人教版九年级数学下册第二十九章检测卷
- 格式:docx
- 大小:145.79 KB
- 文档页数:7
第二十九章综合测试答案一、1.【答案】B2.【答案】B3.【答案】C4.【答案】C5.【答案】B6.【答案】B7.【答案】B8.【答案】B9.【答案】B10.【答案】B二、11.【答案】20π12.【答案】218 cm13.【答案】514.【答案】5415.【答案】616.【答案】817.【答案】318.【答案】10三、19.【答案】解:①—d ②—b ③—a ④—c21.【答案】解:(1)D(2)根据左视图可以推测1d e ==,a ,b ,c 中至少有一个为2.当a ,b ,c 中一个为2时,小立方体的个数为112116++++=;当a ,b ,c 中两个为2时,小立方体的个数为112217++++=;当a ,b ,c 三个都为2时,小立方体的个数为112228++++=.所以小立方体的个数可能为6,7,8.22.解:(1)如图所示.(2)438152⨯=(平方厘米).故该几何体的表面积是152平方厘米.23.【答案】解:由三视图知:该几何体是两个圆柱叠放在一起,上面圆柱的底面直径为8,高为4,下面圆柱的底面直径为16,高为16,故体积为()223π (162)16π(82)4 1 088πmm ÷⨯+÷⨯=.24.【答案】解:(1)作法:连接AC ,过点D 作DF AC ∥,交直线BE 于点F ,则EF 就是DE 的投影。
如图所示.(2)太阳光线是平行的,∴AC DF ∥,∴ACB DFE ∠=∠.又∵90ABC DEF ∠=∠=︒. ∴ABC DEF △∽△,∴AB BC DE EF=. ∵ 5 m AB =, 4 m BC =, 6 m EF =,∴546DE =,∴7.5 m DE =.。
时间:45分钟 满分:100分 题序 一二三总 分结分人核分人得 分一、选择题(每题3分,共24分)1.下列图中是太阳光下形成的影子是().2.下列四个立体图形中,主视图为圆的是( ).3.从不同方向看一只茶壶,你认为是俯视效果图的是( ).4.一个几何体的三视图如图所示,则这个几何体是().A .四棱锥B . 四棱柱C . 三棱锥D . 三棱柱(第3题)(第4题)5.如果用 表示1个立方体,用 表示两个立方体叠加,用 表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( ).6.长方体的主视图、俯视图如图所示,则其左视图面积为( ).(第5题)(第6题)第二十九章 综合达标训练卷投影与视图、A.3B.4C.12D.167.如图,路灯距地面8m,身高1.6m的小明从距离灯的底部(点O)20m的点A处,沿O A所在的直线行走14m到点B时,人影的长度().A.增大1.5m B.减小1.5mC.增大3.5m D.减小3.5m(第7题) (第8题)8.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为().二、填空题(每题3分,共24分)9.请写出三种视图都相同的两种几何体是.10.小军晚上到乌当广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说:“广场上的大灯泡一定位于两人”.11.如图,甲、乙两盏路灯相距20m,一天晚上,当小刚从甲走到距路灯乙底部4m处时,发现自己的身影顶部正好接触到路灯乙的底部,已知小刚的身高为1.6m,那么路灯甲的高为m.(第11题)(第12题)12.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是.13.如图,是由8个相同的小立方块搭成的几何体,它的三个视图都是2×2的正方形,若拿掉若干个小立方块后(几何体不倒掉),其三个视图仍都为2×2的正方形,则最多能拿掉小立方块的个数为..如图是由若干个大小相同的小正方体堆砌而成的几何体积最小的是.,那么其三种视图中面(第13题)(第14题)(第15题)(第16题).如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数可能是个.1415) )、16.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1m 的竹竿的影长为 0.4m ,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2m ,一级台阶高为0.3m ,如图所示,若此时落在地面上的影长为4.4m ,则树高为m .三 解答题(第17、18题每题6分,第19、20题每题7分,第21、22 题每题8分,第23 题10 分, 共52分)17.如图,快下降到地面的伞兵在灯光下的影子为A B ,试确定灯源P 的位置,并画出竖立在地面上木桩的影子.(保留作图痕迹,不要求写作法)(第17题)18.下列(1)、(2)的三视图不完整,请添线补充下列各几何体的三视图. (1(2, (第18题), 19.如图 高20m 的教学大楼在某一天的某一时刻在地面上的影子长15m 在教学楼前10m 处有一高为5m 的国旗杆,试问在这一时刻你能看到旗杆的影子吗? 通过计算说明.(第19题)20.如图,小华家(点 A 处)和公路(l )之间竖立着一块30 m 长且平行于公路的巨型广告牌 (D E ),广告牌挡住了小华的视线,请在图中画出视点 A 的盲区,并将盲区的那段公路记为 B C ,一辆以60公里/小时匀速行驶的汽车经过公路B C 段的时间为6秒,已知广告牌和公路的距离为35m ,求小华家到公路的距离.(第20题)21.把一个底面的边长为2的正方形,高为1的四棱柱,分别切去一个小正方体,一个小三棱柱,然后把它们分别叠合到原来的图形上面,得到三个新几何体,如图所示.(1)试求新几何体的体积;(2)画出新几何体投影线由物体上方射到下方的正投影.(第21题)22.如图是一个正六棱柱的主视图和左视图,求图中a 的值.(第22题)23.如图,花丛中有一路灯杆A B.在灯光下,小明在点D处的影长D E=3m,沿B D方向行走到达点G,D G=5m,这时小明的影长G H=5m.如果小明的身高为1.7m,求路灯杆A B的高度.(精确到0.1m)(第23题)10+60×60B C A F 1 第二十九章 综合达标训练卷(A卷) .A 2.B 3.A 4.C 5.B 6.A 7.D 8.A 9.球体 正方体 10.中间 11.812.5 提示:易得这个几何体共有2 层,由俯视图可得第一层立方体的个数为4,由主视图和左视图 可得第二层立方体的个数为1,则搭成这个几何体的小立方体的个数是5. 13.2 14.左视图 15.6、7、8 16.11.8 17.图略 18.图略 21.(1)二个新几何体的体积均为原四棱柱的体积,即 4个立方单位,V =4×2×2×1=16; (2)如图.(第21题)22. 319.设旗杆高为 A B ,过 A 作AG ∥ 光线 E C 交F B 的 , , ,延长线于G 点.,23.根据题意 得AB ⊥B H CD ⊥BH FG ⊥BH . 则 △A B G ∽ △E D C∴ AB =BG .在 R t △A B E 和 R t △C D E 中,∵ A B ⊥B H ,C D ⊥B H , ED DC ∵ , , ,∴ C D ∥A B ,可证得△A B E ∽ △C D E .E D =20m C D =15m A B =5m∴ CD = D E .① ∴ B G =A B D C =5×15=3.75(m ), AB DE +BD ED∴ G F 20. ( ).同理FG = HG . ②=10+3.75=1375 m AB HG +GD +BD 13.75<15,即G F <C D .故教学楼挡住了光线,旗杆无法形成影子.又 C D =F G =1.7m ,由①② ,可得 D E =HG , DE +BD 3HG +GD +BD 即 3+B D = 5BD , 解得B D =7.5m . ,( ) ( ), 将B D =7.5代入① 得A B =5.95 m ≈6.0 m 即路灯杆A B 的高度约为6.0m .(第19题)20.①盲区即为图中阴影部分.(第20题)B C =60×1000×6=100(m ).②如图,过点A 作A F ⊥B C ,交 D E 于点P .∵ D E ∥B C ,A F ⊥B C , ∴ △A D E ∽ △A B C ,P F =35m .∴ DE =AP .又 D E =30m ,B C =100m ,∴ 30 =A F -35.100 A F 解得A F =50(m ).∴ 小华家到公路的距离为50m .。
