2017年北京市房山区中考一模数学试卷
- 格式:docx
- 大小:1.23 MB
- 文档页数:16
2017年北京市房山区高考数学一模试卷(理科)一、选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x≤2},则A∩B=()A.{x|1≤x≤2}B.{x|﹣1≤x≤2}C.{x|﹣1≤x≤1}D.{x|﹣2≤x≤﹣1} 2.(5分)已知{a n}为等差数列,S n为其前n项和,若a1=2,S3=15,则a6=()A.17 B.14 C.13 D.33.(5分)秦九韶是我国南宋时期的数学家,他在《数学九章》中提出的多项式的秦九韶算法,至今仍是比较先进的算法,如图是事项该算法的程序框图,执行该程序框图,若输入n,x的值分别为4,2,则输出v的值为()A.5 B.12 C.25 D.504.(5分)某中学语文老师从《红楼梦》、《平凡的世界》、《红岩》、《老人与海》4本不同的名著中选出3本,分给三个同学去读,其中《红楼梦》为必读,则不同的分配方法共有()A.6种 B.12种C.18种D.24种5.(5分)在平面直角坐标系xOy中,圆C的参数方程为为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的圆心的极坐标为()A.B.(1,π) C.(0,﹣1)D.6.(5分)“a>0”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.(5分)一个三棱锥的顶点在空间直角坐标系中的坐标O﹣xyz分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),画出该三棱锥三视图中的俯视图时,以xoy平面为投影面,得到的俯视图为()A. B. C.D.8.(5分)定义一个对应法则f:P(m,n)→P'(,)(m≥0,n≥0),比如P(2,4)→P'(,2),已知点A(2,6)和点B(6,2),M是线段AB上的动点,点M在法则f下的对应点为M',当M在线段AB上运动时,点M'的轨迹为()A.线段B.圆的一部分C.椭圆的一部分D.抛物线的一部分二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上..9.(5分)已知,其中i是虚数单位,那么实数a=.10.(5分)在△ABC中,a=4,b=,则角B=.11.(5分)已知双曲线=1(a>0)的一条渐近线方程为y=2x,则该双曲线的焦距为.12.(5分)已知x,y满足,则z=2x+y的最大值为.13.(5分)《中华人民共和国个人所得税法》规定:2011年9月1 日开始个人所得税起征点由原来的2000元提高到3500元.也就是说原来月收人超过2000元的部分需要纳税,2011年9月1日开始超过3500元的部分需要纳税,若税法修改前后超过部分的税率相同.按如表分段计税某职工2011年5月交纳个人所得税295元,在收人不变的情况下,2011年10月该职工需交纳个人所得税元.三、解答题:本大题共6小题,满分85分,解答应写出文字说明、证明过程或演算步骤14.(12分)已知函数f(x)=sin(ωx﹣)(ω>0)的图象与x轴的相邻两个交点的距离为.(1)求w的值;(2)设函数g(x)=f(x)+2cos2x﹣1,求g(x)在区间上的最大值和最小值.15.(13分)某中学高一、高二年级各有8个班,学校调查了春学期各班的文学名著阅读量(单位:本),并根据调查结果,得到如下所示的茎叶图:为鼓励学生阅读,在高一、高二两个两个年级中,学校将阅读量高于本年级阅读量平均数的班级命名为该年级的“书香班级”.(1)当a=4时,记高一年级“书香班级”数为m,高二年级的“书香班级”数为n,比较m,n的大小关系;(2)在高一年级8个班级中,任意选取两个,求这两个班级均是“书香班级”的概率;(3)若高二年级的“书香班级”数多于高一年级的“书香班级”数,求a的值(只需写出结论)16.(14分)如图1,在边长为2的菱形ABCD中,∠BAD=60°,将△BCD沿对角线BD折起到△B'CD的位置,使平面BC'D⊥平面ABD,E是BD的中点,FA⊥平面ABD,且FA=2,如图2.(1)求证:FA∥平面BC'D;(2)求平面ABD与平面FBC'所成角的余弦值;(3)在线段AD上是否存在一点M,使得C'M⊥平面FBC?若存在,求的值;若不存在,说明理由.17.(15分)已知函数f(x)=x﹣1+ae x.(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求f(x)的极值;(3)当a=1时,曲线y=f(x)与直线y=kx﹣1没有公共点,求k的取值范围.18.(16分)已知椭圆C:x2+4y2=4.(1)求椭圆C的离心率;(2)椭圆C的长轴的两个端点分别为A,B,点P在直线x=1上运动,直线PA,PB分别与椭圆C相交于M,N两个不同的点,求证:直线MN与x轴的交点为定点.19.(15分)已知数列{a n}的各项均为非零实数,且对于任意的正整数n,都有(a1+a2+a3+…+a n)2=a13+a23+a33+…+a n3.(1)写出数列{a n}的前三项a1,a2,a3(请写出所有可能的结果);(2)是否存在满足条件的无穷数列{a n},使得a2017=﹣2016?若存在,求出这样的无穷数列的一个通项公式;若不存在,说明理由;(3)记a n点所有取值构成的集合为A n,求集合A n中所有元素之和(结论不要证明).2017年北京市房山区高考数学一模试卷(理科)参考答案与试题解析一、选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x≤2},则A∩B=()A.{x|1≤x≤2}B.{x|﹣1≤x≤2}C.{x|﹣1≤x≤1}D.{x|﹣2≤x≤﹣1}【解答】解:A={x|x2﹣2x﹣3≥0}={x|x≥3或x≤﹣1},B={x|﹣2≤x≤2},则A∩B=[﹣2,﹣1]故选:D.2.(5分)已知{a n}为等差数列,S n为其前n项和,若a1=2,S3=15,则a6=()A.17 B.14 C.13 D.3【解答】解:∵{a n}为等差数列,S n为其前n项和,a1=2,S3=15,∴,解得d=3,∴a6=a1+5d=2+15=17.故选:A.3.(5分)秦九韶是我国南宋时期的数学家,他在《数学九章》中提出的多项式的秦九韶算法,至今仍是比较先进的算法,如图是事项该算法的程序框图,执行该程序框图,若输入n,x的值分别为4,2,则输出v的值为()A.5 B.12 C.25 D.50【解答】解:模拟程序的运行,可得x=2,n=4,v=1,i=3,满足进行循环的条件i>0,v=5,i=2,满足进行循环的条件i>0,v=12,i=1,满足进行循环的条件i>0,v=25,i=0不满足进行循环的条件i>0,退出循环,输出v的值为:25故选:C.4.(5分)某中学语文老师从《红楼梦》、《平凡的世界》、《红岩》、《老人与海》4本不同的名著中选出3本,分给三个同学去读,其中《红楼梦》为必读,则不同的分配方法共有()A.6种 B.12种C.18种D.24种【解答】解:根据题意,分2步进行分析:①、先《平凡的世界》、《红岩》、《老人与海》三本书中选出2本,有C32=3种选法,②、将选出的2本与《红楼梦》全排列,对应分给三个同学,有A33=6种情况,则不同的分配方法共有3×6=18种;故选:C.5.(5分)在平面直角坐标系xOy中,圆C的参数方程为为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的圆心的极坐标为()A.B.(1,π) C.(0,﹣1)D.【解答】解:圆C的参数方程为为参数),化为普通方程:x2+(y+1)2=1,可得圆心C(0,﹣1)圆C的圆心的极坐标为(1,﹣).故选:A.6.(5分)“a>0”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由a>0,得a+≥2=2,是充分条件,由a+≥2,得:a>0,故a>0”是“”的充要条件,故选:C.7.(5分)一个三棱锥的顶点在空间直角坐标系中的坐标O﹣xyz分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),画出该三棱锥三视图中的俯视图时,以xoy平面为投影面,得到的俯视图为()A. B. C.D.【解答】解:由题意,画出直角坐标系,在坐标系中各点对应位置如以平面xOy为投影面,得到的俯视图为;故选:A.8.(5分)定义一个对应法则f:P(m,n)→P'(,)(m≥0,n≥0),比如P(2,4)→P'(,2),已知点A(2,6)和点B(6,2),M是线段AB上的动点,点M在法则f下的对应点为M',当M在线段AB上运动时,点M'的轨迹为()A.线段B.圆的一部分C.椭圆的一部分D.抛物线的一部分【解答】解:由题意知点A(6,2)和点B(2,6),AB的方程为:y﹣6=﹣(x ﹣2),即x+y﹣8=0设M′(x,y),则M(x2,y2),当M在线段AB上运动时,从而有y2+x2﹣8=0,x∈[2,6],y∈[2,6],轨迹方程是圆的一部分.故选:B.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上..9.(5分)已知,其中i是虚数单位,那么实数a=2.【解答】解:因为,所以ai=(﹣1+i)(1﹣i)=2i由复数相等可知a=2.故答案为:2.10.(5分)在△ABC中,a=4,b=,则角B=.【解答】解:∵a=4,b=,∴cosB===,∵B∈(0,π),∴B=.故答案为:.11.(5分)已知双曲线=1(a>0)的一条渐近线方程为y=2x,则该双曲线的焦距为10.【解答】解:双曲线=1(a>0)的一条渐近线方程为y=2x,可得:,解得a=,则b=2,c=5.双曲线的焦距为10.给答案为:10.12.(5分)已知x,y满足,则z=2x+y的最大值为5.【解答】解:作出不等式组表示的平面区域,设z=F(x,y)=2x+y,将直线l:z=2x+y进行平移,当l经过点A时,目标函数z达到最大值,由解得A(3,﹣1)∴z=F(3,﹣1)=2×3﹣1=5.最大值故答案为:5.13.(5分)《中华人民共和国个人所得税法》规定:2011年9月1 日开始个人所得税起征点由原来的2000元提高到3500元.也就是说原来月收人超过2000元的部分需要纳税,2011年9月1日开始超过3500元的部分需要纳税,若税法修改前后超过部分的税率相同.按如表分段计税某职工2011年5月交纳个人所得税295元,在收人不变的情况下,2011年10月该职工需交纳个人所得税145元.【解答】解:1500×3%=45元,(4500﹣1500)×10%=300元,由于45+300>195元,则这个职工的月收入不超过6500元,设这个职工的月收人为x元,45+(x﹣1500﹣2000)×10%=295,解得x=6000,在收人不变的情况下,2011年10月该职工需交纳个人所得税为45+(6000﹣1500﹣3500)×10%=45+100=145元,故答案为:145.三、解答题:本大题共6小题,满分85分,解答应写出文字说明、证明过程或演算步骤14.(12分)已知函数f(x)=sin(ωx﹣)(ω>0)的图象与x轴的相邻两个交点的距离为.(1)求w的值;(2)设函数g(x)=f(x)+2cos2x﹣1,求g(x)在区间上的最大值和最小值.【解答】解:(1)函数f(x)=sin(ωx﹣)(ω>0)的图象与x轴的相邻两个交点的距离为.可得函数的最小正周期为T=2×=π,则ω===2,解得ω=2,(2)函数g(x)=f(x)+2cos2x﹣1=sin(2x﹣)+cos2x=sin2x﹣cos2x+cos2x=sin2x+cos2x=sin(2x+),∵x∈[0,],∴2x+∈[,],∴﹣≤sin(2x+)≤1,∴g(x)在区间上的最大值为1,最小值为﹣.15.(13分)某中学高一、高二年级各有8个班,学校调查了春学期各班的文学名著阅读量(单位:本),并根据调查结果,得到如下所示的茎叶图:为鼓励学生阅读,在高一、高二两个两个年级中,学校将阅读量高于本年级阅读量平均数的班级命名为该年级的“书香班级”.(1)当a=4时,记高一年级“书香班级”数为m,高二年级的“书香班级”数为n,比较m,n的大小关系;(2)在高一年级8个班级中,任意选取两个,求这两个班级均是“书香班级”的概率;(3)若高二年级的“书香班级”数多于高一年级的“书香班级”数,求a的值(只需写出结论)【解答】解:(1)当a=4时,高一年级阅读量平均数为:(11+14+18+22+23+25+41)=24,∴m=3,高一年级阅读量平均数为:(10+16+20+21+22+23+31+34)=22.13,∴n=3.∴m=n.(2)在高一年级8个班级中,任意选取两个,基本事件总数n==28,由(1)知高一年级的8个班级中,“书香班级”中有3个,∴这两个班级均是“书香班级”的取法有m=,这两个班级均是“书香班级”的概率p=.(3)∵高二年级的“书香班级”数多于高一年级的“书香班级”数,∴高一年级的“书香班级”阅读量平均数小于22,由此得到a的可能取值为0,1,2.16.(14分)如图1,在边长为2的菱形ABCD中,∠BAD=60°,将△BCD沿对角线BD折起到△B'CD的位置,使平面BC'D⊥平面ABD,E是BD的中点,FA⊥平面ABD,且FA=2,如图2.(1)求证:FA∥平面BC'D;(2)求平面ABD与平面FBC'所成角的余弦值;(3)在线段AD上是否存在一点M,使得C'M⊥平面FBC?若存在,求的值;若不存在,说明理由.