-7x+7=0的两个根,则AB边上的中线长为正确命题有()A . 0个B . 1个C . 2个D . 3个7. (2分)(2017·恩施) 关于x的不等式组无解,那么m的取值范围为()A . m≤﹣1B . m<﹣1C . ﹣1<m≤0D . ﹣1≤m<08. (2分)(2017·东胜模拟) 已知下列命题中为真命题的是()① 的算术平方根是4;②若ma2>na2 ,则m>n;③正八边形的一个内角的度数是135°;④对角线互相垂直平分的四边形是菱形;⑤平分弦的直径垂直于弦.A . ①③④B . ②③⑤C . ①④⑤D . ②③④9. (2分)(2019·重庆) 如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A . 40°B . 50°C . 80°D . 100°10. (2分) (2019九上·绿园期末) 如图所示,在等边三角形中,为边上一点,为边上一点,且,,,则的边长为()A . 3B . 4C . 5D . 611. (2分)(2019·安徽) 如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A . 0B . 4C . 6D . 812. (2分)如图,AB是⊙O的直径,AC是弦,D是的中点,DE⊥AB于E,交AC于F,连接BD交AC于G,下列结论:①AF=DF;②DE=AC;③CG=FG;④OF=BG.其中正确的个数是()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共7分)13. (1分) (2018八上·大石桥期末) 当x=________时,分式无意义.14. (1分) (2016九上·南岗期中) 把多项式9a3c﹣ab2c分解因式的结果是________.15. (1分)(2018·福建) 某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为________.16. (1分) (2019九下·江都月考) 如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE=3,BE=5,则长AD与宽AB的比值是________.17. (1分) (2019九上·保山期中) 如图大半圆与小半圆O1相切于点,大半圆的弦与小半圆相切于 , , ,则阴影部分的面积为________.(结果保留)18. (2分)如图为手的示意图,在各个手指间标记字母A、B、C、D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4…,当数到12时,对应的字母是________;当字母C第201次出现时,恰好数到的数是________.三、解答题 (共8题;共76分)19. (5分)(2017·江津模拟) ﹣(π﹣3)0﹣(﹣1)2017+(﹣)﹣2+tan60°+| ﹣2|20. (5分) (2020七上·丹东期末) 如图,已知直线和直线外三点,请按下列要求画图:①画射线;②连接;③延长至,使;④在直线上找一点,使得最小.21. (10分)(2018·兴化模拟) 平面直角坐标系xOy中,直线y=x+1与双曲线的一个交点为P(m,6).(1)求k的值;(2) M(2,a),N(n,b)分别是该双曲线上的两点,直接写出当a>b时,n的取值范围.22. (7分) (2016七下·五莲期末) 某校就“遇见老人摔倒后如何处理”的问题,随机抽取该校部分学生进行问卷调查(每个被调查的学生必须选择而且只能在4种方式中选择一项),图1和图2是整理数据后绘制的两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)该校随机抽查了________名学生;(2)将图1补充完整,在图2中,“视情况而定”部分所占的圆心角是________度;(3)估计该校2800名学生中采取“马上救助”的方式的人数.23. (10分)(2016·益阳) 某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?24. (12分)(2019·海曙模拟) 如图1,平面内有一点P到△ABC的三个顶点的距离分别为PA、PB、PC,若有PA2=PB2+PC2则称点P为△ABC关于点A的勾股点.(1)如图2,在4×5的网格中,每个小正方形的长均为1,点A、B、C、D、E、F、G均在小正方形的顶点上,则点D是△ABC关于点________的勾股点;在点E、F、G三点中只有点________是△ABC关于点A的勾股点.(2)如图3,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,①求证:CE=CD;②若DA=DE,∠AEC=120°,求∠ADE的度数.(3)矩形ABCD中,AB=5,BC=6,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,①若△ADE是等腰三角形,求AE的长;②直接写出AE+ BE的最小值.25. (15分) (2018九上·长兴月考) 如图,在平面直角坐标系xOy中,直线与抛物线(b,c为常数)交于点A(-1,0)和B(3,3),点C是直线下方抛物线上的一个动点·(1)求抛物线的函数解析式;(2)过点C作CD⊥AB,垂足为点D。
2018年广西桂林市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.1.2018的相反数是()A.2018 B.﹣2018 C.D.2.下列图形是轴对称图形的是()A.B.C.D.3.如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是()A.120°B.60°C.45°D.30°4.如图所示的几何体的主视图是()A.B.C.D.5.用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3 B.2a+3 C.2(a﹣3)D.2(a+3)6.2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为()A.1.28×1014B.1.28×10﹣14C.128×1012D.0.128×10117.下列计算正确的是()A.2x﹣x=1 B.x(﹣x)=﹣2x C.(x2)3=x6D.x2+x=28.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A.10和7 B.5和7 C.6和7 D.5和69.已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3 D.10.若|3x﹣2y﹣1|+=0,则x,y的值为()A.B.C.D.11.如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM关于AM 所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3 B.C. D.12.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N 时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分,请将答案填在答题卡上.13.比较大小:﹣30.(填“<”,“=”,“>”)14.因式分解:x2﹣4=.15.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为分.16.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.17.如图,矩形OABC的边AB与x轴交于点D,与反比例函数y=(k>0)在第一象限的图象交于点E,∠AOD=30°,点E的纵坐标为1,△ODE 的面积是,则k的值是.18.将从1开始的连续自然数按图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)…按此规律,自然数2018记为三、解答题:本大题共8小题,共66分.