人教版九年级数学下册第二十九章达标测试卷一、选择题(每题2分,共20分)1.一个矩形木框在太阳光的照射下,在地面上的投影不可能是()2.下列关于投影与视图的说法正确的是()A.平行投影中的光线是聚成一点的B.线段的正投影还是线段C.三视图都是大小相同的圆的几何体是球D.正三棱柱的俯视图是正三角形3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯,如图,甲木构件带有榫头,乙木构件带有卯,两个构件可完全咬合,则乙木构件的俯视图是()4.如图,树AB在路灯O的照射下形成投影AC,若树高AB=2 m,树影AC=3 m,树与路灯的水平距离AP=4.5 m,则路灯的高度OP是()A.3 m B.4 m C.5 m D.6 m5.一个几何体的三视图如图所示,则这个几何体是()6.如图,在房檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED7.如图,太阳光线与地面成60°的角,照射在放置在地面上的一个皮球上,皮球在地面上的投影长是20 3,则皮球的直径是()A.15 B.8 3 C.10 3 D.30(第7题)(第9题)(第10题)8.在平面直角坐标系中,点P(2,4)是一个光源,木杆AB两端的坐标分别是(1,2),(4,1),则木杆AB在x轴上的投影A′B′的长是()A.4 B.143 C.92D.59.如图,将由6个棱长为1的小正方体组成的几何体在桌面上顺时针旋转90°后,左视图的面积为()A.3 B.4 C.5 D.610.如图是某风车的示意图,其大小、形状相同的四个叶片均匀分布,点M在旋转中心O的正下方.某一时刻,太阳光恰好垂直照射叶片OA,OB,叶片影子为线段CD,测得MC=8.5米,CD=13米,此时垂直于地面的标杆EF与它的影子FG的长度之比为23(其中点M,C,D,F,G在同一直线上),则OM的长为()A.10米B.13米C.13米D.20米二、填空题(每题3分,共18分)11.广场上,一个大型字母宣传牌垂直于地面放置,其投影如图所示,则该投影属于____________.(填“平行投影”或“中心投影”)(第11题)(第13题) (第14题)12.在①长方体、②球、③圆锥、④圆柱、⑤正方体、⑥三棱柱这六种几何体中,其主视图、左视图、俯视图可以完全相同的是__________(填序号).13.一个几何体的主视图和俯视图如图所示,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则m+n=________.14.公元前6世纪,古希腊学者泰勒斯用图①的方法巧测金字塔的高度.如图②,小明仿照这个方法,测量圆锥形小山包的高度,已知圆锥底面周长为62.8 m.先在小山包旁边立起一根木棒,当木棒影子的长度等于木棒高度时,测得AB的长为23 m(直线AB过圆锥底面圆的圆心),则圆锥形小山包的高度约为________m(π取3.14).15.如图是一个三棱柱的三视图,在△EFG中,EF=6 cm,EG=10 cm,∠EGF =30°,则AB的长为________cm.(第15题) (第16题)16.在同一时刻两根垂直于水平地面的木杆在太阳光下的影子如图所示,其中木杆AB=2.5 m,它的影子BC=2 m,木杆PQ的影子有一部分落在了墙上(MN),PM=1.6 m,MN=1 m,则木杆PQ的长度为________.三、解答题(17题6分,18~21题每题8分,22,23题每题10分,24,25题每题12分,共82分)17.(6分)把下图中的几何体与它们对应的三视图用线连接起来.18.(8分)如图所示的图形是一个水平放置的直三棱柱被斜着截去一部分后形成的,请画出它的主视图、左视图和俯视图.19.(8分)一个几何体的三视图如图所示.(1)写出这个几何体的名称;(2)求这个几何体侧面展开图的圆心角;(3)求这个几何体的全面积.20.(8分)如图是某时刻的太阳光线,光线与水平面的夹角为45°.小星身高1.6米.(1)若小星正站在水平地面上的点A处,则他的影长为多少米?(2)若小星来到一个倾斜角为30°的坡面底端B处,则他在坡面上前进多少米时,他的影子恰好都落在坡面上?21.(8分)学校食堂厨房的桌子上整齐地摆放着若干个相同规格的菜碟,每一摞菜碟的高度与菜碟的个数的关系如表所示.菜碟的个数菜碟的高度(单位:cm)1 323+1.833+3.643+5.4……(1)把x个菜碟放成一摞时,这一摞菜碟的高度为________(用含x的式子表示);(2)如图所示,是几摞菜碟的三视图,厨师想把它们整齐地叠成一摞,求叠成一摞后的高度.22.(10分)如图,两栋居民楼之间的距离CD=45 m,楼AC和BD均为11层,每层楼高为3 m.上午某时刻,太阳光线GB与水平面的夹角为30°,此刻楼BD的影子会遮挡到楼AC的第几层?(参考数据:3≈1.7,2≈1.4)23.(10分)如图所示,有4张除了正面图案不同,其余都相同的卡片,将这4张卡片背面朝上洗匀.(1)若小李从中抽一张卡片,求抽到的卡片上所示的立体图形的主视图为矩形的概率;(2)若小李先从中随机抽出一张后放回并洗匀,小张再随机抽出一张,请用列表法或画树状图法求两人抽到的卡片上所示的立体图形的主视图都是矩形的概率.24.(12分)按要求完成下列问题.(1)如图①,它是由6个同样大小的正方体摆成的几何体.将正方体①移走后,新几何体的三视图与原几何体的三视图相比,哪一个视图没有发生改变?(2)如图②,请你借助虚线网格(甲)画出该几何体的俯视图.(3)如图③,它是由几个小正方形组成的俯视图,小正方形上的数字表示该位置上的正方体的个数,请你借助虚线网格(乙)画出该几何体的主视图.(4)如图④,它是由8个大小相同的正方体组成的几何体的主视图和俯视图,请你借助虚线网格(丙)画出该几何体的左视图.25.(12分)如图①是一个直四棱柱,如图②是它的三视图,其俯视图是等腰梯形.(1)根据图②中给出的数据,可得俯视图(等腰梯形)的高为________,腰长为________;(2)主视图和左视图中a=________,b=________,c=________,d=________;(3)请你根据图①②和问题(1)中的结果,计算这个直四棱柱的侧面积.(结果可保留根号)答案一、1.B 2.C 3.C 4.C 5.D 6.C7.D8.B9.B10.A点拨:如图,过点O作OP∥BD,交MG于P,过P作PN⊥BD于N,则OB=PN.∵AC∥BD∥EG,∴AC∥OP∥BD∥EG,∴OAOB=CPPD,∠EGF=∠OPM,∴tan∠EGF=tan∠OPM.∵OA=OB,∴CP=PD=12CD=6.5米,∴MP=CM+CP=8.5+6.5=15(米),∴EFFG=OMMP=23,∴OM=23×15=10(米).二、11.中心投影12.②⑤13.1614.3315.5点拨:如图,过点E作EH⊥FG交FG于点H.∵EH⊥FG,∠EGF=30°,EG=10 cm,∴EH=12×EG=12×10=5(cm),由题中三视图可得,AB=EH=5 cm,故答案为5.16.3 m点拨:如图,过点N作ND⊥PQ于点D,则易知四边形DPMN是矩形.∴DN=PM,PD=MN.由题知,BCAB=DNQD,∵AB=2.5 m,BC=2 m,DN=PM=1.6 m,∴QD=AB·DNBC=2.5×1.62=2(m),∴PQ=QD+DP=QD+NM=2+1=3(m).三、17.解:如图所示.18.解:如图所示.19.解:(1)该几何体为圆锥.(2)由题图上数据知圆锥的底面圆的直径为4,母线长为6,设这个几何体的侧面展开图的圆心角为n°,则π×4=nπ×6 180,所以n=120,所以这个几何体侧面展开图的圆心角为120°.(3)该几何体的全面积为S侧+S底=π×42×6+π×⎝⎛⎭⎪⎫422=16π.20.解:(1)如图,由题意得AD=1.6米,∠DCA=45°,AD⊥CA,∴AC=AD=1.6米.答:他的影长为1.6米.(2)如图,由题意得EF=1.6米.∵∠FBG=30°,FG⊥BG,∴设FG =x 米,则BF =2x 米,∴BG =3x 米, ∴EG =EF +FG =(x +1.6)米, 在Rt △EBG 中,∠EBG =45°,∴BG =EG ,∴3x =1.6+x ,解得x =45(3+1), ∴BF =2x =2×45(3+1)=85(3+1)(米).答:他在坡面上前进85(3+1)米时,他的影子恰好都落在坡面上. 21.解:(1)(1.8x +1.2)cm(2)由题中三视图可知,共有7+4+3=14(个)菜碟, 所以叠成一摞后的高度是1.8×14+1.2=26.4(cm).22.解:设太阳光线GB 交AC 于点F ,过F 作FH ⊥BD 于点H ,如图.由题意知,AC =BD =3×11=33(m),易知四边形FCDH 是矩形,∠BFH =30°,∴FH =CD =45 m , 在Rt △BFH 中,tan ∠BFH =BH FH =BH 45=33,∴BH =45×33=15 3≈25.5(m), ∴FC =HD =BD -BH ≈33-25.5=7.5(m). ∵7.5÷3=2.5,∴在2层的上面,即第3层, ∴此刻楼BD 的影子会遮挡到楼AC 的第3层.23.解:(1)∵球的主视图为圆,长方体的主视图是矩形,圆锥的主视图为等腰三角形,圆柱的主视图为矩形,每张卡片被抽到是等可能的,∴小李从中抽一张卡片,抽到的卡片上所示的立体图形的主视图为矩形的概率为 24=12.(2)列表可得,小张小李A B C DA (A,A) (A,B) (A,C) (A,D)B (B,A) (B,B) (B,C) (B,D)C (C,A) (C,B) (C,C) (C,D)D (D,A) (D,B) (D,C) (D,D)由表可知,共有16种等可能的结果,其中两人抽到的卡片上所示的立体图形的主视图都是矩形的结果有4种,所以两人抽到的卡片上所示的立体图形的主视图都是矩形的概率为416,即14.24.解:(1)将正方体①移走后,新几何体的三视图与原几何体的三视图相比,左视图没有发生改变.(2)如图甲所示.(3)如图乙所示.(4)如图丙所示.25.解:(1)6;4 3(2)2 3;3 3;2 3;6(3)这个直四棱柱的侧面积为3 3×20+7 3×20+2×4 3×20=60 3+1403+160 3=360 3.11。