【解答】(1)证明:∵BC=CD,E为BD的中点,∴C′E⊥BD,又平面BC'D⊥平面ABD,且平面BC'D∩平面ABD=BD,∴C′E⊥ABD,∵FA⊥平面ABD,∴FA∥C′E,而C′E⊂平面BC'D,FA⊄平面BC'D,∴FA∥平面BC'D;(2)解:以DB所在直线为x轴,AE所在直线为y轴,EC′所在直线为z轴建立空间直角坐标系,则B(1,0,0),A(0,,0),D(﹣1,0,0),F(0,﹣,),C′(0,0,),∴,.设平面FBC′的一个法向量为,则,取z=1,则.又平面ABD的一个法向量为.∴cos<>==.则平面ABD与平面FBC'所成角的余弦值为;(3)解:线段AD上不存点M,使得C'M⊥平面FBC.假设在线段AD上存在M(x,y,z),使得C'M⊥平面FBC,设,则(x,y,z)=λ(﹣1,,0)=(﹣λ,,0),∴x=﹣λ,y=,z=0.则=(﹣λ,,﹣).由,得,即错误.∴线段AD上不存点M,使得C'M⊥平面FBC.17.(15分)已知函数f(x)=x﹣1+ae x.(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求f(x)的极值;(3)当a=1时,曲线y=f(x)与直线y=kx﹣1没有公共点,求k的取值范围.【解答】解:(1)f(x)=x﹣1+ae x.求导,f′(x)=1+ae x.由f′(1)=0,1+ae=0,解得:a=﹣,∴a的值﹣;(2)当a≥0,f′(x)>0恒成立,则f(x)在R上是增函数,无极值;当a<0时,令f′(x)=0,则e x=﹣,x=ln(﹣),x<ln(﹣),f′(x)>0;当x>ln(﹣),f′(x)<0,∴f(x)在(﹣∞,ln(﹣))上单调递增,在(ln(﹣),+∞)单调递减,f(x)在x=ln(﹣)处取极大值,且极大值f(ln(﹣))=﹣ln(﹣a)﹣2,无极小值;(3)当a=1时,f(x)=x﹣1+e x.令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+e x,由题意可知:g(x)=0无实数解,假设k<1,此时g(0)=1>0,g()=﹣1+<0,由函数g(x)的图象连续不断,由函数零点存在定理g(x)=0在R上至少有一解,与方程g(x)=0,在R上没有实数解矛盾,故k≥1,由k=1时,g(x)=e x,可知方程g(x)=0在R上没有实数解,∴k的取值范围[1,+∞).18.(16分)已知椭圆C:x2+4y2=4.(1)求椭圆C的离心率;(2)椭圆C的长轴的两个端点分别为A,B,点P在直线x=1上运动,直线PA,PB分别与椭圆C相交于M,N两个不同的点,求证:直线MN与x轴的交点为定点.【解答】解:(1)由椭圆的标准方程:,则a=2,b=1,则c=,∴椭圆的离心率e==,(2)证明:∵椭圆C的左,右顶点分别为A,B,点P是直线x=1上的动点,∴A(﹣2,0),B(2,0),设P(1,t),则k PA==,直线PA:y=(x+2),联立得:整理,得(4t2+9)x2+16t2x+16t2﹣36=0,﹣2x M=,则x M=,y M=(x M+2)=,则M(,),同理得到N(,)…(8分)由椭圆的对称性可知这样的定点在x轴,不妨设这个定点为Q(m,0),…10分又k MQ=,k NQ=,∵k MQ=k NQ,∴(8m﹣32)t2﹣6m+24=0,m=4.∴直线MN经过一定点Q(4,0),直线MN与x轴的交点为定点Q(4,0).19.(15分)已知数列{a n}的各项均为非零实数,且对于任意的正整数n,都有(a1+a2+a3+…+a n)2=a13+a23+a33+…+a n3.(1)写出数列{a n}的前三项a1,a2,a3(请写出所有可能的结果);(2)是否存在满足条件的无穷数列{a n},使得a2017=﹣2016?若存在,求出这样的无穷数列的一个通项公式;若不存在,说明理由;(3)记a n点所有取值构成的集合为A n,求集合A n中所有元素之和(结论不要证明).【解答】解:(1)当n=1时,a13=a12,由a1≠0得a1=1.当n=2时,1+a23=(1+a2)2,由a2≠0得a2=2或a2=﹣1.当n=3时,1+a23+a33=(1+a2+a3)2,若a2=2得a3=3或a3=﹣2;若a2=﹣1得a3=1;综上讨论,满足条件的数列有三个:1,2,3或1,2,﹣2或1,﹣1,1.(2)令S n=a1+a2+…+a n,则S n2=a13+a23+…+a n3(n∈N*).从而(S n+a n+1)2=a13+a23+…+a n3+a n+13,两式相减,结合a n+1≠0,得2S n=a n+12﹣a n+1.当n=1时,由(1)知a1=1;当n≥2时,2a n=2(S n﹣S n﹣1)=(a n+12﹣a n+1)﹣(a n2﹣a n),即(a n+1+a n)(a n+1﹣a n﹣1)=0,所以a n+1=﹣a n或a n+1=a n+1.又a1=1,a2017=﹣2016,所以无穷数列{a n}的前2016项组成首项和公差均为1的等差数列,从第2016项开始组成首项为﹣2016,公比为﹣1的等比数列.a n=.(3)由(2)可知a1=1,a n=﹣a n﹣1或a n=a n﹣1+1(n≥2),故A1={1},A2={﹣1,2},A3={1,﹣2,3},A4={﹣1,2,﹣3,4},…∴当n为奇数时,A n的所有元素之和为1+3+5+…+n﹣(2+4+6+…n﹣1)=﹣=,当n为偶数时,A n的所有元素之和为2+4+6+…+n﹣(1+3+5+…+n﹣1)=﹣=.。
北京市房山区中考数学一模试卷数学(考试时间共100分钟,满分120分)准考证号:__________ 姓名:________ 座位号:___________{请同学们保持良好的心态,认真审真,认真答题,切不可马虎应付}一、选择题(本题共30分,每小题3分)1.(3分)(2015•房山区一模)如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D2.(3分)(2015•房山区一模)据海关统计,前两个月,我国进出口总值为37900亿元人民币,将37900用科学记数法表示为()A. 3.79×102 B. 0.379×105 C. 3.79×104 D. 379×1023.(3分)(2014•汕头)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A. B. C. D.4.(3分)(2015•房山区一模)如图,直线a,b,a∥b,点C在直线b上,∠DCB=90°,若∠1=70°,则∠2的度数为()A. 20° B. 25° C. 30° D. 40°5.(3分)(2015•房山区一模)右图是某几何体的三视图,该几何体是()A.圆柱 B.正方体 C.圆锥 D.长方体6.(3分)(2015•柳江县二模)某地为了缓解旱情进行了一场人工降雨,现测得6个面积相等区域的降雨量如下表所示:区域 1 2 3 4 5 6降雨量(mm) 14 12 13 13 17 15则这6个区域降雨量的众数和平均数分别为()A. 13,13.8 B. 14,15 C. 13,14 D. 14,14.57.(3分)(2015•房山区一模)小强骑自行车去郊游,9时出发,15时返回.右图表示他距家的距离y(千米)与相应的时刻x(时)之间的函数关系的图象.根据这个图象,小强14时距家的距离是()A. 13 B. 14 C. 15 D. 168.(3分)(2015•房山区一模)如图,AB是⊙O的直径,C、D是圆上两点,∠BOC=70°,则∠D等于()A. 25° B. 35° C. 55° D. 70°9.(3分)(2015•鱼峰区二模)如图,某人站在楼顶观测对面的笔直的旗杆AB.已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,那么,旗杆AB的高度是()A.(+8)M B.(8+8)M C.(8+)M D.(8+)M10.(3分)(2015•房山区一模)如图,已知抛物线y=x2+2x﹣3,把此抛物线沿y轴向上平移,平移后的抛物线和原抛物线与经过点(﹣2,0),(2,0)且平行于y轴的两条直线所围成的阴影部分的面积为s,平移的距离为m,则下列图象中,能表示s与m的函数关系的图象大致是()A. B. C. D.二、填空题(本题共18分,每小题3分)11.(3分)(2014•本溪)因式分解:a3﹣4a= .12.(3分)(2015•房山区一模)把代数式x2﹣4x+1化成(x﹣h)2+k的形式,其结果是.13.(3分)(2015•房山区一模)请写出一个y随x的增大而增大的反比例函数的表达式:.14.(3分)(2015•房山区一模)甲、乙两人进行射击比赛,在相同条件下各射击10次.已知他们的平均成绩相同,方差分别是,,那么甲、乙两人成绩较为稳定的是.15.(3分)(2015•房山区一模)随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:乘车路程计价区段 0﹣10 11﹣15 16﹣20 …对应票价(元) 2 3 4 …另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.小明用学生卡乘车,上车时站名上对应的数字是5,下车时站名上对应的数字是22,那么,小明乘车的费用是元.16.(3分)(2015•房山区一模)如图,在平面直角坐标系中放置了5个正方形,点B1(0,2)在y轴上,点C1,E1,E2,C2,E3,E4,C3在x轴上,C1的坐标是(1,0),B1C1∥B2C2∥B3C3.则点A1到x轴的距离是,点A2到x轴的距离是,点A3到x轴的距离是.三、解答题(本题共30分,每小题5分)17.(5分)(2015•房山区一模)计算:.18.(5分)(2015•房山区一模)解不等式,并把它的解集在数轴上表示出来.19.(5分)(2012•武汉)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.20.(5分)(2015•房山区一模)已知x2+2x﹣8=0,求代数式的值.21.(5分)(2015•房山区一模)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过A(0,﹣2),B(1,0)两点,与反比例函数(m≠0)的图象在第一象限内交于点M,若△OBM的面积是2.(1)求一次函数和反比例函数的表达式;(2)若点P是x轴上一点,且满足△AMP是以AM为直角边的直角三角形,请直接写出点P的坐标.22.(5分)(2014•宁德)为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元?四、解答题(本题共20分,每小题5分)23.(5分)(2015•房山区一模)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若AB=4,CF=1,∠ABC=60°,求sin∠DEO的值.24.(5分)(2015•房山区一模)某校开展“人人读书”活动.小明为调查同学们的阅读兴趣,抽样调查了40名学生在本校图书馆的借阅情况(每人每次只能借阅一本图书),绘制了统计图1.并根据图书馆各类图书所占比例情况绘制了统计图2,已知综合类图书有40本.校图书馆各类图书所占比例统计图各类图书借阅人次分布统计图(1)补全统计图1;(2)该校图书馆共有图书本;(3)若该校共有学生1000人,试估算,借阅文学类图书的有人.25.(5分)(2015•房山区一模)如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F,过点D作∠CDE,使∠CDE=∠DFE,交AB的延长线于点E.过点A作⊙O 的切线交ED的延长线于点G.(1)求证:GE是⊙O的切线;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.26.(5分)(2015•房山区一模)小明遇到这样一个问题:如图1,在锐角△ABC中,AD、BE、CF分别为△ABC的高,求证:∠AFE=∠ACB.小明是这样思考问题的:如图2,以BC为直径作半⊙O,则点F、E在⊙O上,∠BFE+∠BCE=180°,所以∠AFE=∠ACB.请回答:若∠ABC=40°,则∠AEF的度数是.参考小明思考问题的方法,解决问题:如图3,在锐角△ABC中,AD、BE、CF分别为△ABC的高,求证:∠BDF=∠CDE.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.(7分)(2015•房山区一模)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(﹣3,0),B(1,0),顶点为C.(1)求抛物线的表达式和顶点坐标;(2)过点C作CH⊥x轴于点H,若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.28.(7分)(2015•房山区一模)如图1,已知线段BC=2,点B关于直线AC的对称点是点D,点E为射线CA上一点,且ED=BD,连接DE,BE.(1)依题意补全图1,并证明:△BDE为等边三角形;(2)若∠ACB=45°,点C关于直线BD的对称点为点F,连接FD、FB.将△CDE绕点D 顺时针旋转α度(0°<α<360°)得到△C′DE′,点E的对应点为E′,点C的对应点为点C′.①如图2,当α=30°时,连接BC′.证明:EF=BC′;②如图3,点M为DC中点,点P为线段C′E′上的任意一点,试探究:在此旋转过程中,线段PM长度的取值范围?29.(8分)(2015•房山区一模)【探究】如图1,点N(m,n)是抛物线上的任意一点,l是过点(0,﹣2)且与x轴平行的直线,过点N作直线NH⊥l,垂足为H.①计算:m=0时,NH= ; m=4时,NO= .②猜想:m取任意值时,NO NH(填“>”、“=”或“<”).