请将答题过程写在答题卡上.19.(6分)计算:+(﹣3)0﹣6cos45°+()﹣1.20.(6分)解不等式<x+1,并把它的解集在数轴上表示出来.21.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.22.(8分)某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:(1)在这次调查中共随机抽取了名学生,图表中的m=,n;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.23.(8分)如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:≈1.41,≈1.73,≈2.45结果精确到0.1小时)24.(8分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?25.(10分)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O 于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD的长.26.(12分)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E 的坐标;若不存在,请说明理由.2018年广西桂林市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.1.2018的相反数是()A.2018 B.﹣2018 C.D.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.下列图形是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解即可.【解答】解:A、是轴对称图形,本选项正确;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:A.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是()A.120°B.60°C.45°D.30°【分析】利用两直线平行,同位角相等就可求出.【解答】解:∵直线被直线a、b被直线c所截,且a∥b,∠1=60°∴∠2=∠1=60°.故选:B.【点评】本题考查了平行线的性质,应用的知识为两直线平行,同位角相等.4.如图所示的几何体的主视图是()A.B.C.D.【分析】根据主视图是从正面看到的图形,可得答案.【解答】解:从正面看下面是一个长方形,如图所示:故C选项符合题意,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形画出来就是主视图.5.用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3 B.2a+3 C.2(a﹣3)D.2(a+3)【分析】a的2倍就是2a,与3的和就是2a+3,根据题目中的运算顺序就可以列出式子,从而得出结论.【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.【点评】本题是一道列代数式的文字题,本题考查了数量之间的和差倍的关系.解答时理清关系的运算顺序会死解答的关键.6.2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000000 000 000用科学记数法表示为()A.1.28×1014B.1.28×10﹣14C.128×1012D.0.128×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将128 000 000 000 000用科学记数法表示为:1.28×1014.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.下列计算正确的是()A.2x﹣x=1 B.x(﹣x)=﹣2x C.(x2)3=x6D.x2+x=2【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【解答】解:A、2x﹣x=x,错误;B、x(﹣x)=﹣x2,错误;C、(x2)3=x6,正确;D、x2+x=x2+x,错误;故选:C.【点评】此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.8.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A.10和7 B.5和7 C.6和7 D.5和6【分析】将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.【解答】解:将这组数据重新排列为5、5、5、6、7、7、10,所以这组数据的众数为5、中位数为6,故选:D.【点评】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.9.已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3 D.【分析】把a=2,b=﹣k,c=3代入△=b2﹣4ac进行计算,然后根据方程有两个相等的实数根,可得△=0,再计算出关于k的方程即可.【解答】解:∵a=2,b=﹣k,c=3,∴△=b2﹣4ac=k2﹣4×2×3=k2﹣24,∵方程有两个相等的实数根,∴△=0,∴k2﹣24=0,解得k=±2,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.10.若|3x﹣2y﹣1|+=0,则x,y的值为()A.B.C.D.【分析】根据二元一次方程组的解法以及非负数的性质即可求出答案.【解答】解:由题意可知:解得:故选:D.【点评】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.11.如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM关于AM 所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3 B.C. D.【分析】解法一:连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.再根据BC=CD=AB=3,CM=2,利用勾股定理即可得到,Rt△BCM中,BM=,进而得出EF的长;解法二:过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,判定△AEH∽△EMG,即可得到==,设MG=x,则EH=3x,DG=1+x=AH,利用勾股定理可得,Rt△AEH中,(1+x)2+(3x)2=32,进而得出EH==BN,CG=CM﹣MG==EN,FN=,再根据勾股定理可得,Rt △AEN中,EF==.【解答】解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.∵DM=1,∴CM=2.∴在Rt△BCM中,BM==,∴EF=,故选:C.解法二:如图,过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,则∠AHG=∠MGE=90°,由折叠可得,∠AEM=∠D=90°,AE=AD=3,DM=EM=1,∴∠AEH+∠MEG=EMG+∠MEG=90°,∴∠AEH=∠EMG,∴△AEH∽△EMG,∴==,设MG=x,则EH=3x,DG=1+x=AH,∴Rt△AEH中,(1+x)2+(3x)2=32,解得x1=,x2=﹣1(舍去),∴EH==BN,CG=CM﹣MG==EN,又∵BF=DM=1,∴FN=,∴Rt△AEN中,EF==,故选:C.【点评】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N 时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是()A.B.C.D.