人教版九年级下册数学第二十九章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.如图所示的四个几何体中,主视图与其他几何体的主视图不同的是()A. B. C. D.2.将一个机器零件按如图方式摆放,则它的左视图为()A. B. C. D.3.如图,你能看出这个倒立的水杯的俯视图是()A. B. C. D.4.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“共”字一面的相对面上的字是()A. 美B. 丽C. 家D. 园5.如图是下列哪个几何体的主视图与俯视图()A. B. C. D.6.圆锥的侧面展开图是()A. 扇形B. 等腰三角形C. 圆D. 矩形7.把下列图标折成一个正方体的盒子,折好后与“中”相对的字是()A. 祝B. 你C. 顺D. 利8.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A. 3B. 4C. 5D. 69.下列几何体中,主视图是三角形的是()A. B. C. D.10.下面的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是()A. B. C. D.11.如下图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和五边形,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图是()A. B. C. D.12.如图,是一个用若干个相同的小立方块搭成的几何体的三视图,则组成这个几何体的小立方块的个数是()A. 2B. 3C. 4D. 5二、填空题(共8题;共16分)13.某个立体图形的侧面展开图形如图所示,它的底面是正三角形,这个立体图形一定是14.一个几何体从正面、左面、上面看都是同样大小的圆,这个几何体是________ .15.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是________.16.如图是某个几何体的三视图,该几何体是______16题图17题图18题图17.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为 ________.18.如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是________cm3.19.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是________ m.20.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(共4题;共25分)21.如图①所示是一个长方体盒子,四边形ABCD是边长为a的正方形,DD′的长为b.(1)写出与棱AB平行的所有的棱。
初中数学人教版九年级下学期第二十九章测试卷一、单选题(共11题;共22分)1.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为()A. -2B. 6C.D. 22.已知某多面体的平面展开图如图所示,其中是三棱柱的有()A. 1个B. 2个C. 3个D. 4个3.用4个棱长为1的正方体搭成一个几何体模型,其主视图与左视图如图所示,则该立方体的俯视图不可能是()A. B. C. D.4.如图是一个表面写有数字的正方体,其表面展开图可能是()A. B. C. D.5.如图所示几何体的左视图是()A. B. C. D.6.如图所示的几何体,从上面看得到的图形是()A. B. C. D.7.下列几何体的主视图、俯视图和左视图都是长方形的是()A. B. C. D.8.如图,某剧院舞台上的照明灯P射出的光线成“锥体”,其“锥体”面图的“锥角”是60°.已知舞台ABCD是边长为6 m的正方形,要使灯光能照射到整个舞台,则灯P的悬挂高度是( )A. mB. 3 mC. 3 mD. 4 m9.不同长度的物体在同一时刻同一地点的太阳光下得到的投影是( )A. 相等B. 长的较长C. 短的较长D. 不能确定10.下列现象属于中心投影的有( )①小孔成像; ②皮影戏;③手影; ④放电影.A. 1个B. 2个C. 3个D. 4个11.下列投影中,投射线与投影面垂直的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(共2题;共2分)12.小明的身高为1.6米,他在阳光下的影长为0.8米,同一时刻,测得校园的旗杆的影长为4.5米,则该旗杆的高为________米.13.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为________cm.三、综合题(共3题;共26分)14.如图是一个正方体的平面展开图,标注了字母M的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值;(2)求正方体的上面和底面的数字和.15.把边长为1的10个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)试求出其表面积(包括向下的面);(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加________个小正方体.16.已知一纸板的形状为正方形ABC D(如图),其边长为10cm,AD、BC与投影面β平行,AB、C D与投影面不平行,正方形在投影面β上的正投影为A1B1C1D1,若∠AB B1=45°,求正投影A1B 1C1D1的面积.答案解析部分一、单选题1.【答案】B【解析】【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“y”是相对面,“5”与“-5”是相对面,“-4”与“3x-2”是相对面,∵相对面上所标的两个数互为相反数,∴3x-2+(-4)=0,x+y=0,解得x=2,y=-2.∴2x﹣y=6.故答案为:B.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x、y、z的值,然后代入代数式计算即可得解.2.【答案】B【解析】【解答】从图中左边第一个是三棱锥;第二个是三棱柱;第三个是四棱锥;第四个是三棱柱,故答案为:B.【分析】根据已知图形和多面体的特点分析各图案的能围成的几何体,熟记三棱锥、三棱柱的定义与区别解答.3.【答案】D【解析】【解答】解:由主视图可得此组合几何体有两列,左边第一列出现2层;由左视图可得此组合几何体有2行,从上面第一行出现2层,综上所述可得左边数第一列,上面数第一行小正方体的个数一定是2个,选项中只有D的是1个,故答案为:D.【分析】主视图和左视图将决定组合几何体的层数,列数及行数.4.【答案】B【解析】【解答】解:根据原正方体可得标有数字4,6,8三个面为邻面,不是对面关系,而A选项展开图标有数字4,8两面为对面关系,C选项展开图标有数字6,8两面为对面关系,D选项展开图标有数字6,8两面为对面关系,B选项展开图符合原正方体,是正方体的展开图.故答案为:B【分析】根据正方体的展开图相隔一个正方形是对面关系判断即可.5.【答案】B【解析】【解答】从左边看是:故答案为:B.【分析】根据左视图是从左边看得到的图形,可得答案.6.【答案】D【解析】【解答】解:从上边往下看为:正六边形,中间有一个圆,如图所示:故答案为:D.【分析】根据从上边看得到的图形是俯视图,即可可得答案.7.【答案】B【解析】【解答】解:A、主视图和左视图为矩形,俯视图为圆,故答案为:错误,不符合题意;B、主视图为矩形,俯视图和左视图都为矩形,故答案为:正确,符合题意;C、主视图和左视图为等腰梯形,俯视图为圆环,故答案为:错误,不符合题意;D、主视图和左视图为三角形,俯视图为有对角线的矩形,故答案为:错误,不符合题意.故答案为:B.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的正投影,找到各个几何体的三视图即可作出判断.8.【答案】C【解析】【解答】解:连接AC,∵∠APC=60°,∴∠PAC=∠PCA=60°,∵ABCD是边长为6m的正方形,∴AC=6 ,OC=3∴PC=6 ,∴PO=3 ,故答案为:C【分析】连接AC,根据圆锥体的性质及∠APC=60°,可以判断出三角形PAC是一个等边三角形,根据正方形的性质利用勾股定理算出AC的长,进而得出OC的长,根据圆锥的高,母线,底面圆的半径刚好围成一个直角三角形,利用勾股定理即可算出PO的长。