【定义】我们定义:平面内到一个定点F和一条直线l(点F不在直线l上)距离相等的点的集合叫做抛物线,其中点F叫做抛物线的“焦点”,直线l叫做抛物线的“准线”.如图1中的点O即为抛物线y1的“焦点”,直线l:y=﹣2即为抛物线y1的“准线”.可以发现“焦点”F在抛物线的对称轴上.【应用】(1)如图2,“焦点”为F(﹣4,﹣1)、“准线”为l的抛物线与y轴交于点N(0,2),点M为直线FN与抛物线的另一交点.MQ⊥l于点Q,直线l交y轴于点H.①直接写出抛物线y2的“准线”l:;②计算求值:= ;(2)如图3,在平面直角坐标系xOy中,以原点O为圆心,半径为1的⊙O与x轴分别交于A、B两点(A在B的左侧),直线与⊙O只有一个公共点F,求以F为“焦点”、x轴为“准线”的抛物线的表达式.北京市房山区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)1.(3分)(2015•房山区一模)如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D考点:相反数;数轴.分析:相反数的定义:符号不同,绝对值相等的两个数叫互为相反数.根据定义,结合数轴进行分析.解答:解:∵表示2的相反数的点,到原点的距离与2这点到原点的距离相等,并且与2分别位于原点的左右两侧,∴在A,B,C,D这四个点中满足以上条件的是A.故选A.点评:本题考查了互为相反数的两个数在数轴上的位置特点:分别位于原点的左右两侧,并且到原点的距离相等.2.(3分)(2015•房山区一模)据海关统计,前两个月,我国进出口总值为37900亿元人民币,将37900用科学记数法表示为()A. 3.79×102 B. 0.379×105 C. 3.79×104 D. 379×102考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将37900用科学记数法表示为:3.79×104.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2014•汕头)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A. B. C. D.考点:概率公式.分析:直接根据概率公式求解即可.解答:解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选:B.点评:本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.4.(3分)(2015•房山区一模)如图,直线a,b,a∥b,点C在直线b上,∠DCB=90°,若∠1=70°,则∠2的度数为()A. 20° B. 25° C. 30° D. 40°考点:平行线的性质.分析:先根据对顶角的定义求出∠3的度数,再由平行线的性质即可得出结论.解答:解:∵∠1=70°,∠1与∠3是对顶角,∴∠3=∠1=70°.∵a∥b,点C在直线b上,∠DCB=90°,∴∠2+∠DCB+∠3=180°,∴∠2=180°﹣∠3﹣∠DCB=180°﹣70°﹣90°=20°.故选A.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.5.(3分)(2015•房山区一模)右图是某几何体的三视图,该几何体是()A.圆柱 B.正方体 C.圆锥 D.长方体考点:由三视图判断几何体.分析:根据一个空间几何体的正视图和左视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断柱体的形状.解答:解:∵几何体的主视图和左视图都是宽度相等的长方形,∴该几何体是一个柱体,∵俯视图是一个正方形,∴该几何体是一个长方体.故选:D.点评:本题考查的知识点是三视图,如果有两个视图为长方形,该几何体一定是柱体,底面由第三个视图的形状决定.6.(3分)(2015•柳江县二模)某地为了缓解旱情进行了一场人工降雨,现测得6个面积相等区域的降雨量如下表所示:区域 1 2 3 4 5 6降雨量(mm) 14 12 13 13 17 15则这6个区域降雨量的众数和平均数分别为()A. 13,13.8 B. 14,15 C. 13,14 D. 14,14.5考点:众数;加权平均数.分析:根据众数的定义即众数是指一组数据中出现次数最多的数据,平均数即把6个数据相加,再除以6即可求得.解答:解:数据13出现了2次,出现的次数最多,则众数是13(mm);平均降水量=(14+12+13+13+17+15)=14(mm).则这6个区域降雨量的众数和平均数分别为13,14;故选C.点评:主要考查了众数和平均数,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.7.(3分)(2015•房山区一模)小强骑自行车去郊游,9时出发,15时返回.右图表示他距家的距离y(千米)与相应的时刻x(时)之间的函数关系的图象.根据这个图象,小强14时距家的距离是()A. 13 B. 14 C. 15 D. 16考点:函数的图象.分析:根据函数图象的纵坐标,可得返回时离家的距离,根据函数图象的横坐标,可得返回时所用的时间,根据路程与时间的关系,可得速度,再根据速度与时间的关系,可得路程.解答:解:由纵坐标看出,返回时离家的距离是30千米,由横坐标看出,返回时所用的时间是15﹣13=2小时,由路程与时间的关系,得返回时的速度是30÷2=15千米,由时间、速度的关系得15×1=15千米,故选:C.点评:本题考查了函数图象,观察函数图象获得有效信息是解题关键,利用了时间、速度、路程的关系.8.(3分)(2015•房山区一模)如图,AB是⊙O的直径,C、D是圆上两点,∠BOC=70°,则∠D等于()A. 25° B. 35° C. 55° D. 70°考点:圆周角定理.分析:由AB是⊙O的直径,C、D是圆上两点,∠BOC=70°,根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.即可求得答案.解答:解:∵∠BOC=70°,∴∠D=∠BOC=35°.故选B.点评:此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.9.(3分)(2015•鱼峰区二模)如图,某人站在楼顶观测对面的笔直的旗杆AB.已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,那么,旗杆AB的高度是()A.(+8)M B.(8+8)M C.(8+)M D.(8+)M考点:解直角三角形的应用-仰角俯角问题.分析:利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,有AB=AE+BE.解答:解:解:在△EBC中,有BE=EC×tan45°=8,在△AEC中,有AE=EC×tan30°=,∴AB=8+(米).故选D.点评:本题考查了解直角三角形的应用﹣﹣﹣俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.10.(3分)(2015•房山区一模)如图,已知抛物线y=x2+2x﹣3,把此抛物线沿y轴向上平移,平移后的抛物线和原抛物线与经过点(﹣2,0),(2,0)且平行于y轴的两条直线所围成的阴影部分的面积为s,平移的距离为m,则下列图象中,能表示s与m的函数关系的图象大致是()A. B. C. D.考点:动点问题的函数图象;二次函数图象与几何变换.分析:根据图形平移后面积不变的性质,可把不规则阴影部分的面积转化为规则图形(矩形)即可判断.解答:解:如图,我们把抛物线沿y轴向上平移,平移后的抛物线和原抛物线及直线x=2,x=﹣2所围成的阴影部分的面积S可以看做和矩形BB′C′C等积,于是可以看出S与m 是正比例函数关系故选:B.点评:本题主要考查了函数图象与几何变换:由于抛物线平移后的形状不变,因此可把平移后不规则图形转化为规则图形解决问题.二、填空题(本题共18分,每小题3分)11.(3分)(2014•本溪)因式分解:a3﹣4a= a(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.专题:因式分解.分析:首先提取公因式a,进而利用平方差公式分解因式得出即可.解答:解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.12.(3分)(2015•房山区一模)把代数式x2﹣4x+1化成(x﹣h)2+k的形式,其结果是(x﹣2)2﹣3 .考点:配方法的应用.分析:二次三项式是完全平方式,则常数项是一次项系数一半的平方.解答:解:x2﹣4x+1=x2﹣4x+22+1﹣22=(x﹣2)2﹣3.故答案是:=(x﹣2)2﹣3.点评:本题考查了配方法的应用.解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.13.(3分)(2015•房山区一模)请写出一个y随x的增大而增大的反比例函数的表达式:y=﹣(x>0)(答案不唯一).考点:反比例函数的性质.专题:开放型.分析:反比例函数的图象在每个象限内,函数值y随自变量x的增大而增大,则反比例函数的反比例系数k<0;反之,只要k<0,则反比例函数在每个象限内,函数值y随自变量x的增大而增大.解答:解:只要使反比例系数小于0即可.如y=﹣(x>0),答案不唯一.故答案为:y=﹣(x>0)(答案不唯一).点评:本题主要考查了反比例函数y=(k≠0)的性质:①k>0时,函数图象在第一,三象限.在每个象限内y随x的增大而减小;②k<0时,函数图象在第二,四象限.在每个象限内y随x的增大而增大.14.(3分)(2015•房山区一模)甲、乙两人进行射击比赛,在相同条件下各射击10次.已知他们的平均成绩相同,方差分别是,,那么甲、乙两人成绩较为稳定的是甲.考点:方差.分析:根据方差的意义可作出判断;方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵他们的平均成绩相同,方差分别是,,∴S甲2<S乙2,∴成绩较稳定的同学是甲.故答案为:甲.点评:本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(3分)(2015•房山区一模)随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:乘车路程计价区段 0﹣10 11﹣15 16﹣20 …对应票价(元) 2 3 4 …另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.小明用学生卡乘车,上车时站名上对应的数字是5,下车时站名上对应的数字是22,那么,小明乘车的费用是 1 元.考点:有理数的混合运算.分析:首先用下车时站名上对应的数字减去上车时站名上对应的数字,求出小明乘车的路程是多少,进而求出相应的票价是多少;然后用它乘以0.25,求出小明乘车的费用是多少元即可.解答:解:因为小明乘车的路程是:22﹣5=17,所以小明乘车的费用是:4×0.25=1(元).答:小明乘车的费用是1元.故答案为:1.点评:此题主要考查了有理数的混合运算,要熟练掌握有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,解答此题的关键是求出小明乘车的路程、相应的票价是多少.16.(3分)(2015•房山区一模)如图,在平面直角坐标系中放置了5个正方形,点B1(0,2)在y轴上,点C1,E1,E2,C2,E3,E4,C3在x轴上,C1的坐标是(1,0),B1C1∥B2C2∥B3C3.则点A1到x轴的距离是 3 ,点A2到x轴的距离是,点A3到x轴的距离是.考点:正方形的性质;坐标与图形性质;全等三角形的判定与性质.专题:规律型.分析:根据勾股定理可得正方形A1B1C1D1的边长为,根据相似三角形的性质可得后面正方形的边长依次是前面正方形边长的,依次得到第1、2、3个正方形和第1、2、3个正方形的边长,进一步得到点A1、A2、A3到x轴的距离.解答:解:如图,∵点C1、E1、E2、C2、E3、E4、C3在x轴上,B1C1∥B2C2∥B3C3,∴△B1OC1∽△B2E2C2∽B3E4C3…,△B1OC1≌△C1E1D1,…,∴B2E2=1,B3E4=,B4E6=,B5E8=,作A1E⊥x轴,延长A1D1交x轴于F,则△C1D1F∽△C1D1E1,∴,在Rt△OB1C1中,OB1=2,OC1=1,正方形A1B1C1D1的边长为,∴D1F=,∴A1F=,∵A1E∥D1E1,∴,∴A1E=3,∴点A2到x轴的距离是,点A3到x轴的距离是;故答案为:3;;.点评:此题主要考查了正方形的性质以及解直角三角形的知识,得出正方形各边长是解题关键.三、解答题(本题共30分,每小题5分)17.(5分)(2015•房山区一模)计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用负指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.解答:解:原式=2﹣2+3+1=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(5分)(2015•房山区一模)解不等式,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:计算题.