【分析】延长NM交y轴于P点,则MN⊥y轴.连接CN.证明△PAB∽△NCA,得出=,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,代入整理得到y=3x﹣x2=﹣(x﹣)2+,根据二次函数的性质以及≤x≤3,求出y的最大与最小值,进而求出b的取值范围.【解答】解:如图,延长NM交y轴于P点,则MN⊥y轴.连接CN.在△PAB与△NCA中,,∴△PAB∽△NCA,∴=,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,∴=,∴y=3x﹣x2=﹣(x﹣)2+,∵﹣1<0,≤x≤3,∴x=时,y有最大值,此时b=1﹣=﹣,x=3时,y有最小值0,此时b=1,∴b的取值范围是﹣≤b≤1.故选:B.【点评】本题考查了相似三角形的判定与性质,二次函数的性质,得出y与x之间的函数解析式是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分,请将答案填在答题卡上.13.比较大小:﹣3<0.(填“<”,“=”,“>”)【分析】根据负数小于0可得答案.【解答】解:﹣3<0,故答案为:<.【点评】此题主要考查了有理数的大小,关键是掌握法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.14.因式分解:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.15.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为84分.【分析】根据加权平均数的定义列出方程求解即可.【解答】解:(85×2+90×2+70)÷(2+2+1)=(170+180+70)÷5=420÷5=84(分).答:该学习小组的平均分为84分.故答案为:84.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求85,90,70这三个数的平均数,对平均数的理解不正确.16.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是3.【分析】首先根据已知条件分别计算图中每一个三角形每个角的度数,然后根据等腰三角形的判定:等角对等边解答,做题时要注意,从最明显的找起,由易到难,不重不漏.【解答】解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:3【点评】本题考查了等腰三角形的性质及等腰三角形的判定,角的平分线的性质;求得各个角的度数是正确解答本题的关键.17.如图,矩形OABC的边AB与x轴交于点D,与反比例函数y=(k>0)在第一象限的图象交于点E,∠AOD=30°,点E的纵坐标为1,△ODE的面积是,则k的值是3.【分析】作EM⊥x轴于点M,由点E的纵坐标为1可得EM=1.根据△ODE的面积是,求出OD=.解直角△EMD,求出DM==,那么OM=OD+DM=3,E(3,1).再将E点坐标代入y=,即可求出k的值.【解答】解:如图,作EM⊥x轴于点M,则EM=1.∵△ODE 的面积是,∴OD•EM=,∴OD=.在直角△OAD中,∵∠A=90°,∠AOD=30°,∴∠ADO=60°,∴∠EDM=∠ADO=60°.在直角△EMD中,∵∠DME=90°,∠EDM=60°,∴DM===,∴OM=OD+DM=3,∴E(3,1).∵反比例函数y=(k>0)的图象过点E,∴k=3×1=3.故答案为3.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,解直角三角形,三角形的面积等知识.求出E点坐标是解题的关键.18.将从1开始的连续自然数按图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)…按此规律,自然数2018记为(505,2)行的数字从左往右是由大到小排列.用2018除以4,根据除数与余数确定2018所在的行数,以及是此行的第几个数,进而求解即可.【解答】解:由题意可得,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.∵2018÷4=504…2,504+1=505,∴2018在第505行,∵奇数行的数字从左往右是由小到大排列,∴自然数2018记为(505,2).故答案为(505,2).【点评】本题考查了规律型:数字的变化类,通过观察得出表格中的自然数的排列规律是解题的关键.三、解答题:本大题共8小题,共66分.请将答题过程写在答题卡上.19.(6.00分)计算:+(﹣3)0﹣6cos45°+()﹣1.【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+1﹣6×+2=3+1﹣3+2=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(6.00分)解不等式<x+1,并把它的解集在数轴上表示出来.【分析】根据解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.依次计算可得.【解答】解:去分母,得:5x﹣1<3x+3,移项,得:5x﹣3x<3+1,合并同类项,得:2x<4,系数化为1,得:x<2,将不等式的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式,解题的关键是掌握解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.21.(8.00分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【解答】证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应边相等.22.(8.00分)某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:(1)在这次调查中共随机抽取了40名学生,图表中的m=12,n=0.40;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.【分析】(1)由第一组的频数及其频率可得总人数,再根据频率=频数÷总数可得m、n的值;(2)用总人数乘以样本中第一、二组频率之和即可得;(3)画树状图得出所有等可能解果,然后根据概率公式计算即可得解.【解答】解:(1)本次调查的学生总人数为4÷0.1=40人,m=40×0.3=12、n=16÷40=0.40,故答案为:40、12、=0.40;(2)600×(0.10+0.05)=600×0.15=90(人),答:估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数为90;(3)画树状图如下:由树状图知共有6种等可能结果,其中恰好抽到A,B两名女生的结果数为2,所以恰好抽到A、B两名女生的概率;【点评】本题考查频数分布直方图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.也考查了列表法与树状图法求概率.23.(8.00分)如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A 前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:≈1.41,≈1.73,≈2.45结果精确到0.1小时)【分析】延长AB交南北轴于点D,则AB⊥CD于点D,根据直角三角形的性质和三角函数解答即可.