第二十九章综合测试答案一、1.【答案】B2.【答案】B3.【答案】C4.【答案】C5.【答案】B6.【答案】B7.【答案】B8.【答案】B9.【答案】B10.【答案】B二、11.【答案】20π12.【答案】218 cm13.【答案】514.【答案】5415.【答案】616.【答案】817.【答案】318.【答案】10三、19.【答案】解:①—d ②—b ③—a ④—c21.【答案】解:(1)D(2)根据左视图可以推测1d e ==,a ,b ,c 中至少有一个为2.当a ,b ,c 中一个为2时,小立方体的个数为112116++++=;当a ,b ,c 中两个为2时,小立方体的个数为112217++++=;当a ,b ,c 三个都为2时,小立方体的个数为112228++++=.所以小立方体的个数可能为6,7,8.22.解:(1)如图所示.(2)438152⨯=(平方厘米).故该几何体的表面积是152平方厘米.23.【答案】解:由三视图知:该几何体是两个圆柱叠放在一起,上面圆柱的底面直径为8,高为4,下面圆柱的底面直径为16,高为16,故体积为()223π (162)16π(82)4 1 088πmm ÷⨯+÷⨯=.24.【答案】解:(1)作法:连接AC ,过点D 作DF AC ∥,交直线BE 于点F ,则EF 就是DE 的投影。
如图所示.(2)太阳光线是平行的,∴AC DF ∥,∴ACB DFE ∠=∠.又∵90ABC DEF ∠=∠=︒. ∴ABC DEF △∽△,∴AB BC DE EF=. ∵ 5 m AB =, 4 m BC =, 6 m EF =,∴546DE =,∴7.5 m DE =.。
人教版九年级数学下册第29章达标检测卷(考试时间:120分钟满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列命题正确的是( )A.三视图是中心投影B.灯光下的影子是平行投影C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上得到的光区仍是矩形2.如图,把正方体的一个顶点朝上立放,在它下面放一张白纸,使纸面与太阳光垂直,则正方体在纸上的正投影是( )3.将一根圆柱形的空心钢管任意放置,它的主视图不可能是( )4.在同一时刻,两根长度不等的竿子置于阳光之下,但看到它们的影长相等,那么这两根竿子的相对位置是()A.两竿都垂直于地面上B.两竿平行斜插在地面上C.两根竿子不平行D.一根竿倒在地上5.如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体第5题图第6题图6.(2018·荆门)某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个二、填空题(本大题共6小题,每小题3分,共18分)7.工人师傅造某工件,想知道工件的高,则他需要看到三视图中的或.8.一个圆柱的轴截面平行于投影面,圆柱的正投影是一个边长为10的正方形,该圆柱的体积为,表面积为.9.如图,一位同学身高AF=1.6米,晚上站在路灯(线段OE)下,他在地面上的影长AB =2米,若他沿着影子的方向移动2米到B点站立时,影长增加了0.5米,则路灯的高度是米.10.如图,方桌正上方的灯泡(看作一个点)发出的光线照射方桌后,在地面上形成阴影(正方形)示意图,已知方桌边长1.2 m,桌面离地面1.2 m,灯泡离地面3.6 m,地面上阴影部分的面积为.11.三棱柱的三视图如图所示,已知在△EFG中,EF=8 cm,EG=12 cm,∠EFG=45°,则AB的长为cm.12.图①是上下底面为全等的正方形的礼盒,其主视图与左视图均是矩形(如图②所示),如果用彩色胶带包扎礼盒(如图①),所需胶带的长度至少为cm.三、(本大题共5小题,每小题6分,共30分)13.下面几何体的三种视图有无错误?如果有,请改正.14.与一盏路灯相对有一玻璃墙,墙前面的地面上有一盆花和一棵树,晚上墙反射路灯灯光形成了那盆花的影子(如图所示),树影是路灯灯光形成的,你能确定此时路灯光源的位置吗?15.判断图中①和②,哪一幅图是太阳光下的竹竿及影子,哪一幅图是灯光下的竹竿和影子,说说你的理由.16.如图,在一间黑屋子用一盏白炽灯照一个球.(1)球在地面上的阴影是什么形状?(2)当球沿铅垂方向下落时,阴影的大小会怎么变化?(3)若白炽灯到球心的距离是1米,到地面的距离是3米,球的半径是0.2米,求球在地面上留下的阴影的面积.17.如图,在△ABC中,点P是BC边上任意一点(点P与点B,C不重合),平行四边形AFPE的顶点F,E分别在AB,AC上.已知BC=2,S△ABC=1.设BP=x,平行四边形AFPE 的面积为y.(1)求y与x的函数关系式;(2)上述函数有最大值或最小值吗?若有,则当x取何值时,y有这样的值,并求出该值;若没有,请说明理由.18.某工厂要加工一批密封罐,设计者给出了密封罐的三视图,如图所示,请你按照所给出的三视图计算每个密封罐的容积.19.如图所示是一张铁皮下脚料的示意图.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出它的几何图形,并计算它的体积;若不能,说明理由.20.一个几何体的三视图如图所示,它的俯视图为菱形,请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.21.如图,是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个立体图形的表面积.22.一透明的敞口正方体容器ABCD-A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图①).探究:如图①,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图②.解决问题:(1)CQ与BE的位置关系是,BQ的长是dm;(2)求液体的体积.六、(本大题共12分)23.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B 的对应点是点G,过点B作BE⊥CG,垂足为点E且在AD上,BE交PC于点F.(1)如图①,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图②,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE·EF的值.参考答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列命题正确的是( C )A.三视图是中心投影B.灯光下的影子是平行投影C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上得到的光区仍是矩形2.如图,把正方体的一个顶点朝上立放,在它下面放一张白纸,使纸面与太阳光垂直,则正方体在纸上的正投影是( C )3.将一根圆柱形的空心钢管任意放置,它的主视图不可能是( A )4.在同一时刻,两根长度不等的竿子置于阳光之下,但看到它们的影长相等,那么这两根竿子的相对位置是(C)A.两竿都垂直于地面上B.两竿平行斜插在地面上C.两根竿子不平行D.一根竿倒在地上5.如图是一个几何体的主视图和俯视图,则这个几何体是(A)A.三棱柱B.正方体C.三棱锥D.长方体第5题图第6题图6.(2018·荆门)某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有(B)A.4个B.5个C.6个D.7个二、填空题(本大题共6小题,每小题3分,共18分)7.工人师傅造某工件,想知道工件的高,则他需要看到三视图中的主视图或左视图.8.一个圆柱的轴截面平行于投影面,圆柱的正投影是一个边长为10的正方形,该圆柱的体积为__250π__,表面积为__150π__.9.如图,一位同学身高AF=1.6米,晚上站在路灯(线段OE)下,他在地面上的影长AB =2米,若他沿着影子的方向移动2米到B点站立时,影长增加了0.5米,则路灯的高度是8 米.10.如图,方桌正上方的灯泡(看作一个点)发出的光线照射方桌后,在地面上形成阴影(正方形)示意图,已知方桌边长1.2 m,桌面离地面1.2 m,灯泡离地面3.6 m,地面上阴影部分的面积为__3.24__m2__.11.三棱柱的三视图如图所示,已知在△EFG中,EF=8 cm,EG=12 cm,∠EFG=45°,则AB的长为12.,其主视图与左视图均是矩形(如图②所示),如果用彩色胶带包扎礼盒(如图①),三、(本大题共5小题,每小题6分,共30分)13.