分析:根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:去分母得,6﹣3(x﹣2)≤2(x+1),去括号得,6﹣3x+6≤2x+2,移项得,﹣3x﹣2x≤2﹣6﹣6,合并同类项得,﹣5x≤﹣10,系数化为1得,x≥2.在数轴上表示如下:点评:本题考查了一元一次不等式的解法,在数轴上表示不等式的解集,>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.19.(5分)(2012•武汉)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.考点:全等三角形的判定与性质.专题:证明题.分析:求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.解答:证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.点评:本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.20.(5分)(2015•房山区一模)已知x2+2x﹣8=0,求代数式的值.考点:分式的化简求值.分析:首先将原式分母分解因式进而利用分式除法运算法则化简,进而求出即可.解答:解:原式=×﹣,=﹣,=﹣,=﹣,=﹣,∵x2+2x﹣8=0,∴x2+2x=8,∴原式=﹣.点评:此题主要考查了分式的化简求值,正确分解因式是解题关键.21.(5分)(2015•房山区一模)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k ≠0)的图象经过A(0,﹣2),B(1,0)两点,与反比例函数(m≠0)的图象在第一象限内交于点M,若△OBM的面积是2.(1)求一次函数和反比例函数的表达式;(2)若点P是x轴上一点,且满足△AMP是以AM为直角边的直角三角形,请直接写出点P的坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)可得到关于b、k的方程组,进而可得到一次函数的解析式,设M(p,q)作MD⊥x轴于点D,由△OBM的面积为2可求出q的值,将M(p,4)代入y=2x﹣2求出p的值,由M(3,4)在双曲线(m ≠0)上即可求出m的值,进而求出其反比例函数的解析式;(2)作MD⊥x轴于D,分两种情况:①过点M(3,4)作MP⊥AM交x轴于点P,由MD ⊥BP可求出∠PMD=∠MBD=∠ABO,再由锐角三角函数的定义可得出OP的值,进而可得出结论;②过点A(0,﹣2)作AP⊥AM交x轴于点P,由MD⊥BP可求出∠MBD=∠ABO=∠PAO,再由锐角三角函数的定义可得出OP的值,进而可得出结论.解答:解:(1)∵直线y=kx+b过A(0,﹣2),B(1,0)两点∴,解得:∴一次函数的表达式为y=2x﹣2,∴设M(p,q),作MD⊥x轴于点D∵S△OBM=2,∴OB•MD=2,∴q=2,∴q=4,∴将M(p,4)代入y=2x﹣2得4=2p﹣2,∴p=3∵M(3,4)在双曲线(m≠0)上,∴4=,∴m=12,∴反比例函数的表达式为:y=;(2)作MD⊥x轴于D,①如图1,过点M(3,4)作MP⊥AM交x轴于点P,∵MD⊥BP,∴∠PMD=∠MBD=∠ABO∴tan∠PMD=tan∠MBD=tan∠ABO==2,∴在Rt△PDM中,=2,∴PD=2MD=8,∴OP=OD+PD=11或OP=PD﹣OD=8﹣3=5∴当PM⊥AM,此时点P的坐标为(11,0).②如图2,过点A(0,﹣2)作AP⊥AM交x轴于点P,∵MD⊥BP,∴∠MBD=∠ABO=∠PAO,∴tan∠PAO=tan∠MBD=tan∠ABO==2,∴在Rt△POA中,=2,∴OP=4,∴当PA⊥AM,此时点P的坐标为(﹣4,0).点评:本题考查的是反比例函数与一次函数的交点问题,涉及到的知识点为用待定系数法求一次函数与反比例函数的解析式、锐角三角函数的定义,熟知以上知识是解答此题的关键.22.(5分)(2014•宁德)为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元?考点:二元一次方程组的应用.分析:设第一阶梯电价每度x元,第二阶梯电价每度y元,分别根据3月份和4月份的电费收据,列出方程组,求出x和y值.解答:解:设第一阶梯电价每度x元,第二阶梯电价每度y元,由题意可得,,解得.答:第一阶梯电价每度0.5元,第二阶梯电价每度0.6元.点评:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.四、解答题(本题共20分,每小题5分)23.(5分)(2015•房山区一模)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若AB=4,CF=1,∠ABC=60°,求sin∠DEO的值.考点:菱形的性质;全等三角形的判定与性质;勾股定理.分析:(1)由四边形ABCD是菱形,可得AD∥BC,OA=OC,OB=OD,即可证得∠AEO=∠CFO,继而证得△AOE≌△COF,则可得OE=OF,即可判定四边形BFDE是平行四边形;(2)首先由在菱形ABCD中,∠ABC=60°,证得△ABC,△ADC为等边三角形,然后过点M作OM⊥AD于M,然后利用三角函数与勾股定理,求得OM与OE的长,则可求得答案.解答:(1)证明:∵四边形ABCD是菱形,∴AD∥BC,OA=OC,OB=OD,∴∠AEO=∠CFO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF,又∵OB=OD,∴四边形BFDE是平行四边形;(2)∵菱形ABCD,∠ABC=60°,∴BD⊥AC,AB=BC=AD=CD=4,∠ADO=∠CDO=30°,∴△ABC,△ADC为等边三角形,∴AO=AD=2,∠OAD=60°,∴OD==2,过点M作OM⊥AD于M,∴OM=OA•sin60°=,∴AM=OA•cos60°=1,∵△AOE≌△COF,∴AE=CF=1,∴EM=AE+AM=2,∴OE==,在Rt△EOM中,sin∠DEO===.点评:此题考查了菱形的性质、平行四边形的判定与性质、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.24.(5分)(2015•房山区一模)某校开展“人人读书”活动.小明为调查同学们的阅读兴趣,抽样调查了40名学生在本校图书馆的借阅情况(每人每次只能借阅一本图书),绘制了统计图1.并根据图书馆各类图书所占比例情况绘制了统计图2,已知综合类图书有40本.校图书馆各类图书所占比例统计图各类图书借阅人次分布统计图(1)补全统计图1;(2)该校图书馆共有图书800 本;(3)若该校共有学生1000人,试估算,借阅文学类图书的有350 人.。
2017年房山区初中毕业会考数学答案及评分标准一.填空题(本题共30分,每小题3分): 1~ 5 C C A D D 6~ 10 B C A A B二.填空题(本题共18分,每小题3分):11.x ≥5 12. 2(m+3)( m -3)13. (m +n )(a +b )=ma +mb +na +nb 或ma +mb +na +nb = (m +n )(a +b )、(m +n )(a +b )=m (a +b )+n (a +b )、(m +n )(a +b )= (m +n )a +(m +n )b 14.x 2+32=( 10-x )215. 答案不唯一,大于或等于470.3即可.16. ① 四条边相等的四边形是菱形;菱形的对边平行;两点确定一条直线.② 两组对边分别相等的四边形是平行四边形;平行四边形的对边平行;两点确定一条直线.三.解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分) 分分原式解-5-----2-4-----32332: 17.=-++=18. 证明: △ABC 是等边三角形,BD ⊥AC∴∠ABC =60º,BD 平分∠ABC ------2分 ∴∠DBC =30º ------3分 ∵∠CED =30º∴∠DBE =∠DEB ------4分 ∴BD =DE ------5分19. 解:解不等式①得: 3-x ≤2x -6-3 x ≤-9 ------1分 x ≥3 ------2分解不等式②得: 2x ≥x -1 ------3分x ≥-1 ------4分∴原不等式组的解集是x ≥3 ------5分20. 解:原式b a b b a ab a -+--=222 ------1分ba b ab a -+-=222 ------2分()ba b a --=2------3分 =b a - ------4分∵0522=+-b a∴ 25-=-b a ∴ 原式= 25-------5分EDCBA21. 证明:(1)∵AF ∥BC∴∠AFB=∠FBD ,∠F AD=∠BDA∵点E 是AD 的中点∴AE = DE∴△FEA ≌△BED ------1分 ∴AF = BD ∵AD 是BC 边的中线,∴BD=DC ∴AF = DC ------2分 又∵AF ∥BC∴四边形ADCF 是平行四边形 ------3分(2)①当AB =AC 时,四边形ADCF 是 矩 形 ------4分 ②当∠BAC =90°时,四边形ADCF 是 菱 形 ------5分22.(1)证明:连结OE ,EC ------1分 ∵AE 平分∠BAC∴∠1=∠2, »»B E C E= ∴ BE=EC又∵O 为圆心∴OE 垂直平分BC ,即OE ⊥BC ------2分∵l ‖BC ∴OE ⊥l∴直线l 与⊙O 相切 ------3分 (2) 根据等弧(»»BECE =)所对的圆周角相等可证∠1=∠3 根据∠1=∠3,∠BEA =∠BEA 可证△BDE ∽△ABE ------4分 根据相似三角形对应边成比例可得BEDE AEBE =,将DE =a ,AE =b 代入即可求BE23. 解:(1)过点A 作AH ⊥x 轴于点H ------1分 在△AOH 中,∵34tan ==∠OH AH AOE ,∴可设OH =3m ,AH =4m 即A (3m ,4m ) 其中m >0 ∵点A 在xy 12=的图象上 ∴解得m=1 (舍负) ∴点A 坐标为(3,4) (2)∵点B (-6,n )在xy 12=的图象上∴n =-2,即B (-6,-2) ∵y=kx+b 的图象经过点A (3,4),B (-6,-2)∴⎩⎨⎧-=+-=+2643b k b k 解得 ⎪⎩⎪⎨⎧==232b k∴一次函数表达式为232+=x y ------4分 FEDC B A(3) 在232+=x y 中令y =0,则x =-3即C (-3,0) ∴BO C AO C AO B S S S ∆∆∆+=92121=⋅+⋅=B A y OC y OC------5分24.解:(1)∵ 正方形ABCD∴ AB=AD ,∠B=∠D=∠BAD=90º ∵ AM=AN∴ △ABM ≌△AND ------1分 ∴ ∠BAM =∠DAN又∵∠MAN =30º,∠BAD=90º∴∠BAM =30º ------2分 (2)过点M 作MH ⊥AN 于点H ------3分 ∵∠BAM =30º,∠B=90º∴在Rt △ABM 中,设BM=x ,则AM =2x ,AB =x 3又∵AM=AN =2x ,∠MAN =30º,MH ⊥AN ∴在Rt △AMH 中,MH=x∴1221212==⋅⋅=⋅=∆x x x MH AN S AMN ------4分解得:x =1(舍负)∴AB =33=x------5分25.(1)567.1 ------1分(2)我区2014-2016年全年地区生产总值、全社会固定资产投资和区域税收的统计表------5分图例全年地区生产总值社会固定资产投资区域税收区域税收社会固定资产投资全年地区生产总值EAC26.(1)全体实数 ------1分 (2)m=52 ------2分(3)------3分 (4)以下情况均给分:①图象位于第一、二象限 ②当x =1时,函数有最大值4. ③图象有最高点(1,4) ④x >1时,y 随x 增大而减小 ⑤x <1时,y 随x 增大而增大 ⑥图象与x 轴没有交点⑦图象与y 轴有一个交点 ⑧图象关于直线x =1对称 …… ------4分 (5)0<a <4 ------5分27.解:(1)∵直线y =2x -3与y 轴交于点A (0,-3) ------1分 ∴点A 关于x 轴的对称点为B (0,3),l 为直线y =3 ∵直线y =2x -3与直线l 交于点C ,∴点C 的坐标为(3,3) ------2分(2)∵抛物线n nx nx y 542+-= (n >0) ∴y = nx 2-4nx +4n +n = n (x -2)2+n∴抛物线的对称轴为直线x=2,顶点坐标为(2,n ) ------3分 ∵点B (0,3),点C (3,3)①当n >3时,抛物线最小值为n >3,与线段BC 无公共点; ②当n=3时,抛物线顶点为(2,3),在线段BC 上,此时抛物线与线段BC 有一个公共点; ------4分 ③当0<n <3时,抛物线最小值为n ,与直线BC 有两个交点 如果抛物线y=n (x -2)2+ n 经过点B (0,3),则3=5n ,解得53=n由抛物线的对称轴为直线x=2,可知抛物线经过点(4,3)点(4,3)不在线段BC 上,此时抛物线与线段BC 有一个公共点B ------5分 如果抛物线y=n (x -2)2+ n 经过点C (3,3),则3=2n ,解得23=n由抛物线的对称轴为直线x=2,可知抛物线经过点(1,3)点(1,3)在线段BC 上,此时抛物线与线段BC 有两个公共点 ------6分 综上所述,当53≤n <23或n=3时,抛物线与线段BC 有一个公共点. ------7分28.