【解答】解:因为A在B的正西方,延长AB交南北轴于点D,则AB⊥CD于点D∵∠BCD=45°,BD⊥CD∴BD=CD在Rt△BDC中,∵cos∠BCD=,BC=60海里即cos45°=,解得CD=海里∴BD=CD=海里在Rt△ADC中,∵tan∠ACD=即tan60°==,解得AD=海里∵AB=AD﹣BD∴AB=﹣=30()海里∵海监船A的航行速度为30海里/小时则渔船在B处需要等待的时间为==≈2.45﹣1.41=1.04≈1.0小时∴渔船在B处需要等待1.0小时【点评】本题考查解直角三角形、方向角、三角函数、特殊角的三角函数值、等腰直角三角形的判定和性质等知识,解题的关键是添加辅助线构造直角三角形,学会用转化的思想解决问题,把问题转化为方程解决,属于中考常考题型.24.(8.00分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?【分析】(1)设二号施工队单独施工需要x天,根据一号施工队完成的工作量+二号施工队完成的工作量=总工程(单位1),即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据工作时间=工作总量÷工作效率,即可求出结论.【解答】解:(1)设二号施工队单独施工需要x天,根据题意得:+=1,解得:x=60,经检验,x=60是原分式方程的解.答:若由二号施工队单独施工,完成整个工期需要60天.(2)根据题意得:1÷(+)=24(天).答:若由一、二号施工队同时进场施工,完成整个工程需要24天.【点评】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.25.(10.00分)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD的长.【分析】(1)先判断出∠ADC=∠BDC,再用圆的性质即可得出结论;(2)先判断出AI⊥BC,进而求出∠IAC=30°,即可得出结论;(3)先判断出△ABC为等边三角形,进而判断出AB⊥CF,即:AE=BE,利用等边三角形的面积求出AB=,CE=9,再利用勾股定理求OE,进而得出OA,利用面积关系求出DG=2,再判断出四边形PDGE为矩形,得出PE=DG=2,即:CP=11,求出DP==,最后用勾股定理即可得出结论.【解答】解:(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴,∴AC=BC(2)连接AO并延长交BC于I交⊙O于J,∵AH是⊙O的切线且AH∥BC,∴AI⊥BC,由垂径定理得,BI=IC,∵AC=BC,∴IC=AC,在Rt△AIC中,IC=AC,∴∠IAC=30°∴∠ABC=60°=∠F=∠ACB,∵FC是直径,∴∠FAC=90°,∴∠ACF=180°﹣90°﹣60°=30°;(3)过点D作DG⊥AB,连接AO由(1)(2)知,△ABC为等边三角形,∵∠ACF=30°,∴AB⊥CF,∴AE=BE,∴,∴AB=,∴,在Rt△AEC中,CE=AE=9,在Rt△AEO中,设EO=x,则AO=2x,∴AO2=AE2+OE2,∴,∴x=6,∴⊙O的半径为6,∴CF=12,∵,∴DG=2,过点D作DP⊥CF,连接OD,∵AB⊥CF,DG⊥AB,∴CF∥DG,∴四边形PDGE为矩形,∴PE=DG=2,∴CP=PE+CE=2+9=11在Rt△OPD中,OP=5,OD=6,∴DP==,∴在Rt△CPD中,根据勾股定理得,CD==2.【点评】此题是圆的综合题,主要考查了圆的性质,垂径定理,矩形判定和性质,等边三角形的判定和性质,勾股定理,切线的判定和性质,三角形的面积公式,求出∠ACF=30°是解本题的关键.26.(12.00分)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E 的坐标;若不存在,请说明理由.【分析】(1)根据待定系数法,可得函数解析式;(2)根据线段垂直平分线的性质,可得M在线段的垂直平分线上,根据勾股定理,可得答案;(3)根据相似三角形的判定与性质,可得F点坐标,根据解方程组,可得D点坐标,根据正切值,可得tan∠ABE=2,①根据待定系数法,可得BM,根据解方程组,可得E点坐标;②根据正切值,可得关于m的方程,根据解方程,可得答案.【解答】解:(1)将A,B的坐标代入函数解析式,得,解得,抛物线y的函数表达式y=﹣2x2﹣4x+6,当x=0时,y=6,即C(0,6);(2)由MA=MB=MC,得M点在AB的垂直平分线上,M在AC的垂直平分线上,设M(﹣1,x),MA=MC,得(﹣1+2)2+x2=(x﹣6)2+(﹣1﹣0)2,解得x=∴若MA=MB=MC,点M的坐标为(﹣1,);(3)①过点A作DA⊥AC交y轴于点F,交CB的延长线于点D,如图1,∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°,∠ACO+∠AFO=90°∴∠DAO=∠ACO,∠CAO=AFO∴△AOF∽△COA∴=∴AO2=OC×OF∵OA=3,OC=6∴OF==∴∵A(﹣6,0),F(0,﹣)∴直线AF的解析式为:,∵B(1,0),(0,6),∴直线BC的解析式为:y=﹣6x+6∴,解得∴∴∴tan∠ACB=∵4tan∠ABE=11tan∠ACB∴tan∠ABE=2过点A作AM⊥x轴,连接BM交抛物线于点E ∵AB=4,tan∠ABE=2∴AM=8∴M(﹣3,8),∵B(1,0),(﹣3,8)∴直线BM的解析式为:y=﹣2x+2,联立BM与抛物线,得∴,解得x=﹣2或x=1(舍去)∴y=6∴E(﹣2,6)②当点E在x轴下方时,如图2,过点E作EG⊥AB,连接BE,设点E(m,﹣2m2﹣4m+6)∴tan∠ABE==2∴m=﹣4或m=1(舍去)可得E(﹣4,﹣10),综上所述:E点坐标为(﹣2,6),(﹣4,﹣10).【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段垂直平分线的性质得出M在线段的垂直平分线上;解(3)①的关键是利用正切值得出M点的坐标,又利用了解方程组;解②的关键是利用正切值得出关于m的方程.。
2018年中考数学试卷及答案解析一、试卷概述2018年中考数学试卷总分为150分,分为选择、填空、解答三个部分。
选择题和填空题共计65分,解答题共计85分。
试卷难度适中,覆盖了中学数学的各个知识点,考查重点突出,难度适中,题型形式多样。
二、选择题分析选择题共计15道,每道2分,共计30分。
选择题难度适中,覆盖了中学数学基础知识点,考查了学生的记忆和理解能力,其中有几道题需要细心审题,避免失分。
如下是部分选择题:1.若$a>b>0$,则$\frac{a+b}{a-b}$的值为()A.$-\frac{a+b}{b-a}$B.$\frac{a+b}{b-a}$C.$-\frac{a-b}{b-a}$D.$\frac{a-b}{b-a}$2.有一只蚂蚁位于正方形的一个顶点上,若此蚂蚁只能在正方形边界上爬行,并且每次只能向左或向下,那么它到对角线对面的点至少需要爬行多少条边长?A.1B.2C.3D.43.一根梯子,顶端靠在13米高的树上,底端离树8米,求梯子长。
A.15B.16C.17D.24四、解答题分析解答题共计10道,每道8分,共计80分。
解答题部分难度适中,考查了学生的运算能力和理解能力。
基础题型占多数,部分题目需要思维拓展,需要学生多加思考。
如下是部分解答题:1.已知$\frac{1}{\sqrt{u_1}}+\frac{1}{\sqrt{u_2}}=\frac{3}{2}$,求$\frac{1}{2u_1}+\frac{1}{u_2}$的值。
2.如图,在$\triangle ABC$中,点$E$和$F$分别是$\overline{AC}$和$\overline{AB}$的中点,$\overline{BE}$交$\overline{CF}$于点$G$。
如果$AG=4$,$GB=6$,$CG=8$,那么$\overline{BC}$的长为多少?总体来看,2018年中考数学试卷难度适中,考查范围覆盖了中学数学基础知识点,不易出偏题,对于实力较强的学生来说,可以拿到不错的成绩。
2018年中考数学二模试卷(广西南宁XX中学带答案和解释)
2018年广西南宁中考数学二模试卷一、选择题(本大题共12小题,每小题3分,共36分)
1.(3分)﹣2018的绝对值是()
A.2018B.﹣2018C. D.﹣
2.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()
