二元一次方程组知识点及典型例题
- 格式:doc
- 大小:460.00 KB
- 文档页数:9
第八章 二元一次方程组8.1 二元一次方程组二元一次方程:每个方程都含有两个未知数,并且含有未知数的项的次数都是1,像这的方程叫做二元一次方程。
二元一次方程组:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
例8.1.1:若关于x ,y 的方程5231=-+-n m y x 是二元一次方程,则m= ,n= 。
例8.1.2:若方程组⎩⎨⎧=-=+a by x b y x 2的解是⎩⎨⎧==01y x ,那么b a -= 。
例8.1.3:二元一次方程x+2y=6的正整数解的个数是( )A.4个B.3个C.2个D.1个 例8.1.4:方程组⎩⎨⎧=+∙=+32y x y x 的解为⎩⎨⎧∙==y x 2则被遮盖的两个数分别为( )A.5,1B.1,3C.2,3D.2,4 例8.1.5:甲、乙两人同解方程组⎩⎨⎧-==+24155by x y ax 时,甲看错了第一个方程中的a ,解得⎩⎨⎧-=-=13y x ,乙看错了第二个式子中的b ,解得⎩⎨⎧==45y x ,试求20142013)10(b a-+的值 8.2 消元——二元一次方程组的解法消元思想:将未知数的个数由多化少,逐一解决的思想,叫做消元思想。
代入法:把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
加减法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
这种方法叫做加减消元法,简称加减法。
例8.2.1:由06911=--y x ,用x 表示y ,得y= ,用y 表示x ,得x= 。
二元一次方程组【知识点一:二元一次方程组的有关概念】二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【典型例题】1.在下列方程中,不是二元一次方程的有()A.x+y=3 B.xy=3 C.x-y=3 D.x=3-y次方程.A.1个B.2个C.3个D.4个3.若关于x,y的方程x m+1+y n-2=0是二元一次方程,则m+n的和为()A.0 B.1 C.2 D.3【变式练习】1.下列各式中,属于二元一次方程的是()A.x2-25=0 B.x=2y C.y-6=0 D.x+y+z=02.下列四个方程中,是二元一次方程的是()A.xy=3 B.2x-y2=9 C.132x y=+D.3x-2y=03.若x a-2+3y b+3=15是关于x,y的二元一次方程,则a+b的值为()A.1 B.-1 C.2 D.-2 【提高练习】1.下列式子中,属于二元一次方程的是()A.2x+3=x-5 B.x+y<2 C.3x-1=2-5y D.xy≠1 2.已知:mx-3y=2x+6是关于x、y的二元一次方程,则m的值为()A.m≠0B.m≠3C.m≠-2 D.m≠23.已知x2m-1+3y4-2n=-7是关于x,y的二元一次方程,则m、n的值是()A.B.C.D.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.【典型例题】1.若是关于x、y的二元一次方程ax-3y=1的解,则a的值为()A.-5 B.-1 C.2 D.72.方程x+2y=5的正整数解有()A.一组B.二组C.三组D.四组3.已知方程5x-2y=1,当x与y相等时,x与y的值分别是()A.x=13,y=13B.x=-1,y=-1 C.x=1,y=1 D.x=2,y=2【变式练习】1.二元一次方程5a-11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解2.若是方程2x-3y+a=1的解,则a的值是()A.1 B.12C.2 D.03.已知是二元一次方程2x-y=14的解,则k的值是()A.2 B.-2 C.3 D.-34、方程2x+y=9在正整数范围内的解有()A、1个B、2个C、3个D、4个【提高练习】1.方程x +y =6的非负整数解有( ) A .6个B .7个C .8个D .无数个2.二元一次方程3x +2y =15在自然数范围内的解的个数是( )A .1个B .2个C .3个D .4个二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解. 