下面几何体的三种视图有无错误?如果有,请改正.解:主视图错,左视图对,俯视图错.14.与一盏路灯相对有一玻璃墙,墙前面的地面上有一盆花和一棵树,晚上墙反射路灯灯光形成了那盆花的影子(如图所示),树影是路灯灯光形成的,你能确定此时路灯光源的位置吗?解:点O就是路灯的位置,如图所示.15.判断图中①和②,哪一幅图是太阳光下的竹竿及影子,哪一幅图是灯光下的竹竿和影子,说说你的理由.解:①是太阳光;②是灯光.理由略.16.如图,在一间黑屋子用一盏白炽灯照一个球. (1)球在地面上的阴影是什么形状?(2)当球沿铅垂方向下落时,阴影的大小会怎么变化?(3)若白炽灯到球心的距离是1米,到地面的距离是3米,球的半径是0.2米,求球在地面上留下的阴影的面积.解:(1)圆. (2)变小.(3)如图,设圆心为O ,连接O 与切点B , ∵AD 与⊙O 相切,∴∠OBA =90°.由题意得,△OAB ∽△DAC ,OB =0.2 m ,AO =1 m ,∴AB =25 6 m ,∴2563=0.2CD ,∴CD =64,∴S 阴影=⎝⎛⎭⎫642π=38π(m 2). ∴球在地面上留下的阴影的面积为38π m 2.17.如图,在△ABC 中,点P 是BC 边上任意一点(点P 与点B ,C 不重合),平行四边形AFPE 的顶点F ,E 分别在AB ,AC 上.已知BC =2,S △ABC =1.设BP =x ,平行四边形AFPE 的面积为y .(1)求y 与x 的函数关系式;(2)上述函数有最大值或最小值吗?若有,则当x 取何值时,y 有这样的值,并求出该值;若没有,请说明理由.解:(1)∵四边形AFPE 是平行四边形, ∴PF ∥CA ,∴△BFP ∽△BAC , ∴S △BFP S △BAC =⎝⎛⎭⎫x 22,∵S △ABC =1,∴S △BFP =x 24,同理:S △PEC =⎝⎛⎭⎫2-x 22,∴y =1-x 24-4-4x +x 24,∴y =-x 22+x .(2)y =-x 22+x =-12(x -1)2+12,∴当x =1时,y 有最大值,最大值为12.四、(本大题共3小题,每小题8分,共24分)18.某工厂要加工一批密封罐,设计者给出了密封罐的三视图,如图所示,请你按照所给出的三视图计算每个密封罐的容积.解:由题意知,每个密封罐由一个圆锥(无底面)和一个圆柱(只有一个底面)组成,圆柱的高h 1=16 cm ,底面圆的半径r 1=4 cm ,圆锥的高h 2=3 cm ,底面圆的半径r 2=4 cm ,所以V =V 圆锥+V 圆柱 =13×42×π×3+42×π×16 =272π (cm 3)答:每个密封罐的容积为272π cm 3.19.如图所示是一张铁皮下脚料的示意图. (1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出它的几何图形,并计算它的体积;若不能,说明理由.解:(1)(3×1+1×2+3×2)×2=11×2=22平方米; (2)它能做成一个长方体盒子,如图:长方体的体积为3×2×1=6立方米.20.一个几何体的三视图如图所示,它的俯视图为菱形,请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.解:直四棱柱(或直棱柱、四棱柱、棱柱), 菱形的对角线长分别为4 cm ,3 cm , ∴菱形的边长=⎝⎛⎭⎫322+⎝⎛⎭⎫422=52cm , 棱柱的侧面积为52×8×4=80 cm 2.五、(本大题共2小题,每小题9分,共18分) 21.如图,是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个立体图形的表面积.解:根据三视图,下面的长方体的长、宽、高分别为8 mm ,6 mm ,2 mm ,上面的长方体的长、宽、高分别为4 mm ,2 mm ,4 mm.则这个立体图形的表面积为2(8× 6+6× 2+8× 2)+2(4× 2+2× 4+4× 4)-2× 4× 2=200 mm 2.答:这个立体图形的表面积为200 mm 2.22.一透明的敞口正方体容器ABCD -A′B′C′D′装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α(∠CBE =α,如图①).探究:如图①,液面刚好过棱CD ,并与棱BB′交于点Q ,此时液体的形状为直三棱柱,其三视图及尺寸如图②.解决问题:(1)CQ 与BE 的位置关系是 平行 ,BQ 的长是 3 dm ; (2)求液体的体积.解:液体的体积为V 液=12×3×4×4=24(dm 3).六、(本大题共12分)23.在矩形ABCD 中,AB =12,P 是边AB 上一点,把△PBC 沿直线PC 折叠,顶点B 的对应点是点G ,过点B 作BE ⊥CG ,垂足为点E 且在AD 上,BE 交PC 于点F .(1)如图①,若点E 是AD 的中点,求证:△AEB ≌△DEC ; (2)如图②,①求证:BP =BF ;②当AD =25,且AE <DE 时,求cos ∠PCB 的值;③当BP =9时,求BE ·EF 的值.(1)证明:在矩形ABCD 中,∠A =∠D =90°,AB =DC . 又∵AE =DE ,∴△AEB ≌△DEC .(2)①证明:在矩形ABCD 中,∠ABC =90°,∵△BPC 沿PC 折叠得到△GPC ,∴∠PGC =∠PBC =90°,∠BPC =∠GPC .∵BE ⊥CG ,∴BE ∥PG ,∴∠GPF =∠PFB , ∴∠BPF =∠BFP ,∴BP =BF ;②解:∵∠BEC =90°,∴∠AEB +∠CED =90°. ∵∠AEB +∠ABE =90°,∴∠CED =∠ABE .又∵∠A =∠D =90°,∴△ABE ∽△DEC ,∴AB AE =DE CD. 设AE =x ,则DE =25-x ,∴12x =25-x 12,解得x 1=9,x 2=16. ∵AE <DE ,∴AE =9,DE =16.∴CE =20,BE =15, 由折叠得BP =PG ,∴BP =BF =PG ,∵BE ∥PG ,∴△ECF ∽△GCP ,∴EF PG =CE CG, 设BP =BF =PG =y ,∴15-y y =2025,∴y =253,则BP =253. 在Rt △PBC 中,PC =BC 2+BP 2=25103, cos ∠PCB =BC PC =31010. ③解:如图②,∵∠FEC =∠PBC =90°,∠EFC =∠PFB =∠BPF ,∴△EFC ∽△BPC ,∴EF BP =CE CB . 又∵∠BEC =∠A =90°,由AD ∥BC 得∠AEB =∠EBC ,∴△AEB ∽△EBC ,∴AB BE =CE CB ,∴AB BE =EF BP. ∴BE ·EF =AB ·BP =12× 9=108.。
第二十九章检测卷时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,共40分)1.下列四幅图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()2.下列几何体中,主视图是等腰三角形的是()3.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()第3题图第4题图4.一个几何体的三视图如图所示,则这个几何体是()5.王丽同学在某天下午的不同时刻拍了三张同一景物的风景照A,B,C,冲洗后不知道拍照的顺序,已知投影l A>l C>l B,则A,B,C的先后顺序是()A.A,B,C B.A,C,B C.B,C,A D.B,A,C6.如图,该几何体的左视图是()7.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体个数是()A.3个B.4个C.5个D.6个8.如图,一条线段AB在平面Q内的正投影为A′B′,AB=4,A′B′=23,则AB与A′B′的夹角为()A.45°B.30°C.60°D.以上都不对第8题图第9题图第10题图9.图a和图b中所有的正方形都全等,将图a的正方形放在图b中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④10.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60π B.70π C.90π D.160π二、填空题(本大题共4小题,每小题5分,满分20分)11.如图是测得的两根木杆在同一时间的影子,那么它们是由________形成的投影(填“太阳光”或“灯光”).第11题图第12题图第13题图12.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影子CD等于2米,若树底部到墙的距离BC等于8米,则树高AB等于________米.13.如图是一个上、下底密封的纸盒的三视图,根据图中数据,可计算出这个密封纸盒的表面积为____________cm2(结果可保留根号).14.