(1)补全图形 ------1分 (2)证明:∵∠B =90º∴∠BAD+∠BDA =90º∵∠ADE =90º,点D 在线段BC 上∴∠BAD+∠EDC =90º∴∠BAD=∠EDC ------2分E F A B D C 证法1:在AB 上取点F ,使得BF=BD ,连结DF ------3分 ∵BF =BD ,∠B =90º ∴∠BFD =45º∴∠AFD =135º∵BA=BC∴AF=CD ------4分 在△ADF 和△DEC 中⎪⎩⎪⎨⎧=∠=∠=DE AD CDE BAD CDAF ∴△ADF ≌△DEC ------5分 ∴∠DCE =∠AFD =135º ------6分证法2:以D 为圆心,DC 为半径作弧交AC 于点F ,连结DF ------3分 ∴DC=DF ∠DFC =∠DCF ∵AB=BC ∠B =90º∴∠ACB =45º ∠DFC =45º∴∠FDC =90º ∠AFD =135º ∵∠ADE =∠FDC =90º∴∠ADF =∠EDC ------4分 又∵AD =DE DF =DC∴△ADF ≌△CDE ------5分 ∴∠AFD =∠DCE =135º ------6分证法3:过点E 作EF ⊥BC 交BC 延长线于点F ------3分 ∴∠EFD =90º∵∠B =90º, ∴∠EFD =∠B∵∠BAD =∠CDE ,AD=DE∴△ABD ≌△DEF ------4分∴AB=DF BD=EF∵AB=BC∴BC=DF ,BC -DC =DF -DC 即BD =CF ------5分 ∴EF =CF ∵∠EFC =90º∴∠ECF =45º,∠DCE =135º ------6分 (2)∠DCE =45º ------7分29.(1)(3,2) ------1分 (2)∵点P 在函数y =x -2的图象上, ∴点P 的坐标为(x ,x -2),∵ x >x -2,根据关联点的定义,点Q 的坐标为(x ,2)------2分 又∵点P 和点Q 重合 ∴x -2=2 解得 x =4∴点P 的坐标是(4,2) ------3分(3)点M (m ,n )的关联点是点N ,由关联点定义可知第一种情况:当m ≥n 时,点N 的坐标为(m ,m -n ) ∵点N 在函数y =2x 2的图象上,∴m -n =2m 2,n =-2m 2 + m即m m y M +-=22,22m y N =∴mm y y MN N M +-=-=24①当0≤m ≤41时,m m +-24>0161814422+⎪⎭⎫ ⎝⎛--=+-=m m m MN ∴当81=m 时,线段MN 的最大值是161②当41<m ≤2时,m m +-24<0 161814422-⎪⎭⎫ ⎝⎛-=-=m m m MN∴当m =2时,线段MN 的最大值是14;综合 ①与②,当m ≥n 时线段MN 的最大值是14 ------5分 第二种情况:当m <n 时,点N 的坐标为(m ,n -m ) ∵点N 在函数y =2x 2的图象上, ∴n -m =2m 2即n =2m2 +m∴m m y M +=22,22m y N = ∴my y MN N M =-=∵0 ≤m ≤2 ∴m MN =∴当m <n 时,线段MN 的最大值是2; ------7分 综上所述,当m ≥n 时,线段MN 的最大值是14;当m <n 时,线段MN 的最大值是2. ------8分本答案仅给出部分结果,其他正确解答请相应酌情给分。
【2017东城一模】29.设平面内一点到等边三角形中心的距离为d ,等边三角形的内切圆半径为r ,外接圆半径为R ,关于一个点与等边三角形,给出如下概念:知足r ≤d ≤R 的点叫做等边三角形的中心关联点。
在平面直角坐标系xOy 中, 等边△ABC.(1),在D ,E ,F 中,是等边△ABC 的中心关联点的是 ; (2)如图1①过点A 作直线交x 轴正半轴于点M ,使∠AMO =30°。
假设线段AM 上存在等边△ABC 的中心关联点P (m ,n ),求m 的取值范围; ②将直线AM 向下平移取得直线y =kx +b ,当b 知足什么条件时,直线y =kx +b 上 总存在...等边△ABC 的中心关联点;(直接写出答案,不必进程) (3)如图2,点Q 为直线y =-1上一动点,圆Q 的半径为. 当点Q 从点(-4,-1)动身,以每秒1个单位的速度向右移动,运动时刻为t 秒,是不是存在某一时刻,使得圆Q 上所有点都是等边△ABC 的中心关联点若是存在,请直接写出所有符合题意的t 的值;若是不存在,请说明理由.12图1 图2【2017西城一模】29.在平面直角坐标系xOy中,假设点P和点P1关于y轴对称,点P1和点P2关于直线l 对称,那么称点P2是点P关于y轴,直线l的二次对称点.(1)如图1,点A(-1 , 0).①假设点B是点A关于y轴,直线l1: x=2的二次对称点,那么点B的坐标为;②假设点C(-5 , 0)是点A关于y轴,直线l2: x = a的二次对称点,那么a的值为;③假设点D(2 , 1)是点A关于y轴,直线l3的二次对称点,那么直线l3的表达式为;(2)如图2,⊙O 的半径为1.若⊙O 上存在点M ,使得点M '是点M 关于y 轴,直线l 4: x = b 的二次对称点,且点M '在射线(3)E (t ,0)是x 轴上的动点,⊙E 的半径为2,假设⊙E 上存在点N ,使得点N '是点N 关于y 轴,直线l 5:的二次对称点,且点N '在y 轴上,求t 的取值范围.【2017海淀一模】29.在平面直角坐标系xOy 中,假设P ,Q 为某个菱形相邻的...两个极点,且该菱形的两条对角线别离与x 轴,y 轴平行,那么称该菱形为点P ,Q 的“相关菱形”.图1为点P,(3y x x =≥1y =+图1图2Q的“相关菱形”的一个示用意.图1已知点A的坐标为(1,4),点B的坐标为(b,0),(1)若b=3,那么R(1 ,0),S(5,4),T(6,4)中能够成为点A,B的“相关菱形”极点的是;(2)若点A,B的“相关菱形”为正方形,求b的值;(3)BC的坐标为(2,4).若B上存在点M,在线段AC上存在点N,使点M,N的“相关菱形”为正方形,请直接写出b的取值范围.【2017朝阳一模】29.在平面直角坐标系xOy 中,点A 的坐标为(0,m ),且m ≠0,点B 的坐标为(n ,0),将线段AB 绕点B 旋转90°,别离取得线段BP 1,BP 2,称点P 1,P 2为点A 关于点B 的“伴随点”,图1为点A 关于点B 的“伴随点”的示用意.(1)已知点A (0,4),①当点B 的坐标别离为(1,0),(-2,0)时,点A 关于点B 的“伴随点”的坐标别离为 ;②点(x ,y )是点A 关于点B 的“伴随点”,直接写出y 与x 之间的关系式; (2)如图2,点C 的坐标为(-3,0),以C为半径作圆,假设在⊙C 上存在点A 关于点B 的“伴随点”,直接写出点A 的纵坐标m 的取值范围.图1【2017丰台一模】29.在平面直角坐标系xOy 中,关于任意三点A ,B ,C ,给出如下概念:若是矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,那么称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C的最优覆盖矩形.(1)已知A (-2,3),B (5,0),C (t ,-2).备用图图2①当2=t 时,点A ,B ,C 的最优覆盖矩形的面积为_____________; ②假设点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式; (2)已知点D (1,1).E (m ,n )是函数)0(4>=x xy 的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.【2017石景山一模】29.在平面直角坐标系xOy 中,对“隔离直线”给出如下概念:点(,)P x m 是图形1G 上的任意一点,点(,)Q x n 是图形2G 上的任意一点,假设存在直线:(0)l y kx b k =+≠知足m kx b +≤且n kx b +≥是图形1G 与2G 的“隔离直线”. 如图1,直线:4l y x =--是函数6(0)y x x=<的图象-4与正方形OABC 的一条“隔离直线”.(1)在直线12y x =-,231y x =+,33y x =-+中, 是图1函数6(0)y x x=<的图象与正方形OABC的“隔离直线”的为 ;请你再写出一条符合题意的不同的“隔离直线” 的表达式: ;(2)如图2,第一象限的等腰直角三角形EDF 的两腰别离与坐标轴平行,直角顶点D的坐标是,⊙O 的半径为2.是不是存在EDF △与⊙O 的“隔离直线”假设存在,求出此“隔离直线”的表达式;假设不存在,请说明理由;(3)正方形1111A B C D 的一边在y 轴上,其它三边都在y 轴的右边,点(1,)M t 是此正方形的中心.假设存在直线2y x b =+是函数22304y x x x =--(≤≤)的图象与正方形1111A B C D 的“隔离直线”,请直接写出t 的取值范围.【2017房山一模】29.在平面直角坐标系xOy 中,关于点P (x ,y ),若是点Q (x ,'y )的纵坐标知足图1xy备用图y=2x 2O()()⎩⎨⎧<-≥-=时当时当y x xy y x y x y ',那么称点Q 为点P 的“关联点”. (1)请直接写出点(3,5)的“关联点”的坐标 ;(2)若是点P 在函数2-=x y 的图象上,其“关联点”Q 与点P 重合,求点P 的坐标; (3)若是点M (m ,n )的“关联点”N 在函数y=2x 2的图象上,当0 ≤m ≤2 时,求线段MN 的最大值.【2017平谷一模】29.在平面直角坐标系中,点Q 为坐标系上任意一点,某图形上的所有点在∠Q 的内部(含角的边),这时咱们把∠Q 的最小角叫做该图形的视角.如图1,矩形ABCD ,作射线OA ,OB ,那么称∠AOB 为矩形ABCD 的视角.(1)如图1,矩形ABCD ,A (﹣3,1),B (3,1),C (3,3),D (﹣3,3),直接写出视角∠AOB 的度数;图1图2 备用图(2)在(1)的条件下,在射线CB上有一点Q,使得矩形ABCD的视角∠AQB=60°,求点Q的坐标;(3)如图2,⊙P的半径为1,点P(1,3),点Q在x轴上,且⊙P的视角∠EQF的度数大于60°,假设Q(a,0),求a的取值范围.【2017通州一模】29.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x1x2+ y1y2=0,且A,B均不为原点,那么称A和B互为正交点.比如:A(1,1),B(2,-2),其中1×2+1×(-2)=0,那么A和B互为正交点.(1)点P和Q互为正交点,P的坐标为(-2,3),①若是Q的坐标为(6,m),那么m的值为____________;②若是Q的坐标为(x,y),求y与x之间的关系式;(2)点M和N互为正交点,直接写出∠MON的度数;(3)点C,D是以(0,2)为圆心,半径为2的圆上的正交点,以线段CD为边,构造正方形CDEF,原点O在正方形CDEF的外部,求线段OE长度的取值范围.【2017门头沟一模】29.咱们给出如下概念:两个图形G1和G2,在G1上的任意一点P引出两条垂直的射线与G2相交于点M、N,若是PM=PN,咱们就称M、N为点P的垂等点,PM、PN为点P 的垂等线段,点P为垂等射点.(1)如图29-1,在平面直角坐标系xOy中,点P(1,0)为x轴上的垂等射点,过A(0,3)作x轴的平行线l,那么直线l上的B(-2,3), C(-1,3),D(3,3),E(4,3)为点P的垂等点的是________________________;(2)若是一次函数图象过M(0,3),点M为垂等射点P(1,0)的一个垂等点且另一个垂等点N也在此一次函数图象上,在图29-2中画出示用意并写出一次函数表达式;(3)如图29-3,以点O为圆心,1为半径作⊙O,垂等射点P在⊙O上,垂等点在通过(3,0),(0,3)的直线上,若是关于点P的垂等线段始终存在,求垂等线段PM长的取值范围(画出图形直接写出答案即可).【2017顺义一模】29.在平面直角坐标系xOy 中,关于双曲线(0)m y m x =>和双曲线(0)ny n x=>,若是2m n =,那么称双曲线(0)m y m x =>和双曲线(0)ny n x=>为“倍半双曲线”,双曲线(0)m y m x =>是双曲线(0)n y n x =>的“倍双曲线”,双曲线(0)n y n x =>是双曲线(0)my m x=>的“半双曲线”.(1)请你写出双曲线3y x =的“倍双曲线”是 ;双曲线8y x=的“半双曲线”是 ;(2)如图1,在平面直角坐标系xOy 中,已知点A 是双曲线4y x=在第一象限内任意一点,过点A 与y 轴平行的直线交双曲线4y x=的“半双曲线”于点B ,求△AOB 的面积;(3)如图2,已知点M 是双曲线2(0)ky k x=>在第一象限内任意一点,过点M 与y 轴平行的直线交双曲线2ky x=的“半双曲线”于点N ,过点M 与x 轴平行的直线交双曲线2ky x=的“半双曲线”于点P ,假设△MNP 的面积记为MNP S ∆,且12MNP S ∆≤≤,求k 的取值范围.【2017怀柔一模】29. 在平面直角坐标系xOy中,点P的坐标为(x,y),若过点p的直线与x轴夹角为60°时,那么称该直线为点P的“相关直线”,(1)已知点A的坐标为(0,2),求点A的“相关直线”的表达式;(2)假设点B的坐标为(0,3),点B的“相关直线”与直线y=32交于点C,求点C的坐标;(3)⊙O的半径为3,假设⊙O上存在一点N,点N的“相关直线”与双曲线y=x 33(x>0)相交于点M,请直接写出点M的横坐标的取值范围.【2017燕山一模】29. 在平面直角坐标系中,咱们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(2,2 ),…,都是梦之点,显然梦之点有无数个. (1)假设点 P (2,b )是反比例函数xny = (n 为常数,n ≠ 0) 的图象上的梦之点,求那个反比例函数解析式; (2) ⊙ O 的半径是2 ,①求出⊙ O 上的所有梦之点的坐标;②已知点 M (m ,3),点 Q 是(1)中反比例函数xny =图象上异于点 P 的梦之点,过点Q 的直线 l 与 y 轴交于点 A ,tan ∠OAQ = 1.假设在⊙ O 上存在一点 N ,使得直线 MN ∥ l 或 MN ⊥ l ,求出 m 的取值范围.。