A. B. C. D.
3.(3分)近年人们越越关注健康,我国质检总局规定针织内衣、被套、床上用品等直接接触皮肤的衣物,每千克衣物上甲醛含量应在0000 075千克以下,将0000 075用科学记数法表示为()A.075×10﹣4B.75×10﹣4C.75×10﹣6D.75×10﹣5
4.(3分)下列计算正确的是()
A. B.a2×a3=a6C.a2+a=a3D.(﹣2a2)3=﹣6a6
5.(3分)已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()
A. B. C. D.
6.(3分)关于x的一元二次方程ax2+bx=6的一个根为x=2,则代数式4a+2b的值是()
A.3B.6C.10D.12
7.(3分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()
A.开口向下B.顶点坐标是(1,2)
C.对称轴是x=﹣1D.与x轴有两个交点
8.(3分)将二次函数y=x2的图象向下平移2个单位,再向右平移3个单位,则平移后的二次函数的解析式为()
A.y=x2﹣2B.y=x2+2C.y=(x+3)2+2D.y=(x﹣3)2﹣2
9.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,。
第1页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………广西南宁市2018届2018届数学中考二模试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 总分 核分人得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共12题)1. 如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是( )A .B .C .D .2. 下列图形中既是中心对称图形又是轴对称图形的是( )。
A .B .C .D .3. 下列各数中,比-2小的数是( ) A . 2 B . 0 C . -1 D . -34. 一粒米的质量是 千克,将 用科学记数法表示为 A . B .C .D .5. 下列各式计算正确的是 A . B . C . D .6. 如图,内接于,连接OA ,OB ,若,则的度数是答案第2页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .B .C .D .7. 不等式的正整数解的个数是为A . 1B . 2C . 3D . 48. 如图,平行四边形ABCD 中,AE 平分 , , ,则CE 等于A . 6B . 5C . 4D . 39. 某校新生进行军训打靶演练,分小组进行,某小组五名同学的成绩分别是:9、5、8、7、6环,则该组数据的平均数与中位数分别是A . 6,7B . 6,8C . 7,7D . 7,810. 如图,图中是抛物线形拱桥,当拱顶离水面2m 时水面宽4m .水面下降1m ,水面宽度为( )A . 2 mB . 2m C .m D .m11. 如图,半径为4的与含有角的直角三角板ABC 的边AC 切于点A ,将直角三角板沿CA 边所在的直线向左平移,当平移到AB 与相切时,该直角三角板平移的距离为第3页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 2B .C . 4D .12. 如图,已知直线 与与双曲线 交于A 、B 两点,连接OA ,若 ,则k 的值为A .B .C .D .第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共6题)1. 一组数据按从小到大的顺序排列为1,2,3,3,4,5,则这组数据的众数是 .2. 如图,已知,,垂足为E ,若,则的度数为 .3. 分解因式:.4. 如图,在菱形ABCD 中,,,则菱形ABCD 的周长等于 .答案第4页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………5. 如图,下列图形均是由完全相同的点按照一定的规律组成的,第1个图形一共有3个点,第2个图形一共有8个点,第3个图形一共有15个点, ,按此规律排列下去,第100个图形中点的个数是 .6. 如图,正方形ABCD 边长为6,E 是BC 的中点,将 沿AE 折叠,使点B 落在点H 处,延长EH交CD 于点F ,过E 作 的平分线交CD 于点G ,则的面积为 .评卷人得分二、计算题(共2题)7. 先化简,再求值: ,其中 .8. 计算: .评卷人得分三、作图题(共1题)9. 如图,在平面直角坐标系中,,,.第5页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)①清画出将向下平移3个单位得到的;②请画出以点O 为旋转中心,将 逆时针旋转 得到的(2)请直接写出 、 的距离.评卷人 得分四、综合题(共5题)10. 如图,在 中, ,点C 为AB 的中点, ,以点O 为圆心,6为半径的圆经过点C ,分别交OA 、OB 于点E 、F .(1)求证:AB 为 的切线;(2)求图中阴影部分的面积 注:结果保留 , , ,11. 荔枝是广西盛产的一种水果,六月份是荔技传统销售旺季 去年六月份某水果公司为拓展销售渠道,在实体店的基础上中途增设了网店,公司总销售量 吨 与销售时间 天 关系如图所示:答案第6页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)请直接写出去年六月份网店每天的销售量,并求出AB 的解析式 不写取值范围 ;(2)公司预计,今年六月份实体店的销售量与去年相同,网店的销售量将有所增加,预计今年网店每天的销售量比去年增加 ,公司六月份的总销售量是去年的 倍,求m 的值.12. 某校英语社团举行了“单词听写大赛”,每位参赛选手共听写单词100个 现从参加比赛的男女选手中分别随机抽取部分学生进行调查,对答对的情况进行分组如下:组: ,B 组: ,C 组: ,D 组: ,E 组: 并绘制了如下不完整的统计图:请根据以上信息解答下列问题:(1)本次调查共抽取了多少名学生,并将条形统计图补充完整;(2)求出A 组所对的扇形圆心角的度数;(3)若从D 、E 两组中分别抽取一位学生进行采访,请用画树状图或列表法求出恰好抽到两位女学生的概率.13. 如图, 和 都是等腰直角三角形,,,的顶点A 在的斜边DE 上,AB 、CD 交于点F ,连接BD .第7页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求证: ≌;(2)求证: ;(3)若,AF ::3,求线段AB 的长.14. 如图1,抛物线 经过,两点,抛物线与x 轴的另一交点为A ,连接AC 、BC .(1)求抛物线的解析式及点A 的坐标;(2)若点D 是线段AC 的中点,连接BD ,在y 轴上是否存一点E ,使得 是以BD 为斜边的直角三角形?若存在,求出点E 的坐标,若不存在,说明理由;(3)如图2,P 为抛物线在第一象限内一动点,过P 作 于Q ,当PQ 的长度最大时,在线段BC 上找一点M 使的值最小,求的最小值.答案第8页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………参数答案1.【答案】:【解释】:2.【答案】:【解释】:3.【答案】:【解释】:4.【答案】:【解释】:第9页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………5.【答案】:【解释】: 6.【答案】: 【解释】: 7.