如图是由几个小立方块搭成的几何体的主视图与左视图,这个几何体最多可能有________个小立方块.三、(本大题共2小题,每小题8分,满分16分)15.如图是两根标杆及它们在灯光下的影子.请在图中画出光源的位置(用点P表示),并在图中画出人在此光源下的影子(用线段EF表示).16.下面几何体的三种视图有无错误?如果有,请改正.四、(本大题共2小题,每小题8分,满分16分)17.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图所示,方格中的数字表示该位置的小立方块的个数.(1)请在下图方格纸中分别画出该几何体的主视图和左视图;(2)这个几何体的体积为________个立方单位.18.如图,某一广告墙PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD的影子刚好不落在广告墙PQ上.(1)请在图中画出此时的太阳光线CE及木杆AB的影子BF;(2)若AB=5米,CD=3米,CD到PQ的距离DQ的长为4米,求此时木杆AB的影长.五、(本大题共2小题,每小题10分,满分20分)19.下图是一个机器零件的毛坯,请将这个机器零件的三视图补充完整.20.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个立体图形的表面积.六、(本题满分12分)21.下图是一个直三棱柱的主视图和左视图.(1)请补画出它的俯视图,并标出相关数据;(2)根据图中所标的尺寸,计算这个几何体的全面积.七、(本题满分12分)22.如图,小华在晚上由路灯AC走向路灯BD.当他走到点P时,发现他身后影子的顶部刚好接触到路灯AC的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯BD的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离;(2)当小华走到路灯BD的底部时,他在路灯AC下的影长是多少?八、(本题满分14分)23.如图,一透明的敞口正方体容器ABCD-A′B′C′D′中装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE =α).探究:如图①,液面刚好过棱CD ,并与棱BB ′交于点Q ,此时液体的形状为直三棱柱,其三视图及尺寸如图②所示.解决问题:(1)CQ 与BE 的位置关系是________,BQ 的长是________dm ; (2)求液体的体积(提示:V 液=S △BCQ ×高AB );(3)求液面到桌面的高度和倾斜角α的度数⎝⎛⎭⎫注:sin37°≈35,tan37°≈34.参考答案与解析1.D 2.D 3.C 4.D 5.C 6.C 7.C 8.B 9.A 10.B 11.太阳光 12.1013.(753+360) 解析:根据该几何体的三视图知道它是一个正六棱柱,其高为12cm ,根据正六边形的性质易知它的底面边长为5cm ,∴其侧面积为6×5×12=360(cm 2),底面积为12×5×523×6=7523(cm 2),∴这个密封纸盒的表面积为(753+360)cm 2. 14.9 解析:由主视图可得组合几何体的底层有3列,由左视图可得该几何体有2行,∴最底层最多有3×2=6(个)小立方块,第2层最多有1+1=2(个)小立方块,最上一层最多有1个小立方块,∴组成该几何体的小立方块最多有6+2+1=9(个).15.解:如图,点P 是光源,(4分)EF 就是人在光源P 下的影子.(8分)16.解:有错误.主视图错,中间应画一条实线;左视图错,中间应画一条虚线;俯视图错,中间应画一条实线,如图所示.(8分)17.解:(1)如图所示.(6分)(2)6(8分)18.解:(1)如图所示.(4分)(2)设木杆AB 的影长BF 为x 米,由题意得5x =34,解得x =203.(7分)答:木杆AB 的影长是203米.(8分)19.解:如图所示.(10分)20.解:根据三视图,可知下面的长方体的长、宽、高分别为8mm ,6mm ,2mm ,上面的长方体的长、宽、高分别为4mm ,2mm ,4mm.(4分)则这个立体图形的表面积为2(8×6+6×2+8×2)+2(4×2+2×4+4×4)-2×4×2=200(mm 2).(9分)答:这个立体图形的表面积为200mm 2.(10分)21.解:(1)如图所示.(4分)(2)由勾股定理得底面的斜边长为10cm ,(5分)S 底=12×8×6=24(cm 2),S侧=(8+6+10)×3=72(cm 2),(9分)S 全=72+24×2=120(cm 2).(11分)答:这个几何体的全面积是120cm 2.(12分)22.解:(1)设AP =BQ =x m .∵MP ∥BD ,∴△APM ∽△ABD ,∴PM BD =AP AB ,∴1.69.6=x2x +12,解得x =3,∴AB =2x +12=2×3+12=18(m).(5分)答:两个路灯之间的距离为18m.(6分)(2)设小华走到路灯BD 处,头的顶部为E ,连接CE 并延长交AB 的延长线于点F ,则BF 即为此时他在路灯AC 下的影子长.设BF =y m .∵BE ∥AC ,∴△FEB ∽△FCA ,∴BEAC =BF AF ,即1.69.6=y y +18,解得y =3.6.(11分) 答:当小华同学走到路灯BD 处时,他在路灯AC 下的影子长是3.6m.(12分) 23.解:(1)平行 3(4分)(2)V 液=12×3×4×4=24(dm 3).(7分)(3)过点B 作BF ⊥CQ ,垂足为F .(8分)∵S △BCQ =12×3×4=12×5×BF ,∴BF =125dm ,∴液面到桌面的高度是125dm.(11分)∵在Rt △BCQ 中,tan ∠BCQ =BQ BC =34,∴∠BCQ ≈37°.由(1)可知CQ ∥BE ,∴α=∠BCQ ≈37°.(14分)。
人教版九年级数学下册第二十九章达标检测卷一、选择题(每小题3分,共30分)1.下列光源所形成的投影不是中心投影的是()A.平面镜反射出的太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线2.下列立体图形中,俯视图不是圆的是()3.如图,正三棱柱的主视图为()4.如图,表示两棵小树在同一时刻阳光下的影子的图形可能是()5.如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.圆柱D.球(第5题)(第6题) (第7题) 6.如图是某几何体的三视图及相关数据,则判断正确的是() A.a2+b2=c2B.a2+b2=4c2C.a2+c2=b2D.a2+4c2=b27.如图是由7个大小相同的小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,则这个几何体的左视图是()8.如图是某零件的三视图,根据图中数据,该零件的体积为() A.40π B.50π C.90π D.130π(第8题)(第9题) (第10题)9.一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图如图所示,则组成这个几何体的小立方块最少有()A.3个B.4个C.5个D.6个10.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1 m,继续往前走3 m到达E处时,测得影子EF的长为2 m,已知王华的身高是1.5 m,那么路灯A的高度AB等于()A.4.5 m B.6 m C.7.5 m D.8 m二、填空题(每小题3分,共15分)11.如图,将△ABC绕AB边所在直线旋转一周所得的几何体的主视图是图中的__________(填序号).(第11题) (第12题)12.如图是一个长方体的主视图、左视图和俯视图,根据图中数据计算这个长方体的表面积是________.13.一竿高1.5米,影长为1米,同一时刻,该地某塔影长20米,则塔的高度是________米.14.如图,在某一时刻,太阳光线与地面成60°的角,一个皮球在太阳光照射下的投影长为10 3 cm,则这个皮球的直径是________cm.(第14题) (第15题)15.小明家的客厅有一张直径为1.2米,高0.8米的圆桌BC,在距地面2米的A 处有一盏灯,圆桌的影子为DE,依据题意建立平面直角坐标系,其中点D 的坐标为(2,0),则点E的坐标是________.三、解答题(一)(每小题8分,共24分)16.请画出如图所示几何体的主视图、左视图和俯视图.17.如图,电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路的一侧,AB,CD,EF是三个标杆.(1)请画出路灯O的位置;(2)画出标杆EF在路灯下的影子FH.18.如图是一个上、下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积.(结果保留根号)四、解答题(二)(每小题9分,共27分)19.