北京市房山区初中毕业考试(中考一模)数学试题初中数学第I 卷(选择题)一、选择题(本大题共30分,每小题3分):1.为了减少燃煤对大气的污染,北京实施煤改电工程.每年冬季采暖季期间可压减燃煤约608000吨,将608000用科学记数法表示应为A.460.810⨯ B.46.0810⨯ C. 60.60810⨯ D. 56.0810⨯【考点】科学记数法和近似数、有效数字【试题解析】608000= 所以选D【答案】D2.如图,数轴上有A ,B ,C ,D 四个点,其中表示2的相反数的点是A.点AB.点BC.点CD.点D【考点】实数的相关概念【试题解析】解析:表示2的相反数的点是-2,所以选A【答案】A3.有五张形状、大小、质地都相同的卡片,这些卡片上面分别画有下列图形:①正方形;②等边三角形;③平行四边形;④等腰三角形;⑤圆.C B A 12345-1-2-3-46将卡片背面朝上洗匀,从中随机抽取一张,抽出的纸片正面图形是轴对称图形,但不是中心对称图形的概率是A. 51B. 52 C. 53 D. 54【考点】轴对称与轴对称图形【试题解析】解析:里面是轴对称图形,不是中心对称图形的有等腰三角形,所以概念为所以选A【答案】A4.如图,在△ABC 中,∠C =90°,点D 在AC 边上,DE ∥AB ,如果∠ADE =46°,那么∠B 等于A .34°B .54°C .46°D .44°【考点】轴对称与轴对称图形【试题解析】解析:∵DE//AB∴∠ADE=∠A=46°∴∠B=∠C-∠A=44°【答案】D5.象棋在中国有着三千多年的历史,属A BED C4题图于二人对抗性游戏的一种。
由于用具简单,趣味性强,成为流行极为广泛的棋艺活动。
如图是一方的棋盘,如果“帅”的坐标是(0,1),“卒”的坐标是(2,2),那么“马”的坐标是A.(-2,1) B.(2,-2) C.(-2,2) D.(2,2)【考点】平面直角坐标系及点的坐标【试题解析】解析:马的坐标纵坐标和卒的相等,所以排除A,B横坐标,在帅的左边2个单位,所以是-2所以选C【答案】C6.为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A,再在河的这一边选点B和点C,使得AB⊥BC,然后再在河岸上选点E,使得EC⊥BC,设BC与AE交于点D,•如图所示,测得BD=120米,DC=60米,EC=50米,那么这条河的大致宽度是A.75米 B.25米 C.100米 D.120米【考点】相似三角形的应用【试题解析】解析:根据题意可得:△ABD∽△CDE∴AB:CE=BD:CD∴AB=100米所以选C【答案】C7. 在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的A. 中位数B. 众数C.平均数D. 方差【考点】平均数、众数、中位数【试题解析】中位数是表示在中间的那一个数或者中间两个数的平均数,有5名同学,那么中位数就是第3名同学的成绩,所以只要知道中位数,就可以知道是否进入前三名了.【答案】A8. 下列几何体中,主视图相同的是A.①② B.①④ C.①③ D.②④【考点】几何体的三视图【试题解析】解析:主视图就是指从正面观察到的图形是什么,①从正面观察到的是一个长方形,③也是一个长方形,所以选C【答案】C9.如图,将△ABC绕点C按顺时针旋转60°得到△A′B′C,已知AC=6,BC=4,则线段AB扫过的图形的面积为A. 23π B.83π C.6π D.103π【考点】图形的旋转【试题解析】解析:阴影面积=故选D.【答案】D10.如图,在正方形ABCD中,AB=3cm,动点M自点A出发沿AB方向以每秒1厘米的速度运动,同时动点N自点A出发沿折线AD—DC—CB以每秒3厘米的速度运动,到达点B时运动同时停止.设△AMN的面积为y(厘米2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是NMD CB A【考点】函数的表示方法及其图像【试题解析】解析:当点N在AD上时,即0≤x≤1,S△AMN=当点N在AD上时,即0≤x≤1,S△AMN=×x×3x=x2,点N在CD上时,即1≤x≤2,S△AMN=×x×3=x,y随x的增大而增大,所以排除A、D;当N在BC上时,即2≤x≤3,S△AMN=×x×(9-3x)=-x2+x,开口方向向下.选B.【答案】B二、填空题(本大题共18分,每小题3分):=________________.11. 分解因式:3a a【考点】因式分解【试题解析】原式=a(a²-1)=a(a+1)(a-1)【答案】a(a+1)(a-1)12.已知反比例函数的图象经过A(2,-3),那么此反比例函数的关系式为______. 【考点】反比例函数表达式的确定【试题解析】解析:设反比例函数解析式为把x=-2,y=-3代入得:k=-6【答案】13.3月12日“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,求这两种树苗的进价分别是多少元.如果设每棵柏树苗的进价是x元,那么可列方程为______________.【考点】一次方程(组)的应用【试题解析】根据题意,这道题的等量关系式是柏树苗的费用=枣树苗的费用200x=120(2x-5)【答案】14.关于x的一元二次方程mx2+4x+1=0有两个实数根,那么m的取值范围是 . 【考点】一元二次方程的根与系数的关系【试题解析】解析:m≠0△=16-4m≥0解得:m ≤4且m ≠0【答案】m ≤4且m ≠015. 二次函数y=ax 2+bx+c(a ≠0)图象经过A(-1,m),B(2,m).写出一组满足条件的a 、b 的值:a=_____,b=______.【考点】二次函数表达式的确定【试题解析】解析:a-b+c=m 4a+2b+c=m -3a-3b=0 a=-b所以a=1,b=-1【答案】a=1,b=-116.如图,已知∠AOB . 小明按如下步骤作图:① 以点O 为圆心,任意长为半径画弧,交OA 于点D ,交OB 于点E . ② 分别以D ,E 为圆心,大于12DE C .③ 画射线OC .所以射线OC 为所求∠AOB 的平分线.BACED根据上述作图步骤,回答下列问题:(1)写出一个正确的结论:________________________. (2)如果在OC 上任取一点M,那么点M到OA、OB的距离相等.依据是:_______________________________________________________.【考点】尺规作图【试题解析】(1)以同样长画弧,OD,OE 都是这个固定的长度,所以OD=OE(2)角平分线上的带你到角两边距离相等.【答案】(1) OD=OE (2)角平分线上的点到角两边距离相等.三、解答题(本大题共72分,其中第17—26题,每小题5分,第27题7分,第28题7分,第29题8分):17. 计算:10)21(31)-(2016+3tan30 -+-+︒π. 【考点】实数运算【试题解析】解析:== 【答案】18.已知07432=--a a ,求代数式22))(()12(b b a b a a --+--的值.【考点】代数式及其求值【试题解析】== = ∵,∴,当时原式==8【答案】819. 解分式方程:2212+=--x xx . 【考点】分式方程的解法【试题解析】解得:经检验是原方程的解.∴原方程的解是【答案】x=-120.已知:如图,在△ABC 中,∠ABC = 90°,BD 为AC 边的中线,过点C 作 CE ∥AB 与BD 延长线交于点E . 求证:∠A =∠E .【考点】平行线的判定及性质【试题解析】∵在△ABC 中, ∠ABC = 90°,BD 为AC 边的中线.∴BD = AD = AC.∴∠A= ∠ABD,∵CE ∥AB ,∴∠ABD =∠E.∴∠A=∠E.【答案】见解析21.列方程(组)解应用题:为提高饮用水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A 、B 两种型号家用净水器共160台,A 型号家用净水器进价为每台150元,B 型号家用净水器进价为每台350元,购进两种型号的家用净水器共用去36000元.求A 、B 两种型号家用净水器各购进了多少台.EDB【考点】一次方程(组)的应用【试题解析】设购进A 型号净水器每台元,B 型号净水器每台元,根据题意,得:解得:答:A 种型号家用净水器购进了100台,B 种型号家用净水器购进了60台.【答案】A 种型号家用净水器购进了100台,B 种型号家用净水器购进了60台.22. 如图,在ABCD 中,E 为BC 中点,过点E 作AB EG ⊥于G ,连结DG ,延长DC ,交GE 的延长线于点H.已知10BC =,45GDH ∠=︒,DG 82=.求 CD 的长.【考点】平行四边形的性质【试题解析】∵四边形是平行四边形∴∥,∵EG ⊥于点,∴在△中,,,,∴.∵为中点,,∴.∵∴△≌△.∴.在△中,,,,∴.∴【答案】523 .如图,在平面直角坐标系中,点A(2,0),B(0,3),C(0,2),点D在第二象限,且△AOB≌△OCD.(1) 请在图中画出△OCD ,并直接写出点D的坐标;(2) 点P在直线AC上,且△PCD是等腰直角三角形.x yBCA11o求点P的坐标.【考点】平面直角坐标系及点的坐标【试题解析】(1)图1,正确画出△COD点D的坐标为:D(-3,2).(2) 由OC=OA=2,∠AOC=90°,∴∠OAC=45°.∵A(2,0),C(0,2)∴过A、C两点的一次函数的关系式为:①当CD为直角边时,如图2,此时,点P的横坐标为-3. ∴P(-3,5).②当CD为斜边时,如图,此时3,点P 的横坐标为.∴P().∴在直线AC上,使△PCD是等腰直角三角形的点P坐标为:(-3,5)或(,).【答案】见解析24.如图,AB为⊙O的直径,点C在⊙O上,且∠CAB=30°,点D为弧AB的中点,AC=43.求CD的长.【考点】与圆有关的计算【试题解析】连结BC∵AB为⊙O的直径,点C在⊙O上,∴∠ACB =90°∵∠CAB =30°,∴∠D =60°.∵点D为弧AB的中点,∴∠ACD =45°.CB AO过点A作AE⊥CD,∵AC=,∴AE=CE =.∴DE =.∴CD =.【答案】25.“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,也称可入肺颗粒物.公众对于大气环境质量越来越关注,某市为了了解市民对于“PM 2.5浓度升高时,对于户外活动的影响”的态度,随机抽取了部分市民进行调查.根据调查的相关数据,绘制的统计图表如下:PM2.5浓度升高时,对于户外活动是百分比否有影响,您的态度是A.没有影响2%B.影响不大,还可以进行户外活动30%C.有影响,减少户外活动42%D.影响很大,尽可能不去户外活动mE .不关心这个问题6%根据以上信息解答下列问题:(1)直接写出统计表中m的值;(2)根据以上信息,请补全条形统计图;(3)如果该市约有市民400万人,根据上述信息,请你估计一下持有“影响很大,尽可能不去户外活动”这种态度的约有多少万人.【考点】统计图的分析【试题解析】(1)1-2%-6%-30%-42%=20%;(2)如图2% 42% C6% E30% BDA PM2.5浓度升高时对于户外活动 公众的态度的扇形统计图12084040PM2.5浓度升高时对于户外活动 公众的态度的条形统计图C D E B A 公众的态度80160240320400480560640720800880o(3)400×20%=80(万人).【答案】见解析26.如图,在平面直角坐标系xOy 中,双曲线12y x=(1)当x 时,1y >0;(2)直线2y x b =-+,当22b =时,直线与双曲线有唯一公共点,问:b 时,直线与双曲线有两个公共点;(3)如果直线2y x b =-+与双曲线12y x=交于A 、B 两点,且点A 的坐标为(1,2),点B 的纵坐标为1.设E 为线段AB 的中点,过点E 作x 轴的垂线EF ,交双曲线于点F .求线段EF 的长.【考点】反比例函数的图像及其性质【试题解析】(1)>0(2)当<或>,(3)∵点B 的纵坐标为1,∴点B 的横坐标为2,∵点E 为AB 中点,xyy 1=2x12345–1–2–3–4–512345–1–2–3–4–5o∴点E 坐标为(∴点F 的坐标为(,)∴EF=【答案】见解析27. 如图,二次函数c bx x ++-=2y 的图象(抛物线)与x 轴交于A(1,0), 且当0x =和2x -=时所对应的函数值相等.(1)求此二次函数的表达式;(2)设抛物线与x 轴的另一交点为点B ,与y 轴交于点C ,在这条抛物线的对称轴上是否存在点D ,使得△DAC 的周长最小?如果存在,求出D 点的坐标;如果不存在,请说明理由. (3)设点M 在第二象限,且在抛物线上,如果△MBC 的面积最大,求此时点M 的坐标及△MBC 的面积.【考点】二次函数表达式的确定xy12345–1–2–3–4–512–1–2–3–4–5o【试题解析】(1)∵二次函数,当和时所对应的函数值相等,∴二次函数的图象的对称轴是直线.