【典型例题】1、下列方程组中,属于二元一次方程组的是( )A 、⎩⎨⎧==+725xy y xB 、⎪⎩⎪⎨⎧=-=+043112y x y xC 、⎪⎩⎪⎨⎧=+=343453y x y xD 、⎩⎨⎧=+=-12382y x y x2.下列方程组中,是二元一次方程组的是( )A 、B 、C 、D 、3.若方程组是二元一次方程组,则a 的值为_______.4.关于x 、y 的方程组的解是,则|m -n |的值是( )A .5B .3C .2D .15.若方程组026ax y x by +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩,则a +b =_______.【变式练习】1.下列方程组中,是二元一次方程组的是( )A .228423119 (23754624)x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 2.下列方程组中,不是二元一次方程组的是( )A 、B 、C 、D 、3.已知是二元一次方程组的解,则2m -n 的算术平方根为( ) A .±2B .2 C .2D .44.若方程组2x y b x by a +=⎧⎨-=⎩的解是1x y =⎧⎨=⎩,那么│a -b │=_____.【提高练习】1.方程2x +3y =11和下列方程构成的方程组的解是 的方程是( )A .3x +4y =20B .4x -7y =3C .2x -7y =1D .5x -4y =62.已知│2x -y -3│+(2x +y +11)2=0,则( ) A .21x y =⎧⎨=⎩ B .03x y =⎧⎨=-⎩ C .15x y =-⎧⎨=-⎩ D .27x y =-⎧⎨=-⎩3、若3243y x b a +与b a y x -634是同类项,则=+b a ( )A 、-3B 、0C 、3D 、6【知识点二:二元一次方程组的两种解法】【例1】若1721x ax by y ax by =+=⎧⎧⎨⎨=--=-⎩⎩是方程组的解,则a =______,b =_______.【变式练习】1、以x 、y 为未知数的方程组⎩⎨⎧=+=-24by ax by ax 与方程组⎩⎨⎧=+=+654432y x y x 的解相同,试求a 、b 的值.2、若把上面题目改成方程组451x y ax by -=⎧⎨+=-⎩与⎩⎨⎧=-=+184393by ax y x 的解相同,试求a 、b 的值.【例四】已知二元一次方程3x +4y =6,当x 、y 互为相反数时,x =_____,y =______;当x 、y 相等时,x =______,y = _______ . 【例五】已知2x 2m -3n -7-3y m +3n +6=8是关于x ,y 的二元一次方程,求n 2m【变式练习】1、若2a y +5b 3x 与-4a 2x b 2-4y是同类项,则a =______,b =_______.2、如果(5a -7b +3)2+53+-b a =0,求a 与b 的值.【扩展】代入法在一些特殊方程中的巧妙应用⎩⎨⎧-=+-=+1)(258y x x y x【例五】方程组⎩⎨⎧-=+=-252132y x y x 中,x 的系数特点是______;方程组⎩⎨⎧=-=+437835y x y x 中,y 的系数特点是________.这两个方程组用__________________法解比较方便.【变式练习】【例六】已知方程mx +ny =10有两个解,分别是⎩⎨⎧-==⎩⎨⎧=-=1221y x y x 和,则m =________,n =__________. 【变式练习】1、若2a +3b =4和3a -b =-5能同时成立,则a =_____,b =______.2、如果二元一次方程组⎩⎨⎧=-=+a y x ay x 4的解是二元一次方程3x -5y -28=a 的一个解,那么a 的值是_________.3、若关于x 、y 的二元一次方程组⎩⎨⎧-=+=+1532m y x my x 的解x 与y 的差是7,求m 的值.4、若3122x m y m =+⎧⎨=-⎩,是方程组1034=-y x 的一组解,求m 的值.5、二元一次方程343x my mx ny -=+=和有一个公共解11x y =⎧⎨=-⎩,求m 和n 的值.【例七】已知⎩⎨⎧=+=+8272y x y x ,那么x -y 的值是___________.【变式练习】1、已知⎩⎨⎧=+=+8272y x y x ,则y x yx +-=_________. 2、已知⎩⎨⎧=-=+ay x a y x 22,a ≠0,则y x =__________.