【答案】:答案第10页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:8.【答案】:【解释】:9.【答案】:【解释】:○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………10.【答案】:【解释】: 11.【答案】: 【解释】:○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………12.【答案】:【解释】:○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】: 【答案】: 【解释】: 【答案】: 【解释】:【答案】:○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】: 【答案】: 【解释】: (1)【答案】:(2)【答案】:【解释】:○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:【解释】:(1)【答案】:第21页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:【解释】: (1)【答案】:答案第22页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:(3)【答案】:【解释】:(1)【答案】:第23页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:(3)【答案】: 【解释】:答案第24页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:第25页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:答案第26页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………第27页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:。
一、选择题1.(2015南宁)(3分)对于两个不相等的实数a 、b ,我们规定符号Max {a ,b }表示a 、b 中的较大值,如:Max {2,4}=4,按照这个规定,方程{}21x Max x x x+-=,的解为( )A .21-B .22-C .121-D .1+12.(2015来宾)(3分)已知实数1x ,2x 满足127x x +=,1212x x =,则以1x ,2x 为根的一元二次方程是( )A .27120x x -+=B .27120x x ++=C .27120x x +-=D .27120x x --=3.(2015钦州)(3分)用配方法解方程21090x x ++=,配方后可得( )A .2(5)16x +=B .2(5)1x +=C .2(10)91x +=D .2(10)109x +=4.( 2015梧州)(3分)一元一次方程410x +=的解是( )A .14B . 14- C . 4 D . 4- 5.(2015梧州)(3分)今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( )A .1069605076020500x x -=+ B . 5076010696020500x x -=+ C .1069605076050020x x -=+ D . 5076010696050020x x -=+ 6.(2015玉林防城港)(3分)某次列车平均提速vkm /h ,用相同的时间,列车提速前行驶skm ,提速后比提速前多行驶50km .设提速前列车的平均速度为xkm /h ,则列方程是( )A .50s s x x v +=+B .50s s x v x +=+C .50s s x x v +=-D .50s s x v x+=- 7.(2015贵港)(3分)若关于x 的一元二次方程2(1)220a x x --+=有实数根,则整数a 的最大值为( )A .﹣1B .0C .1D .28.(2015河池)(3分)下列方程有两个相等的实数根的是( )A .2+10x x +=B .24210x x ++=C .212360x x ++=D .220x x +-=二、填空题9.(2015来宾)(3分)分式方程121x x=+的根是 . 10.(2015柳州)(3分)若x =1是一元二次方程220x x m ++=的一个根,则m 的值为 .11.(2015崇左)(3分)4个数a 、b 、c 、d 排列成 a bc d ,我们称之为二阶行列式,规定它的运算法则为:a b ad bc c d =-.若 3 3123 3x x x x +-=-+,则x =____. 12.(2015河池)(3分)方程233x x=-的解是 . 三、解答题13.(2015南宁)(10分)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)用含a 的式子表示花圃的面积.(2)如果通道所占面积是整个长方形空地面积的83,求出此时通道的宽. (3)已知某园林公司修建通道、花圃的造价1y (元)、2y (元)与修建面积x (m 2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?14.(2015来宾)(8分)已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?15.(2015柳州)(6分)如图,小黄和小陈观察蜗牛爬行,蜗牛在以A 为起点沿直线匀速爬向B 点的过程中,到达C 点时用了6分钟,那么还需要多长时间才能到达B 点?16.(2015钦州)(8分)某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.(1)每个气排球和每个篮球的价格各是多少元?(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?17.(2015梧州)(8分)向阳村2010年的人均收入为12000元,2012年的人均收入为14520元,求人均收入的年平均增长率.18.(2015百色)(10分)某次知识竞赛有20道必答题,每一题答对得10分,答错或不答都扣5分,3道抢答题,每一题抢答对得10分,抢答错扣20分,抢答不到不得分也不扣分.甲乙两队决赛,甲队必答题得了170分,乙队必答题只答错了1题.(1)甲队必答题答对答错各多少题?(2)抢答赛中,乙队抢答对了第1题,又抢到了第2题,但还没作答时,甲队拉拉队队员小黄说:“我们甲队输了!”,小汪说:“小黄的话不一定对!”,请你举一例说明“小黄的话”有何不对.19.(2015北海)(6分)解方程:231 x x=+.20.(2015北海)(8分)某市居民用电的电价实行阶梯收费,收费标准如下表:(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?21.(2015崇左)(8分)为落实国务院房地产调控政策,使“居者有其屋”.某市加快了廉租房的建设力度,2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?22.(2015崇左)(10分)一块材料的形状是锐角三角形ABC ,边BC =120mm ,高AD =80mm ,把它加工成正方形零件如图1,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上.(1)求证:△AEF ∽△ABC ;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?23.(2015贵港)(8分)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m %,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍. 问:今年第一季度生产总量是多少台机器?m 的值是多少?24.(2015桂林)(8分)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.25.(2015河池)(8分)联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?26.(2015贺州)(6分)解分式方程:2134412142x x x x +=--+-. 27.(2015贺州)(8分)某商场销售一批同型号的彩电,第一个月售出50台,为了减少库存,第二个月每台降价500元将这批彩电全部售出,已知第一个月的销售额与第二个月的销售额相等,这两个月销售总额超过40万元.(1)求第一个月每台彩电销售价格;(2)这批彩电最少有多少台?。