∵二次函数的图象经过点A(,),∴解得∴二次函数的表达式为:.(2)存在由题知A、B两点关于抛物线的对称轴x=﹣1对称∴连接BC,与x=﹣1的交于点D,此时△DAC周长最小∵∴C的坐标为:(0,3)直线BC解析式为:y=x+3∴D(﹣1,2);(3)设M点(x,)(﹣3<x<0)作过点M作ME⊥x轴于点E,则E(x,0)∵S△MBC=S四边形BMCO﹣S△BOC=S四边形BMCO﹣,S四边形BMCO=S△BME+S四边形MEOC=(x+3)()+(﹣x)(+3)=∵要使△MBC的面积最大,就要使四边形BMCO面积最大当x=时,四边形BMCO在最大面积=∴△BMC最大面积=当x=时,=∴点M坐标为(,)【答案】见解析28.如图1,在四边形ABCD中,BA=BC,∠ABC=60°,∠ADC=30°,连接对角线BD.(1)将线段CD绕点C顺时针旋转60°得到线段CE,连接AE.①依题意补全图1;②试判断AE与BD的数量关系,并证明你的结论;(2)在(1)的条件下,直接写出线段DA、DB和DC之间的数量关系;(3)如图2,F是对角线BD上一点,且满足∠AFC=150°,连接FA和FC,探究线段FA、FB和FC之间的数量关系,并证明.(图1)(图2)【考点】四边形综合题【试题解析】解析:如图3,连接AC∵BA=BC,且∠ABC=60°∴△ABC是等边三角形∴∠ACB=60°,且CA=CB将线段CF绕点C顺时针旋转60°得到线段CE,连接EF、EA ∴CE=CF,且∠FCE=60°,∴△CEF是等边三角形∴∠CFE=60°,且FE=FC∴∠BCF=∠ACE∴△BCF≌△ACE(SAS)∴AE=BF∵∠AFC=150°, ∠CFE=60°∴∠AFE=90°在Rt△AEF中,有:∴.【答案】见解析29.在平面直角坐标系xoy 中,对于任意三点A ,B ,C 给出如下定义:如果正方形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在正方形的内部或边界上,那么称该正方形为点A ,B ,C 的外延正方形,在点A ,B ,C 所有的外延正方形中,面积最小的正方形称为点A ,B ,C 的最佳外延正方形.例如,图1中的正方形A 1B 1C 1D 1,A 2B 2C 2D 2 ,A 3B 3CD 3都是点A ,B ,C 的外延正方形,正方形A 3B 3CD 3是点A ,B ,C 的最佳外延正方形.xy12345–1–2–3–4–512345–1–2–3–4–5B 1C 1B 2C 2C B 3oA 2D 3A 1A 3D 1D 2A B(图1) (图2)(1)如图1,点A (-1,0),B (2,4),C (0,t )(t 为整数).① 如果t =3,则点A ,B ,C 的最佳外延正方形的面积是 ;② 如果点A ,B ,C 的最佳外延正方形的面积是25,且使点C 在最佳外延正方形的一边上,请写出一个符合题意的t 值 ;xy12345–1–2–3–4–512345–1–2–3–4–5Do(图3 ) (图4)(2)如图3,已知点M (3,0),N (0,4),P (x ,y )是抛物线y=x 2-2x -3上一点,求点M ,N ,P 的最佳外延正方形的面积以及点P 的横坐标x 的取值范围;(3)如图4,已知点E (m ,n )在函数x 6y(x >0)的图象上,且点D 的坐标为(1,1),设点O ,D ,E 的最佳外延正方形的边长为a ,请直接写出a 的取值范围.【考点】二次函数与几何综合【试题解析】(1)① 16 ;② 5或-1 ;(2)以ON 为一边在第一象限作正方形OKIN ,如图3①点M 在正方形OKIN 的边界上,抛物线一部分在正方形OKIN 内,P 是抛物线上一点,∴正方形OKIN 是点M ,N ,P 的一个面积最小的最佳外延正方形∴点M ,N ,P 的最佳外延正方形的面积的最小值是16;∴点M,N,P的最佳外延正方形的面积S的取值范围是:S 16满足条件的点P的横坐标的取值范围是 3(3)【答案】见解析。
2017年北京市房山区中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是()A.a B.b C.c D.d2.下列图案是轴对称图形的是()A.B.C.D.3.北京地铁燕房线,是北京地铁房山线的西延线,现正在紧张施工,通车后将是中国大陆第二条全自动无人驾驶线路,预测初期客流量日均132300人次,将132300用科学记数法表示为()A.1.323×105B.1.323×104C.1.3×105D.1.323×1064.如图,直线a∥b,三角板的直角顶点放在直线b上,两直角边与直线a相交,如果∠1=55°,那么∠2等于()A.65°B.55°C.45°D.35°5.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D6.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,从这个盒子中随机摸出一个球,摸到红球的概率为()A.B.C.D.7.雷达二维平面定位的主要原理是:测量目标的两个信息﹣﹣距离和角度,目标的表示方法为(γ,α),其中,γ表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标B的位置表示为F(4,150°).用这种方法表示目标C的位置,正确的是()A.(﹣3,300°)B.(3,60°)C.(3,300°)D.(﹣3,60°)8.2022年将在北京﹣﹣张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市,某校开设了冰球选修课,12名同学被分成甲、乙两组进行训练,他们的身高(单位:cm)如表所示:设两队队员身高的平均数依次为甲,乙,方差依次为S甲2,S乙2,下列关系中正确的是()A.甲=乙,S甲2<S乙2B.甲=乙,S甲2>S乙2C.甲<乙,S甲2<S乙2D.甲>乙,S甲2>S乙29.在同一平面直角坐标系中,正确表示函数y=kx+k(k≠0)与y=(k≠0)的图象的是()A.B.C.D.10.如图1,已知点E,F,G,H是矩形ABCD各边的中点,AB=6,BC=8,动点M从点E出发,沿E→F→G→H→E匀速运动,设点M运动的路程x,点M到矩形的某一个顶点的距离为y,如果表示y关于x函数关系的图象如图2所示,那么这个顶点是矩形的()A.点A B.点B C.点C D.点D二、填空题(本小题共6小题,每小题3分,共18分)11.二次根式有意义,则x的取值范围是.12.分解因式:2m2﹣18=.13.如图中的四边形均为矩形,根据图形,利用图中的字母,写出一个正确的等式:.14.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章,记载了一道“折竹抵地”问题,叙述为:“今有竹高一丈,末折抵地,去本三尺,问折者几何?”翻译成数学问题是:在Rt△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,可列出的方程为.15.中国国家邮政局公布的数据显示,2016年中国快递业务量突破313.5亿件,同比增长51.7%,快递业务量位居世界第一,业内人士表示,快递业务连续6年保持50%以上的高速增长,已成为中国经济的一匹“黑马”,未来中国快递业务仍将保持快速增长势头,以下是根据相关数据绘制的统计图,请你预估2017年全国快递的业务量大约为(精确的0.1)亿元.16.在数学课上,老师提出如下问题:小云的作法如下:小云作图的依据是.三、解答题(本题共13小题,72分)17.计算:()﹣1+tan60°+|﹣|﹣.18.已知:如图,△ABC是等边三角形,BD⊥AC,E是BC延长线上的一点,且∠CED=30°.求证:BD=DE.19.解不等式组:.20.当2a﹣2b+5=0时,求﹣的值.21.已知:在△ABC中,AD是BC边上的中线,点E是AD的中点;过点A作AF ∥BC,交BE的延长线于F,连接CF.(1)求证:四边形ADCF是平行四边形;(2)填空:①当AB=AC时,四边形ADCF是形;②当∠BAC=90°时,四边形ADCF是形.22.已知:如图,点A,B,C三点在⊙O上,AE平分∠BAC,交⊙O于点E,交BC于点D,过点E作直线l∥BC,连结BE.(1)求证:直线l是⊙O的切线;(2)如果DE=a,AE=b,写出求BE的长的思路.23.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C;点A在第一象限,点B的坐标为(﹣6,n);E为x轴正半轴上一点,且tan∠AOE=.(1)求点A的坐标;(2)求一次函数的表达式;(3)求△AOB的面积.24.如图,M、N分别是正方形ABCD的边BC、CD上的点,已知:∠MAN=30°,AM=AN,△AMN的面积为1.(1)求∠BAM的度数;(2)求正方形ABCD的边长.25.阅读下面的材料:2014年,是全面深化改革的起步之年,是实施“十二五”规划的攻坚之年,房山区经济发展稳中有升、社会局面和谐稳定,年初确定的主要任务目标圆满完成:全年地区生产总值和固定资产投资分别为530和505亿元;区域税收完成202.8亿;城乡居民人均可支配收入分别达到3.6万元和1.9万元.2015年,我区较好实现了“十二五”时期经济社会发展目标,开启了房山转型发展的新航程:全年地区生产总值比上年增长7%左右;固定资产投资完成530亿元;区域税收完成247亿元;公共财政预算收入完成50.02亿元;城乡居民人均可支配收入分别增长8%和10%.2016年,发展路径不断完善,房山区全年地区生产总值完成595亿元,固定资产投资完成535亿元,超额实现预期目标,区域税收比上一年增长4.94亿元,城乡居民可支配收入分别增长8.%和8.8%.(摘自《房山区政府工作报告》)根据以上材料解答下列问题:(1)2015年,我区全年地区生产总值为亿元.(2)选择统计图或统计表,将我区2014~2016年全年地区生产总值、固定资产投资和区域税收表示出来.26.小东根据学习函数的经验,对函数y=图象与性质进行了探究,下面是小东的探究过程,请补充完整,并解决相关问题:(1)函数y=的自变量x的取值范围是;(2)如表是y与x的几组对应值.表中m的值为;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出函数y=的大致图象;(4)结合函数图象,请写出函数y=的一条性质:(5)解决问题:如果函数y=与直线y=a的交点有2个,那么a的取值范围是.27.在平面直角坐标系xOy中,直线y=2x﹣3与y轴交于点A,点A与点B关于x轴对称,过点B作y轴的垂线l,直线l与直线y=2x﹣3交于点C.(1)求点C的坐标;(2)如果抛物线y=nx2﹣4nx+5n(n>0)与线段BC有唯一公共点,求n的取值范围.28.在△ABC中,AB=BC,∠B=90°,点D为直线BC上的一个动点(不与B、C 重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.(1)如果点D在线段BC上运动,如图1:①依题意补全图1;②求证:∠BAD=∠EDC;③通过观察、实验,小明得出结论:在点D运动的过程中,总有∠DCE=135°,.小明与同学讨论后,形成了证明这个结论的几种想法:想法一:在AB上取一点F,使得BF=BD,要证∠DCE=135°,只需证△ADF≌△DEC.想法二:以点D为圆心,DC为半径画弧交AC于点F,要证∠DCE=135°,只需证△AFD≌△DCE.想法三:过点E作BC所在直线的垂直线段EF,要证∠DCE=135°,只需证EF=CF.…请你参考上面的想法,证明∠DCE=135°(2)如果点D在线段CB的延长线上运动,利用图2画图分析,∠DCE的度数还是确定的值吗?如果是,直接写出∠DCE的度数;如果不是,说明理由.29.在平面直角坐标系xOy中,对于点P(x,y),如果点Q(x,y′)的纵坐标满足y′=,那么称点Q为点P的“关联点”.(1)请直接写出点(3,5)的“关联点”的坐标;(2)如果点P在函数y=x﹣2的图象上,其“关联点”Q与点P重合,求点P的坐标;(3)如果点M(m,n)的“关联点”N在函数y=2x2的图象上,当0≤m≤2时,求线段MN的最大值.2017年北京市房山区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是()A.a B.b C.c D.d【考点】2A:实数大小比较;15:绝对值;29:实数与数轴.【分析】根据数轴上某个数与原点的距离的大小确定结论.【解答】解:由图可知:c到原点O的距离最短,所以在这四个数中,绝对值最小的数是c;故选C.2.下列图案是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对个图形分析判断即可得解.【解答】解:A、此图形不是轴对称图形,不合题意;B、此图形不是轴对称图形,不合题意;C、此图形是轴对称图形,符合题意;D、此图形不是轴对称图形,不合题意;故选:C.3.北京地铁燕房线,是北京地铁房山线的西延线,现正在紧张施工,通车后将是中国大陆第二条全自动无人驾驶线路,预测初期客流量日均132300人次,将132300用科学记数法表示为()A.1.323×105B.1.323×104C.1.3×105D.1.323×106【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:132300=1.323×105.故选:A.4.如图,直线a∥b,三角板的直角顶点放在直线b上,两直角边与直线a相交,如果∠1=55°,那么∠2等于()A.65°B.55°C.45°D.35°【考点】JA:平行线的性质.