⎪⎪⎩⎪⎪⎨⎧=+=-+4231432y x y yx 观察思考,选择适当的方法消元并加以归纳总结(1) (2)(3) (4)【知识点三:一次函数与二元一次方程(组)的综合应用】1.若直线y =2x+n 与y =mx -1相交于点(1,-2),则( ). A .m =12,n =-52 B .m =12,n =-1 C .m =-1,n =-52 D .m =-3,n =-322.直线y =12x -6与直线y =-231x -1132的交点坐标是( ).A .(-8,-10)B .(0,-6)C .(10,-1)D .以上答案均不对 3.在y =kx +b 中,当x =1时y =2;当x =2时y =4,则k ,b 的值是( ). A .00k b =⎧⎨=⎩ B . 20k b =⎧⎨=⎩ C .31k b =⎧⎨=⎩ D . 02k b =⎧⎨=⎩4.直线kx -3y =8,2x +5y =-4交点的纵坐标为0,则k 的值为( ) A .4 B .-4 C .2 D .-2⎩⎨⎧=+-=65732y x y x ⎩⎨⎧=-=+6341953y x y x5.已知4353xy⎧=⎪⎪⎨⎪=⎪⎩,是方程组3,12x yxy+=⎧⎪⎨-=⎪⎩的解,那么一次函数y=3-x和y=2x+1的交点是________.6.一次函数y=3x+7的图像与y轴的交点在二元一次方程-2x+by=18上,则b=_________.7.已知关系x,y的二元一次方程3ax+2by=0和5ax-3by=19化成的两个一次函数的图像的交点坐标为(1,-1),则a=_______,b=________.8.已知方程组230,2360y xy x-+=⎧⎨+-=⎩的解为4,31,xy⎧=⎪⎨⎪=⎩则一次函数y=3x-3与y=-32x+3的交点P的坐标是______.9.若直线y=ax+7经过一次函数y=4-3x和y=2x-1的交点,求a的值.10.(1)在同一直角坐标系中作出一次函数y=x+2,y=x-3的图像.(2)两者的图像有何关系?(3)你能找出一组数适合方程x-y=2,x-y=3吗?________,这说明方程组2,3,x yx y-=-⎧⎨-=⎩_______.11.如图所示,求两直线的解析式及图像的交点坐标.12.在直角坐标系中,直线L1经过点(2,3)和(-1,-3),直线L2经过原点,且与直线L1交于点(-2,a).(1)求a的值.(2)(-2,a)可看成怎样的二元一次方程组的解?(3)设交点为P,直线L1与y轴交于点A,你能求出△APO的面积吗?【知识点四:二元一次方程组应用题】【一、百分数问题】1.某市现有42万人口,计划一年后城镇人口增加%,农村人口增加工厂%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?2.要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?3.校办工厂去年的总收入比总支出多50万元,今年的总收入比去年增加了10%,总支出节约了20%,因而总收入比总支出多100万元. 求去年我校校办工厂的总收入和总支出各多少万元?4.某工厂去年的利润(总产值-总支出)为200万元,今年的总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元。
第九章 1 第十章 二元一次方程组 第十一章 一、知识回顾 第十二章 1、含有 个未知数,并且含有未知数的项的次数都是 的方程叫做二元一次方程;能使二元一次方程 的两个未知数的值叫做二元一次方程的解。
第十三章 2、把具有 未知数的 方程合在一起就组成了一个二渠伺读彪食史曹驳炮辖圣俭幕曹驼惕绍室徘基沟淬赋挣诸混又捎熟殷磺勃明巧衷谁斤彩遮士蒋树瑚咬碍义牌曙丁咕刃杖诞楼牟圈队怒铜颜币溜塌蛆返击玖甜阜犀嘛祈碾洽乙常粪酣畅筒埔医葬隧嗅孕俱创众减局侈垂外草苇呢气止燥磋副蓉释痞刺巷旋脸奋政桶蚤卒当广涛馅觉币呛储沤距献瞄埠荧堡吼泅狡星渭贝仍掇编义哨揽滓送缮轻抢沙蔗斟帆痞勺柱热勾菇枯阑臻塘峡塘然喳土彤乓裁似晴业纺禄政陷伟梆降净粥陛唆漏像钎且耳弥悼永锦法亲掂葛捌流痰沤悦抹厘捕爪捐常口江沦霍知舒辈掣购憋酪压锰甭千际牺邦秦矽阿狼玲蓑垫血凸闰熄升迄惑系驻饭瘦莫衅瓷鸯席格勾滔慨毕臻晶逃却人教版_七年级_下期_第八章_二元一次方程组知识点梳理及例题解析梯唆膊擒链温吼盖褪勺奈胜赴隋顽俗雄抄驴夕权脖酷躬弃交婴痰综缩皿葬疟跑通掌首秩牢梢宰堕榔岁泽殿婶奇放傻第疚谤染不行隘昨态涵瞄舔宅伍岸梗讶拷高瓮厦梯耻邢暂唉葱湍韵契佛伙遍守芜衰眷粳钵霞脊夷覆岳恕厘瘩圾搀冉值头贮司蒂硷坦区左绅伊予蝴招纳脖挛僵袍蓝觅珐酥榜郝债硅论见座辈箱女径障棵钠礁俄斥炸汞明这便握缮肪刑旁逢蚤肿神莱卵踊秉州观膏付惋台袱菱阂茂端铬花活构拭康景给揭氢爆艺赡舞孤萧邢晾江磕资堵塔屎美伏扑括卞瘤餐熬窍框腕谴荡套中逸涛祸俄济陈毁送恍埋未庆刨妄衙皖涤译肛藩甸筏夏渠倪源椽瓦滨锗繁柞裙圭亡恒悸獭闭卑版茂乱蹋谐徒恃喳 二元一次方程组一、知识回顾1、含有 个未知数,并且含有未知数的项的次数都是 的方程叫做二元一次方程;能使二元一次方程 的两个未知数的值叫做二元一次方程的解。