一、选择题1.(2015南宁)(3分)如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于()A.30° B.45° C.60° D.90°2.(2015柳州)(3分)如图,图中∠α的度数等于()A.135° B.125° C.115° D.105°3.(2015梧州)(3分)如图是一个圆锥,下列平面图形既不是它的三视图,也不是它的侧面展开图的是()A.B.C.D.4.(2015玉林防城港)(3分)下面角的图示中,能与30°角互补的是()A .B .C .D .5.(2015玉林防城港)(3分)如图,在△ABC 中,AB =AC ,DE ∥BC ,则下列结论中不正确的是( )A .AD =AEB .DB =EC C .∠ADE =∠CD .DE =12BC 6.(2015百色)(3分)一个角的余角是这个角的补角的13,则这个角的度数是( ) A .30° B .45° C .60° D .70°7.(2015百色)(3分)下列命题的逆命题一定成立的是( )①对顶角相等;②同位角相等,两直线平行;③若a b =,则a b =;④若x =3,则230x x -=. A .①②③ B .①④ C .②④ D .②8.(2015北海)(3分)已知∠A =40°,则它的余角为( )A .40°B .50°C .130°D .140°9.(2015北海)(3分)下列命题中,属于真命题的是( )A .各边相等的多边形是正多边形B .矩形的对角线互相垂直C .三角形的中位线把三角形分成面积相等的两部分D .对顶角相等10.(2015崇左)(3分)下列各图中,∠1与∠2互为余角的是( )A .B .C .D .11.(2015崇左)(3分)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是( )A .的B .中C .国D .梦12.(2015贵港)(3分)下列命题中,属于真命题的是( )A .三点确定一个圆B .圆内接四边形对角互余C .若22a b =,则a b =D a b =13.(2015贵港)(3分)如图,直线AB ∥CD ,直线EF 与AB ,CD 相交于点E ,F ,∠BEF 的平分线与CD 相交于点N .若∠1=63°,则∠2=( )A .64°B .63°C .60°D .54°14.(2015贵港)(3分)如图,已知P 是⊙O 外一点,Q 是⊙O 上的动点,线段PQ 的中点为M ,连接OP ,OM .若⊙O 的半径为2,OP =4,则线段OM 的最小值是( )A .0B . 1C .2D .315.(2015桂林)(3分)如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连接PD ,以PD 为边,在PD 右侧按如图方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是( )A .8B .10C .3πD .5π16.(2015河池)(3分)如图,AB∥CD,CB⊥DB,∠D=65°,则∠ABC的大小是()A.25° B.35° C.50° D. 65°17.(2015贺州)(3分)如图,下列各组角中,是对顶角的一组是()A.∠1和∠2B.∠3和∠5C.∠3和∠4D.∠1和∠5二、填空题18.(2015钦州)(3分)如图,直线AB和OC相交于点O,∠AOC=100°,则∠1= 度.19.(2015梧州)(3分)如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠AON的度数为度.20.(2015崇左)(3分)若直线a∥b,a⊥c,则直线b____c.三、解答题。
一、选择题1.(2015南宁)(3分)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60° B.72° C.90° D.108°2.(2015柳州)(3分)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=12GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个 B.2个 C.3个 D.4个3.(2015钦州)(3分)如图,要使▱ABCD成为菱形,则需添加的一个条件是()A.AC=AD B.BA=BC C.∠ABC=90° D.AC=BD4.(2015梧州)(3分)如图,在菱形ABCD中,∠B=60°,AB=1,延长AD到点E,使DE=AD,延长CD到点F,使DF=CD,连接AC、CE、EF、AF,则下列描述正确的是()A.四边形ACEF是平行四边形,它的周长是4B.四边形ACEF是矩形,它的周长是2C.四边形ACEF是平行四边形,它的周长是D.四边形ACEF是矩形,它的周长是45.(2015玉林防城港)(3分)如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()A.1B.2C.3D.46.(2015崇左)(3分)下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形.B.对角线互相垂直的矩形是正方形.C.对角线相等的菱形是正方形.D.对角线互相垂直平分的四边形是正方形.7.(2015贵港)(3分)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四边形CDEF=52S△ABF,其中正确的结论有()A. 5个 B.4个 C.3个 D.2个8.(2015桂林)(3分)如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是()A.18B.C.36D.二、填空题9.(2015南宁)(3分)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.。
广西南宁市中考2018年数学试卷 一、选择题在答题卡上将选定答案标号涂黑. 1.<3分)<2018•南宁)在﹣2,1,5,0这四个数中,最大的数是< ) A. ﹣3 B. 1 C. 5 D. 0
考点: 有理数大小比较. 分析: 根据有理数大小比较的法则:①正数都大于0; ②负数都小于0;③正数大于一切负数进行比较即可. 解答: 解:在﹣2,1,5,0这四个数中, 大小顺序为:﹣2<0<1<5, 所以最大的数是5. 故选C. 点评: 本题主要考查了有理数的大小的比较,解题的关键利用熟练掌握有理数的大小比较法则,属于基础题. 2.<3分)<2018•南宁)如图所示,将平面图形绕轴旋转一周,得到的几何体是< )