如图,九(1)班的小明与小艳两名同学去操场测量旗杆DE的高度,已知直立在地面上的竹竿AB的长为3 m.某一时刻,测得竹竿AB在阳光下的投影BC 的长为2 m.(1)请你在图中画出此时旗杆DE在阳光下的投影;(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6 m,请你计算旗杆DE的高度.20.由几个相同的棱长为1的小立方块搭成的几何体的俯视图如图①所示,方格中的数字表示该位置的小立方块的个数.(1)请在上面方格纸(如图②)中分别画出这个几何体的主视图和左视图.(2)根据三视图,请你求出这个几何体的表面积.21.某地夏季中午,当太阳移动到屋顶上方偏南时,太阳光线与地面成60°角,房屋向南的窗户AB的高为1.6 m.现要在窗户外面的上方安装一个水平遮阳篷AC(如图所示).要使太阳光线不能直接射入室内,遮阳篷AC的宽度至少为多少?五、解答题(三)(每小题12分,共24分)22.如图,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(1)求楼房的高度约为多少米.(结果精确到0.1米)(2)过了一会儿,当α=45°时,小猫还能不能晒到太阳?请说明理由.(参考数据:3≈1.732)23.夜晚,小明在路灯下散步.已知小明的身高为1.5 m,路灯的灯柱高4.5 m.(1)如图①,若小明(EF)在相距10 m的两路灯AB,CD之间行走(不含两端),他前后的两个影子长分别为FM=x m,FN=y m,试求y与x之间的函数关系式,并指出自变量x的取值范围;(2)如图②,若小明(EF)在灯柱PQ前朝着影子的方向(如箭头所示),以0.8 m/s的速度匀速行走,试求他的影子的顶端R在地面上移动的速度.答案一、1.A 2.C 3.B 4.B 5.C 6.C7.C8.B9.B 10.B二、11.②12.5213.3014.1515.(4,0)三、16.解:如图所示.17.解:(1)如图,点O是路灯的位置.(2)如图,FH为标杆EF在路灯下的影子.18.解:由三视图可知这个密封纸盒是一个正六棱柱,且高为12 cm,底面边长为5 cm,∴侧面积为6×5×12=360(cm2),密封纸盒的上、下底面的面积和为12×5×⎝⎛⎭⎪⎫5×32×6×2=75 3(cm2),∴这个密封纸盒的表面积为(75 3+360)cm2.四、19.解:(1)如图,线段EF就是此时旗杆DE在阳光下的投影.(2)∵DF∥AC,∴∠ACB=∠DFE,又∵∠ABC=∠DEF=90°,∴△ABC∽△DEF,∴ABDE=BCEF,∴3DE=26,∴DE=9 m.答:旗杆DE的高度为9 m.20.解:(1)如图所示.(2)这个几何体的表面积为(3+4+5)×2=24. 21.解:连接AB,此时△ABC为直角三角形,且∠ABC=30°,∠BAC=90°,则AC=AB×tan 30°=8 315m,当遮阳篷AC的宽度大于8 315m时,太阳光线不能射入室内,所以遮阳篷AC的宽度至少为8 315m.五、22.解:(1)当α=60°时,在Rt△ABE中,∵tan 60°=ABAE=AB10,∴AB=10·tan 60°=10 3≈10×1.73=17.3(米),∴楼房的高度约为17.3米.(2)当α=45°时,小猫能晒到太阳.理由:假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为F,与MC的交点为H,如图.∵∠BF A=45°,∴tan 45°=ABAF=1,此时的影长AF=AB=17.3米,∴CF=AF-AC=17.3-17.2=0.1(米),∴CH=CF=0.1米<0.2米,∴大楼的影子落在台阶MC这个侧面上,∴小猫能晒到太阳.23.解:(1)∵EF∥AB,∴△MEF∽△MAB,∴MFMB=EFAB,∴xMB=1.54.5,∴MB=3x m,∴BF=BM-FM=3x-x=2x(m).同理可得DF=2y m.∵BD=10 m,∴2x+2y=10,∴y=-x+5.∵当小明(EF)接近路灯AB时,影长FM接近0 m,当小明(EF)接近路灯CD 时,影长FN接近0 m,∴0<x<5.(2)如图,设经过t s后,小明(E′F′)走到了F′处,连接EE′,则EE′=FF′=0.8t m.连接PE′,并延长交地面于点R′.∵EF∥PQ,∴△REF∽△RPQ,∴RERP=EFPQ=1.54.5=13,∴PERP=23.∵EE′∥RR′,∴△PEE′∽△PRR′,∴EE′RR′=PEPR,∴0.8tRR′=23,∴RR′=1.2t m,∴v影子=1.2tt=1.2(m/s),故他的影子的顶端R在地面上移动的速度为1.2m/s.。
第二十九章测评(时间:45分钟,满分:100分)一、选择题(每小题4分,共32分.下列各小题给出的四个选项中,只有一项符合题目要求)1.下列投影是正投影的是()A.(1)B.(2)C.(3)D.都不是2.小明在某天下午测量了学校旗杆的影子长度,按时间顺序排列正确的是()A.6 m,5 m,4 mB.4 m,5 m,6 mC.4 m,6 m,5 mD.5 m,6 m,4 m3.已知6个棱长为1的小正方体组成的一个几何体如图所示,则其俯视图的面积是()A.6B.5C.4D.34.一个水平放置的全封闭物体如图所示,则它的俯视图是()5.已知由4个大小相同的长方体搭成的立体图形的左视图如图所示,则这个立体图形的搭法不可能是()6.图①表示一个正五棱柱形状的高大建筑物,图②是它的俯视图.小健站在地面观察该建筑物,当他在图②中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中∠MPN的度数为()A.30°B.36°C.45°D.72°7.已知一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为()A.66B.48C.48√2+36D.578.已知一个由多个相同的小正方体堆积而成的几何体的俯视图如图所示,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()二、填空题(每小题4分,共24分)9.墙壁CD上D处有一盏灯(如图),小明站在A处测得他的影长与身长相等,都为1.6 m,他向墙壁走1 m 到B处时发现影子刚好落在点A,则灯泡与地面的距离CD=.10.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之间,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为. 11.如图,电视台的摄像机1,2,3,4在不同位置拍摄了四幅画面,则图象A是号摄像机所拍,图象B是号摄像机所拍,图象C是号摄像机所拍,图象D是号摄像机所拍.12.已知由四个相同的小正方体组成的立体图形的主视图和左视图如图所示,则原立体图形可能是.(把图中正确的立体图形的序号都填在横线上)13.已知三棱柱的三视图如图所示,在△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为cm.14.观察由棱长为1的小正方体摆成的图形(如图),寻找规律:如图①中:共有1个小正方体,其中1个看得见,0个看不见;如图②中:共有8个小正方体,其中7个看得见,1个看不见;如图③中:共有27个小正方体,其中19个看得见,8个看不见;……则第⑥个图中,看不见的小正方体有个.三、解答题(共44分)15.(10分)按规定尺寸作出如图所示几何体的三视图.16.(10分)如图,两幢楼高AB,CD为30 m,两楼间的距离AC为24 m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,√3≈1.732,√2≈1.414)17.(12分)已知一个几何体的三视图如图所示.(1)写出这个几何体的名称;(2)根据图中所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.18.(12分)如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12 m到达点Q时,发现身前他影子的顶部刚好接触到路灯BD的底部.已知王华同学的身高是1.6 m,两个路灯的高度都是9.6 m.(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?第二十九章测评一、选择题1.C2.B3.B4.C5.A6.B由题图可知∠MPN是由正五边形的两条边的延长线所夹的角,由正五边形的内角度数为108°,知∠MPN=36°.7.A8.D根据俯视图,可知这个几何体从左面看共有两列,其中左边一列最高有两个小正方体,右边一列最高有三个小正方体,因此其左视图应为D.二、填空题m10.上午8时11.234112.①②④9.641513.6如图,过点E作EQ⊥FG于点Q,由题意可得出EQ=AB.