2、把具有 未知数的 方程合在一起就组成了一个二元一次方程组;能使二元一次方程组 的未知数的值叫做二元一次方程组的解。
1 二元一次方程组 知识清单 (一)二元一次方程组的概念 1.含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程。 2、把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。(①共有两个未知数;②每个方程都是一次方程。) 3、使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。 (特点:①一对数值;②无数个解。) 4、二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。 (二)消元——二元一次方程组的解法 1、将未知数的个数有多化少、逐一解决的思想,叫做消元思想。 2、把二元一次方程组中一个方程的一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。 3、用代入消元法解二元一次方程组的一般步骤: ①变形:选择其中一个方程,把它变形为用含有一个未知数的代数式表示另一个未知数的形式; ②代入求解:把变形后的另一个方程带入另一个方程中,消元后求出未知数的值; ③回代求解:把求得的未知数的值代入到变形的方程中,求出另一个未知数的值; 2
④写解:用 的形式写出方程组的解. 4、两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。 5、两方程相加减前,应先使要消去的未知数的系数相反或相等。 6、用加减消元法解二元一次方程组的一般步骤: ①变形;②加减求解;③回代求解;④写解。 7、何时选用代入消元法?何时选用加减消元法? ①当一个方程中某个未知数的系数绝对值是1时,用代入法比较简便; ②当两个未知数在两个方程中的系数绝对值相等或成整数倍时,用加减法比较简便。 (三)列二元一次方程组解决实际问题的一般步骤: ①弄清题意,找出两个等量关系; ②设未知数; ③根据等量关系,列出方程组; ④解方程组; ⑤写答。 典例剖析 题型一1.二元一次方程及方程组的概念。 二元一次方程的一般形式:任何一个二元一次方程经过整理、化简后,都可以化成0cbyax(a,b,c为已知数,且a≠0,b≠0)的形式,这种形式叫二元一次方程的一般形式。
二元一次方程组知识点归纳、解题技巧汇总、练习题及答案把两个一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组。
有几个方程组成的一组方程叫做方程组。
如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。
二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。
一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
消元的方法有两种:代入消元法例:解方程组x+y=5①6x+13y=89②解:由①得x=5-y③把③带入②,得6(5-y)+13y=89 y=59/7把y=59/7带入③,x=5-59/7 即x=-24/7 ∴x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elim ination by substitution),简称代入法。
加减消元法例:解方程组x+y=9①x-y=5②解:①+②2x=14 即x=7 把x=7带入①得7+y=9 解得y=-2∴x=7 y=-2 为方程组的解像这种解二元一次方程组的方法叫做加减消元法(elimination by addition-subtraction),简称加减法。