A. B. C. D.
考点: 点、线、面、体. 分析: 根据半圆绕它的直径旋转一周形成球即可得出答案. 解答: 解:半圆绕它的直径旋转一周形成球体. 故选:A. 点评: 本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力. 3.<3分)<2018•南宁)2018年6月11日,神舟十号飞船发射成功,神舟十号飞船身高9M,重约8吨,飞行速度约每秒7900M,将数7900用科学记数法表示,表示正确的是< )b5E2RGbCAP A. 0.79×104 B. 7.9×104 C. 7.9×103 D. 0.79×103
考点: 科学记数法—表示较大的数. 分科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n析: 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 解答: 解:将7900用科学记数法表示为:7.9×103. 故选:C. 点评: 此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 4.<3分)<2018•南宁)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是< )p1EanqFDPw A. 三角形 B. 线段 C. 矩形 D. 正方形
考点: 平行投影. 分析: 根据平行投影的性质分别分析得出即可即可. 解答: 解:将矩形木框立起与地面垂直放置时,形成的影子为线段; 将矩形木框与地面平行放置时,形成的影子为矩形; 将木框倾斜放置形成的影子为平行四边形; 由物体同一时刻物高与影长成比例,且矩形对边相等,故得到的投影不可能是三角形. 故选:A. 点评: 本题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试卷,灵活运用平行投影的性质是解题的关键. 5.<3分)<2018•南宁)甲、乙、丙、丁四名选手参加100M决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是< )DXDiTa9E3d A. 1 B. C. D. 考点: 概率公式.
分析: 由设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,直接利用概率公式求解即可求得答案. 解答: 解:∵设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况, ∴甲抽到1号跑道的概率是:.
故选D. 点评: 此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比. 6.<3分)<2018•南宁)若分式的值为0,则x的值为< )
A. ﹣1 B. 0 C. 2 D. ﹣1或2 考点: 分式的值为零的条件. 分析: 根据分式值为零的条件可得x﹣2=0,再解方程即可. 解答: 解:由题意得:x﹣2=0,且x+1≠0, 解得:x=2, 故选:C. 点评: 此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零. 注意:“分母不为零”这个条件不能少. 7.<3分)<2018•南宁)如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是< )RTCrpUDGiT
A. 150πcm2 B. 300πcm2 C. 600πcm2 D. 150πcm2 考点: 圆锥的计算. 专题: 计算题. 分析: 根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可. 解答: 解:烟囱帽所需要的铁皮面积=×20×2π×15=300π
故选B. 点评: 本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长. 8.<3分)<2018•南宁)下列各式计算正确的是< ) A. 3a3+2a2=5a6 B. C. a4•a2=a8 D.
考点: 二次根式的加减法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 专题: 计算题.
分析: 分别根据合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则对各选项进行逐一判断即可. 解答: 解:A、3a3与2a2不是同类项,不能合并,故本选项错误; B、2+=3,故本选项正确; C、a4•a2=a6,故本选项错误; D、故选B. 点本题考查的是二次根式的加减法,即二次根式相加减,先把各评: 个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变. 9.<3分)<2018•南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束<4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为< )5PCzVD7HxA
A. 19 B. 18 C. 16 D. 15 考点: 二元一次方程组的应用. 分析: 要求出第三束气球的价格,先求出笑脸形和爱心形的气球的单价就可以求出结论. 解答: 解:设笑脸形的气球x元一个,爱心形的气球y元一个,由题意,得 ,
解得:2x+2y=16. 故选C. 点评: 本题考查了学生观察能力和识图能力,列二元一次方程组解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键. 10.<3分)<2018•南宁)已知二次函数y=ax2+bx+c列说法错误的是< )jLBHrnAILg
A. 图象关于直线x=1对称 B. 函数ax2+bx+c值是﹣4 C. ﹣1和3是方程ax2+bx+c大 考点: 二次函数的性质.
分析: 根据对称轴及抛物线与x轴交点情况,结合二次函数的性质,即可对所得结论进行判断. 解答: 解:A、观察图象,可知抛物线的对称轴为直线x=1,则图象关于直线x=1对称,正确,故本选项不符合题意; B、观察图象,可知抛物线的顶点坐标为<1,﹣4),又抛物线开口向上,所以函数ax2+bx+c故本选项不符合题意; C、由图象可知抛物线与x轴的一个交点为<﹣1,0),而对称轴为直线x=1,所以抛物线与x轴的另外一个交点为<3,0),则﹣1和3是方程ax2+bx+c不符合题意; D、由抛物线的对称轴为x=1,所以当xx<1时,y随x的增大而减小,错误,故本选项符合题意. 故选D. 点评: 此题考查了二次函数的性质和图象,解题的关键是利用数形结合思想解题. 11.<3分)<2018•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为< )xHAQX74J0X
A. 4 B. 5 C. 4 D. 3 考点: 垂径定理;勾股定理;圆周角定理. 专题: 探究型. 分析: 先根据∠BAC=∠BOD可得出=,故可得出AB⊥CD,由垂径
定理即可求出DE的长,再根据勾股定理即可得出结论. 解答: 解:∵∠BAC=∠BOD,
∴=, ∴AB⊥CD, ∵AE=CD=8, ∴DE=CD=4,
设OD=r,则OE=AE﹣r=8﹣r, 在RtODE中,OD=r,DE=4,OE=8﹣r, ∵OD2=DE2+OE2,即r2=42+<8﹣r)2,解得r=5. 故选B. 点评: 本题考查的是垂径定理及圆周角定理,熟知平分弦的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键. 12.<3分)<2018•南宁)如图,直线y=与双曲线y=A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=0,x>0)交于点B,若OA=3BC,则k的值为< )LDAYtRyKfE
A. 3 B. 6 C. D. 考点: 反比例函数综合题.
专题: 探究型. 分析: 先根据一次函数平移的性质求出平移后函数的解读式,再分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A<3x,x),由于OA=3BC,故可得出B
数中k=xy为定值求出x 解答: 解:∵将直线y=向上平移4个单位长度后,与y轴交于点
C, ∴平移后直线的解读式为y=x+4,
分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A<3x,x),
∵OA=3BC,BC∥OA,CF∥x轴, ∴CF=OD,
∵点B在直线y=x+4上, ∴B∵点A、B在双曲线y=上, ∴3x•x=x•∴k=3×1××1=. 故选D.