在Rt△EGQ中,∵EG=12 cm,∠×12=6(cm).EGF=30°,∴EQ=AB=1214.125通过分析:题图①中,1个小正方体,0个看不见;题图②中,共有8个小正方体,1个看不见;题图③中,共有27个小正方体,8个看不见,所以看不见的小正方体个数正好是上一个图形中小正方体的个数,所以第⑥个图中看不见的小正方体有53=125(个).三、解答题15.解如图.16.解延长MB交CD于点E,连接BD,因为AB=CD,所以NB和BD在同一条直线上.所以∠DBE=∠MBN=30°.因为四边形ABDC是矩形,所以BD=AC=24 m.在Rt△BED中,tan 30°=DEBD,DE=BD tan 30°=24×√33=8√3(m),所以CE=30-8√3≈16.14(m).即甲楼投在乙楼上的影子的高度约为16.14 m.17.解(1)圆锥.(2)S表=S侧+S底=πrl+πr2=12π+4π=16π(cm2).(3)如图将圆锥的侧面展开,线段BD为所求的最短路程.因为AB=6 cm,底面圆半径r=2 cm,设∠BAB'=n°,所以nπ×6180=2π×2,解得n=120,即∠BAB'=120°.由题易知C为弧BB'的中点,所以BD=3√3 cm.18.解(1)由对称性可知AP=BQ.设AP=BQ=x m.因为MP∥BD,所以△APM∽△ABD.所以MPBD =APAB,即1.69.6=x2x+12,解得x=3.所以AB=2x+12=2×3+12=18(m),即两个路灯之间的距离为18 m.(2)设王华走到路灯BD处,头的顶部为E,如图.连接CE,并延长交AB的延长线于点F,则BF即为此时他在路灯AC下的影子长,设BF=y m.因为BE∥AC,所以△FEB∽△FCA.所以BEAC =BFFA,即1.69.6=yy+18,解得y=3.6.故当王华同学走到路灯BD处时,他在路灯AC下的影子长是3.6 m.。
初中数学试卷
金戈铁骑整理制作
第二十九章检测卷
时间:120分钟满分:150分
班级:__________姓名:__________得分:__________
一、选择题(本题共12小题,每小题3分,共36分)
1.在操场上练习双杠的过程中发现双杠的两横杠在地上的影子()
A.相交B.互相垂直C.互相平行D.无法确定
2.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()
3.下面几何体中,其主视图与俯视图相同的是()
4.如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()
5.如图所示的几何体,它的左视图与俯视图都正确的是()
6.王丽同学在某天下午的不同时刻拍了三张同一景物的风景照A,B,C,冲洗后不知道拍照的顺序,已知投影l A>l C>l B,则A,B,C的先后顺序是()
A.A,B,C B.A,C,B
C.B,C,A D.B,A,C
7.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体个数是()
A.3个B.4个C.5个D.6个
第7题图
第8题图
8.如图,甲、乙、丙三个图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是()A.仅有甲和乙相同B.仅有甲和丙相同
C.仅有乙和丙相同D.甲、乙、丙都相同
9.如图所示,一条线段AB在平面Q内的正投影为A′B′,AB=4,A′B′=23,则AB 与A′B′的夹角为()
A.45°B.30°C.60°D.以上都不对
第9题图
第10题图
10.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()
A.1.5m B.1.6m
C.1.86m D.2.16m
11.如图是几何体的俯视图,小正方形中的数字为该位置小正方体的个数,则该几何体的主视图是()
第11题图
第12题图
12.如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数可能是()
A.5或6 B.5或7
C.4或5或6 D.5或6或7
二、填空题(本大题共6小题,每小题4分,共24分)
13.工人师傅制造某工件,想知道工件的高,则他需要看到三视图中的或.14.上小学五年级的小丽看见上初中的哥哥小勇用测树的影长和自己的影长的方法来测树高,她也学着哥哥的样子在同一时刻测得树的影长为5米,自己的影长为1米.要求得树高,还应测得.
15.如图是测得的两根木杆在同一时间的影子,那么它们是由形成的投影(填“太阳光”或“灯光”).
第15题图
第16题图
第17题图
16.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD为2米,若树底部到墙的距离BC为8米,则树高AB为米.
17.如图是一个长方体的主视图和俯视图,由图示数据(单位:cm)可以得出该长方体的体积是cm3.
18.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.
三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)
19.(10分)如图所示画出的两个图形都是一个圆柱体的正投影,试判断正误,并说明原因.
20.(10分)下列几何体的三视图有没有错误?如果有,请改正.
21.(10分)画出如图所示几何体的三视图.
22.(10分)如图,AB和DE是直立在地面上的两根立柱,已知AB=5m,某一时刻AB 在太阳光下的影长BC=3m.
(1)在图中画出此时DE在太阳光下的影子EF;
(2)在测量AB的影长时,同时测量出EF=6m,计算DE的长.
23.(12分)根据下列视图(单位:mm),求该物体的体积.
24.(12分)一圆柱形器皿在点光源P下的投影如图所示,已知AD为该器皿底面圆的直径,且AD=3,CD为该器皿的高,CD=4,CP′=1,点D在点P下的投影刚好位于器皿底与器皿壁的交界处,即点B处,点A在点P下的投影为A′,求点A′到CD的距离.
25.(12分)如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图.
(1)当组成这个几何体的小正方体的个数为8个时,几何体有多种形状.请画出其中两种几何体的左视图;
(2)若组成这个几何体的小正方体的个数为n,请写出n的最小值和最大值;
(3)主视图和俯视图为下面两图的几何体有若干个,请你画出其中一个几何体.
26.(14分)如图是一个几何体的三视图.
(1)写出这个几何体的名称;
(2)根据所给数据计算这个几何体的表面积;
(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程.
答案
1.C 2.D 3.C 4.C 5.D 6.C 7.C 8.B 9.B 10.A 11.B
12.D 解析:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选D.
13.主视图 左视图 14.她自己的身高 15.太阳光 16.10 17.75 18.6
19.解:图①是错误的,图②是正确的.(4分)因为圆柱体的正投影是平行光线的投影,投影线与投影面是垂直的,所以投影后不可能是圆柱,而是一个平面图形——矩形或正方形.(10分)
20.解:左视图、俯视图错误.(4分) 改正后的图形如图所示.(10分)
21.解:如图所示.(10分)
22.解:(1)如图所示,EF 即为所求;(4分)
(2)由题意可得AB BC =DE EF ,即53=DE
6,解得DE =10m.(9分)答:DE 的长为10m.(10分)
23.解:这是上下两个圆柱的组合图形.(4分)V =16×π×⎝⎛⎭⎫1622
+4×π×⎝⎛⎭⎫822
=1088π(mm 3).(11分)
答:该物体的体积是1088mm 3.(12分)
24.解:由中心投影的性质得△PDE ∽△PBP ′,(2分)∴
PD PB =DE BP ′=13+1=14
.(5分)又∵△P AD ∽△P A ′B ,∴AD A ′B =PD PB =14,∴3A ′B =1
4
,(8分)∴A ′B =12,∴A ′C =12+3=15.(11分)
答:点A ′到CD 的距离为15.(12分)
25.解:(1)如图所示;(4分)
(2)这个几何体的小正方体的个数最少为8个,最多为11个.即n 最小为8,最大为11;(8分)
(3)如图所示.(12分) 26.解:(1)圆锥;(4分)
(2)S 表=S 侧+S 底=π×6×2+π×⎝⎛⎭⎫422
=12π+4π=16π(cm 2
);(8分)
(3)如图将圆锥侧面展开,得到扇形ABB ′,连接BC ,BD ,则线段BD 为所求的最短路程.(9分)设∠BAB ′=n °.∵
n π·6
180
=4π,∴n =120,即∠BAB ′=120°.∵C 为弧BB ′的中点,∴∠BAD =60°.∵AB =AC ,∴△ABC 为等边三角形,∴BD ⊥AC ,∴∠ADB =90°,(12分)∴BD =AB ·sin ∠BAD =6×
3
2
=33(cm).即最短路程为33cm.(14分)。