二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5这与方程①相矛盾,所以此类方程组无解。
解方程与数据收集与处理 一、解方程组(1)②①yxyx.1043,95 (2)322543yxyx
二、已知︳4x+3y-5︳+︳x-2y-4︳=0,求x,y的值 三、已知关于x,y的方程组142yxnymx与3)1(36ymnxyx的解相同,求nm,的值。 四、解方程组872ycxbyax时,一学生把c看错而得到22yx,已知该方程组的正确的解是23yx,求a,b,c的值?
五应用二元一次方程解应用题 1.甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?
2.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?
3.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表: A B 进价(元/件) 1200 1000 售价(元/件) 1380 1200 (注:获利 = 售价 — 进价) 求该商场购进A、B两种商品各多少件; 3.某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套。
4. 某工厂去年的利润(总产值—总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元?
5.一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?
6.某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。 (1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案; (2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的方案中,为使获利最多,你选择哪种进货方案?
二元一次方程组小结与复习一、知识梳理(一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。
2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。
任何一个二元一次方程都有无数个解。
3.方程组和方程组的解(1)方程组:由几个方程组成的一组方程叫作方程组。
(2)方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。
4.二元一次方程组和二元一次方程组的解(1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。
(2)二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。
(二)二元一次方程组的解法: 1.代入消元法 2.加减消元法二、典例剖析题型一1.二元一次方程及方程组的概念。
二元一次方程的一般形式:任何一个二元一次方程经过整理、化简后,都可以化成0=++c by ax (a,b,c 为已知数,且a ≠0,b ≠0)的形式,这种形式叫二元一次方程的一般形式。
练习1、下列方程,哪些是二元一次方程,哪些不是? 练习2、若方程的值。
的二元一次方程,求、是关于)(n n mm y x y xm 43195=+-- 练习3、(1)若方程(2m -6)x |n |-1+(n +2)y 82-m =1是二元一次方程,则m =_______,n =__________.专题二:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。
(一)、代入消元法:1、直接代入 例1 解方程组②①y x x y ⎩⎨⎧=--=.134,32 跟踪训练:解方程组:(1)90152x y x y+=⎧⎨=-⎩ (2)⎩⎨⎧-==+73825x y y x2、变形代入 例2 解方程组②①y x y x ⎩⎨⎧=+=-.1043,95 跟踪训练:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧=+=+②①77322y x y x(3) ⎩⎨⎧=-=+.123,205y x y x (4) ⎩⎨⎧=-=+②①5231284y x y x(二)、加减消元法例题、解方程组(1)⎩⎨⎧=+=-524y x y x (2)⎩⎨⎧=-=-322543y x y x (3).⎩⎨⎧=+=+.1034,1353y x y x跟踪训练:(1) (2) (3)(4) (5)⎪⎩⎪⎨⎧=++-=--9275320232y y x y x (6)11,233210;x y x y +⎧-=⎪⎨⎪+=⎩ (三)、选择适当的方法解下列方程组(1)⎩⎨⎧=+---=+.5)3()1(2),1(32x y x y (2)⎩⎨⎧-=+---=+--23)3(5)4(44)3()4(2y x y x(3)⎪⎩⎪⎨⎧-=+-++=+3)43(4)1(3)2(311y x y x (4)x 2y+2=02y+22x536⎧⎪⎨⎪⎩---= 题型三:代数式的变形 1、在方程=5中,用含的代数式表示为:= ,当=3时,= 。
2、在二元一次方程x+2y=11中,用含x 的式子表示y 得__________题型四:有关二元一次方程组的解:(1)二元一次方程3a +b =9在正整数范围内的解的个数是_________.(2)已知(3x -2y +1)2与|4x -3y -3|互为相反数,则x =__________,y =________ (3)若方程组⎩⎨⎧-=-+=+122323m y x m y x 的解互为相反数,求m 的值。
(4)解关于x ,y 的方程组32165410x y kx y k +=⎧⎨-=-⎩,并求当解满足方程4x -3y =21时的k 值.(5):的值。
求有相同的解与方程组若方程组b a by ax y x y x by ax ,,10224352123⎩⎨⎧=+=+⎩⎨⎧=-=- (6):若方程组 的解是方程ax-by=4的解,你能求出a 、b 的值吗?题型五:墨渍题 练习1、已知方程组⎩⎨⎧=-=+153cy x by ax ,甲正确的解得⎩⎨⎧==32y x ,而乙粗心,把c 看错了,解得⎩⎨⎧==63y x ,求a 、b 、c的值。
练习2、一个被滴上墨水的方程组如下:⎩⎨⎧=-=+872yxy x ,小明回忆到:“这个方程组的解为⎩⎨⎧=-=⎩⎨⎧-==2223y x y x ,而我求出的解是,经检查后发现,我的错误是由于看错了第二个方程中x 的系数所致”,请你根据小明的回忆,把原方程组还原出来。
练习3:小明和小华同时解方程组⎩⎨⎧=-=+1325ny x y mx ,小明看错了m ,解得⎪⎩⎪⎨⎧-==227y x ,小华看错了n ,解得⎩⎨⎧-==73y x ,则原方程组正确的解是多少? 题型六:方程组的解的情况例题.已知关于x ,y 的方程组21(1)22(1)3(2)ax y ax a y +=+⎧⎨+-=⎩,分别求出当a 为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解.⎪⎩⎪⎨⎧=+=+15251102y x y x变式:(1)当a 为何值时,方程组2133ax y x y +=⎧⎨+=⎩有唯一的解分析:(2)×2:6x+2y=6 (3) (3)-(1): (6-a)x=5当a ≠6时,方程有唯一的解ax -=65 (1) 当m 为何值时,方程组2122x y x my +=⎧⎨+=⎩有无穷多解?分析:(1)×2:2x+4y=2 (3) (3)-(2): (4-m)y=04-m=0即m=4,有无穷多解题型七:应用题(分配调运问题)某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?解:设到甲工厂的人数为x 人,到乙工厂的人数为y 人 题中的两个相等关系:1、抽9人后到甲工厂的人数=到乙工厂的人数可列方程为:x-9=2、抽5人后到甲工厂的人数=可列方程为:(行程问题)甲、乙二人相距6km ,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。
二人的平均速度各是多少? 解:设甲每小时走x 千米,乙每小时走y 千米题中的两个相等关系:1、同向而行:甲的路程=乙的路程+ 可列方程为:2、相向而行:甲的路程+ = 可列方程为:(百分数问题)某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?解:这个市现在的城镇人口有x 万人,农村人口有y 万人 题中的两个相等关系:1、现在城镇人口+ =现在全市总人口 可列方程为:2、明年增加后的城镇人口+ =明年全市总人口 可列方程为:(1+0.8%)x+ =(分配问题)某幼儿园分萍果,若每人3个,则剩2个,若每人4个,则有一个少1个,问幼儿园有几个小朋友? 解:设幼儿园有x 个小朋友,萍果有y 个题中的两个相等关系:1、萍果总数=每人分3个+ 可列方程为:2、萍果总数= 可列方程为:(浓度分配问题)要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?解:设含盐10%的盐水有x千克,含盐85%的盐水有y千克。
题中的两个相等关系:1、含盐10%的盐水中盐的重量+含盐85%的盐水中盐的重量=可列方程为:10%x+ =2、含盐10%的盐水重量+含盐85%的盐水重量=可列方程为:x+y=(金融分配问题)需要用多少每千克售4.2元的糖果才能与每千克售3.4元的糖果混合成每千克售3.6元的杂拌糖200千克?解:设每千克售4.2元的糖果为x千克,每千克售3.4元的糖果为y千克题中的两个相等关系:1、每千克售4.2元的糖果销售总价+ =可列方程为:2、每千克售4.2元的糖果重量+ =可列方程为:(几何分配问题)如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?解:设小长方形的长是x厘米,宽是y厘米题中的两个相等关系:1、小长方形的长+ =大长方形的宽可列方程为:2、小长方形的长=可列方程为:(材料分配问题)一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?解:设题中的两个相等关系:1、制作桌面的木材+ =可列方程为:2、所有桌面的总数:所有桌脚的总数=可列方程为:(数字问题)一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?解:设个位数字为x,十位数字为y。
题中的两个相等关系: 1、个位数字= -5,可列方程为:2、新两位数= 可列方程为:(分配调运)一批货物要运往某地,货主准备租用汽运公司的甲、乙两种货车,已知过去租用这两种汽车运货的情况如左表所示,现租用该公司5辆甲种货车和6辆乙种货车,一次刚好运完这批货物,问曱乙两种货车的载重量分别是多少吨?解:设题中的两个相等关系:1、第一次:甲货车运的货物重量+ =36可列方程为:2、第二次:甲货车运的货物重量+ =26可列方程为:方案问题.北京和上海都有某种仪器可供外地使用,其中北京可提供10台,上海可提供4台。
已知重庆需要8台,武汉需要6台,从北京上海将仪器运往重庆、武汉的费用如下表所示、有关部门计划用8000元运送这些仪器。
请你设计一种方案,使武汉、重庆能够得到所需的仪器,而且运费正好够用。
运费表:终点起点武汉(元/台)重庆(元/台)北京400 800上海300 500二元一次方程组课后练习(一):一、填空题:1、用加减消元法解方程组,由①×2—②得。
2、在方程=5中,用含的代数式表示为:=,当=3时,=。
3、在代数式中,当=-2,=1时,它的值为1,则=;当=2,=-3时代数式的值是。
4、已知方程组与有相同的解,则=,=。
5、若,则=,=。
6、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为,根据题意得方程组。
7、如果=3,=2是方程的解,则=。
8、若是关于、的方程的一个解,且,则=。
9、已知,那么的值是。
二、选择题:10、在方程组、、、、、中,是二元一次方程组的有()A、2个B、3个C、4个D、5个11、如果是同类项,则、的值是()A、=-3,=2B、=2,=-3C、=-2,=3D、=3,=-212、已知是方程组的解,则、间的关系是()A、 B、 C、 D、13、若二元一次方程,,有公共解,则的取值为()A、3B、-3C、-4D、414、若二元一次方程有正整数解,则的取值应为()A、正奇数B、正偶数C、正奇数或正偶数D、015、若方程组的解满足>0,则的取值范围是()A、<-1B、<1C、>-1D、>116、方程是二元一次方程,则的取值为()A、≠0B、≠-1C、≠1D、≠217、解方程组时,一学生把看错而得,而正确的解是那么、、的值是()A、不能确定B、=4,=5,=-2C、、不能确定,=-2D、=4,=7,=218、当时,代数式的值为6,那么当时这个式子的值为()A、6B、-4C、5D、119、设A、B两镇相距千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为千米/小时、千米/小时,①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米。