【分析】先由直线a∥b,根据平行线的性质,得出∠3=∠1=55°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【解答】解:已知直线a∥b,∴∠3=∠1=55°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°﹣55°﹣90°=35°.故选D.5.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D【考点】U4:作图﹣三视图.【分析】主视图是从几何体的正面看所得到的视图,俯视图是从几何体的上面看所得到的图形.【解答】解:主视图是矩形且中间有两道竖杠,俯视图是两个同心圆,故选:D.6.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,从这个盒子中随机摸出一个球,摸到红球的概率为()A.B.C.D.【考点】X4:概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:根据题意可得:一个不透明的盒子中装有2个白球,5个红球和8个黄球,共15个,摸到红球的概率为,故选B7.雷达二维平面定位的主要原理是:测量目标的两个信息﹣﹣距离和角度,目标的表示方法为(γ,α),其中,γ表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标B的位置表示为F(4,150°).用这种方法表示目标C的位置,正确的是()A.(﹣3,300°)B.(3,60°)C.(3,300°)D.(﹣3,60°)【考点】D3:坐标确定位置.【分析】按已知可得,表示一个点,距离是自内向外的环数,角度是所在列的度数,据此进行判断即可得解.【解答】解:∵(γ,α)中,γ表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度,∴用这种方法表示目标C的位置为(3,300°).故选:C.8.2022年将在北京﹣﹣张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市,某校开设了冰球选修课,12名同学被分成甲、乙两组进行训练,他们的身高(单位:cm)如表所示:设两队队员身高的平均数依次为甲,乙,方差依次为S甲2,S乙2,下列关系中正确的是()A.甲=乙,S甲2<S乙2B.甲=乙,S甲2>S乙2C.甲<乙,S甲2<S乙2D.甲>乙,S甲2>S乙2【考点】W7:方差;W1:算术平均数.【分析】先根据平均数的定义分别计算出甲乙的平均数,然后根据方程公式计算出甲乙的方差即可对各选项进行判断.【解答】解:==176(cm),==176(cm),S甲2= [2×2+2×2+2×2]=,S乙2= [2+2+2+2+2+2]=15,所以,S甲2<S乙2.故选A.9.在同一平面直角坐标系中,正确表示函数y=kx+k(k≠0)与y=(k≠0)的图象的是()A.B.C.D.【考点】F3:一次函数的图象.【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【解答】解:①当k>0时,y=kx+k过一、二、三象限;y=(k≠0)过一、三象限;②当k<0时,y=kx+k过二、三、四象象限;y=(k≠0)过二、四象限.观察图形可知,只有A选项符合题意.故选:A.10.如图1,已知点E,F,G,H是矩形ABCD各边的中点,AB=6,BC=8,动点M从点E出发,沿E→F→G→H→E匀速运动,设点M运动的路程x,点M到矩形的某一个顶点的距离为y,如果表示y关于x函数关系的图象如图2所示,那么这个顶点是矩形的()A.点A B.点B C.点C D.点D【考点】E7:动点问题的函数图象.【分析】由图2得出始点E到顶点的距离为3,只有顶点A,B满足,又由开始时先增大,得出只有顶点B满足.【解答】解:由图2得出始点E到顶点的距离为3,∵AB=6,∴只有顶点A,B满足,又∵沿E→F→G→H→E匀速运动开始时先增大,∴只有顶点B满足,故选:B.二、填空题(本小题共6小题,每小题3分,共18分)11.二次根式有意义,则x的取值范围是x≥5.【考点】72:二次根式有意义的条件.【分析】根据二次根式的意义,被开方数是非负数列出方程,解方程即可.【解答】解:根据题意得:x﹣5≥0,解得x≥5.故答案为:x≥5.12.分解因式:2m2﹣18=2(m+3)(m﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(m2﹣9)=2(m+3)(m﹣3).故答案为:2(m+3)(m﹣3).13.如图中的四边形均为矩形,根据图形,利用图中的字母,写出一个正确的等式:(m+n)(a+b)=ma+mb+na+nb(答案不唯一).【考点】4B:多项式乘多项式.【分析】根据图形,从两个角度计算面积即可求出答案.【解答】解:(m+n)(a+b)=ma+mb+na+nb(答案不唯一)故答案为:(m+n)(a+b)=ma+mb+na+nb(答案不唯一).14.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章,记载了一道“折竹抵地”问题,叙述为:“今有竹高一丈,末折抵地,去本三尺,问折者几何?”翻译成数学问题是:在Rt△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,可列出的方程为x2+32=(10﹣x)2.【考点】KU:勾股定理的应用.【分析】设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.【解答】解:设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.故答案为:x2+32=(10﹣x)2.15.中国国家邮政局公布的数据显示,2016年中国快递业务量突破313.5亿件,同比增长51.7%,快递业务量位居世界第一,业内人士表示,快递业务连续6年保持50%以上的高速增长,已成为中国经济的一匹“黑马”,未来中国快递业务仍将保持快速增长势头,以下是根据相关数据绘制的统计图,请你预估2017年全国快递的业务量大约为476.5(精确的0.1)亿元.【考点】V5:用样本估计总体.【分析】根据连续六年快递业务的增长率估计即可得.【解答】解:∵2011年的增长率为×100%≈56.8%,2012年的增长率为×100%≈55.0%,2013年的增长率为×100%≈61.7%,2014年的增长率为×100%≈51.7%,2015年的增长率为×100%≈48.1%,2016年的增长率为×100%≈51.7%,∴估计2017年快递的增长率约为52%,即2017年的全国快递的业务量大约为313.5×(1+52%)=476.52≈476.5亿元,故答案为:476.5.16.在数学课上,老师提出如下问题:小云的作法如下:小云作图的依据是四条边相等的四边形为菱形,菱形的对边平行.【考点】N3:作图—复杂作图.【分析】利用作法可判定四边形ABCD为菱形,然后根据菱形的性质得到AD与l平行.【解答】解:由作法得BA=BC=AD=CD,所以四边形ABCD为菱形,所以AD∥BC.故答案为四条边相等的四边形为菱形,菱形的对边平行.三、解答题(本题共13小题,72分)17.计算:()﹣1+tan60°+|﹣|﹣.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用零指数幂的性质以及结合特殊角的三角函数值和绝对值的性质分别化简求出答案.【解答】解:原式=2++﹣=2+2﹣.18.已知:如图,△ABC是等边三角形,BD⊥AC,E是BC延长线上的一点,且∠CED=30°.求证:BD=DE.【考点】KK:等边三角形的性质.【分析】欲证BD=DE,只需证∠DBE=∠E,根据等边三角形的性质及角的等量关系可证明.【解答】证明:∵△ABC为等边三角形,BD⊥AC,∴∠ABC=60°,BD平分∠ABC.∴∠DBC=30°.∵∠CED=30°,∴∠DBE=∠DEB=30°,∴BD=DE.19.解不等式组:.【考点】CB:解一元一次不等式组.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,x≥3,由②得,x≥﹣1,所以,不等式组的解集是x≥3.20.当2a﹣2b+5=0时,求﹣的值.【考点】6D:分式的化简求值.【分析】先将原式化简,然后将a﹣b的值代入即可求出答案.【解答】解:原式===a﹣b由于2a﹣2b=﹣5,∴a﹣b=﹣,∴原式=﹣21.已知:在△ABC中,AD是BC边上的中线,点E是AD的中点;过点A作AF ∥BC,交BE的延长线于F,连接CF.(1)求证:四边形ADCF是平行四边形;(2)填空:①当AB=AC时,四边形ADCF是矩形;②当∠BAC=90°时,四边形ADCF是菱形.【考点】L7:平行四边形的判定与性质;KW:等腰直角三角形.【分析】(1)首先利用全等三角形的判定方法得出△AEF≌△DEB(AAS),进而得出AF=BD,再利用一组对边平行且相等的四边形是平行四边形进而得出答案;(2)①根据矩形的判定定理即可得到结论;②根据菱形的判定定理即可得到结论.【解答】证明:∵AF∥BC,∴∠AFE=∠EBD.在△AEF和△DEB中∵,∴△AEF≌△DEB(AAS).∴AF=BD.∴AF=DC.又∵AF∥BC,∴四边形ADCF为平行四边形;(2)①当AB=AC时,四边形ADCF是矩形;②当∠BAC=90°时,四边形ADCF是菱形.故答案为矩形,菱形.22.已知:如图,点A,B,C三点在⊙O上,AE平分∠BAC,交⊙O于点E,交BC于点D,过点E作直线l∥BC,连结BE.(1)求证:直线l是⊙O的切线;(2)如果DE=a,AE=b,写出求BE的长的思路.【考点】ME:切线的判定与性质.【分析】(1)作辅助线,连接半径,由角平分线得:∠BAE=∠CAE,圆周角相等,则弧相等,再由垂径定理证明OE⊥BC,所以OE⊥l,直线l与⊙O相切;(2)根据∠BAE=∠CAE、∠CAE=∠CBE结合公共角证△ABE∽△BDE可得=,从而得出答案.【解答】解:(1)如图,连接OE、OB、OC,∵AE平分∠BAC,∴∠BAE=∠CAE,∴,∴∠BOE=∠COE,∵OB=OC,∴OE⊥BC,∵l∥BC,∴OE⊥l,∴直线l是⊙O的切线;(2)∵∠BAE=∠CAE,∠CAE=∠CBE,∴∠BAE=∠DBE,又∵∠AEB=∠BED,∴△ABE∽△BDE,∴=,∴BE2=AE•DE=ab.23.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C;点A在第一象限,点B的坐标为(﹣6,n);E为x轴正半轴上一点,且tan∠AOE=.(1)求点A的坐标;(2)求一次函数的表达式;(3)求△AOB的面积.【考点】G8:反比例函数与一次函数的交点问题;T7:解直角三角形.【分析】(1)过A作AH⊥x轴于点H,根据tan∠AOE==,设OH=3k,AH=4k,即A的坐标为(3k,4k),代入反比例函数解析式即可求出A点的坐标;(2)求出B点的坐标,把A、B的坐标代入y=kx+b即可求出k、b的值,即可求出答案;(3)求出OC,根据三角形面积公式求出即可.【解答】解:(1)过A作AH⊥x轴于点H,在Rt△AOH中,∵tan∠AOE==,∴设OH=3k,AH=4k,即A的坐标为(3k,4k),其中k>0,∵A在y=图象上,∴4k=,解得:k=1(负数舍去),∴A的坐标为(3,4);(2)∵点B(﹣6,n)在y=的图象上,∴代入得:n=﹣2,即B的坐标为(﹣6,﹣2),把A、B的坐标代入y=kx+b(k≠0)得:,解得:k=,b=2,∴一次函数的表达式是y=x+2;(3)在y=x+2中令y=0,则x=﹣3,即C(﹣3,0),=S△AOC+S△BOC=×|﹣3|×4+×|﹣3|×|﹣2|=9,所以S△AOB即△AOB的面积是9.24.如图,M、N分别是正方形ABCD的边BC、CD上的点,已知:∠MAN=30°,AM=AN,△AMN的面积为1.(1)求∠BAM的度数;(2)求正方形ABCD的边长.【考点】LE:正方形的性质.【分析】(1)只要证明△ABM≌△ADN(HL),推出∠BAM=∠DAN,由∠MAN=30°,∠BAD=90°,即可推出∠BAM=30°;(2)作MH⊥AN于H.设BM=x,则AM=AN=2x,MH=x,根据•AN•MH=1,列出方程即可;【解答】解:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,∵AM=AN,在Rt△ABM和Rt△ADN中,,∴△ABM≌△ADN(HL),∴∠BAM=∠DAN,∵∠MAN=30°,∠BAD=90°,∴∠BAM=30°.(2)作MH⊥AN于H.设BM=x,则AM=AN=2x,MH=x,∵•AN•MH=1,∴•2x•x=1,解得x=1或﹣1(舍弃),∴AB=BM=,∴正方形ABCD的边长为.25.阅读下面的材料:2014年,是全面深化改革的起步之年,是实施“十二五”规划的攻坚之年,房山区经济发展稳中有升、社会局面和谐稳定,年初确定的主要任务目标圆满完成:全年地区生产总值和固定资产投资分别为530和505亿元;区域税收完成202.8亿;城乡居民人均可支配收入分别达到3.6万元和1.9万元.2015年,我区较好实现了“十二五”时期经济社会发展目标,开启了房山转型发展的新航程:全年地区生产总值比上年增长7%左右;固定资产投资完成530亿元;区域税收完成247亿元;公共财政预算收入完成50.02亿元;城乡居民人均可支配收入分别增长8%和10%.2016年,发展路径不断完善,房山区全年地区生产总值完成595亿元,固定资产投资完成535亿元,超额实现预期目标,区域税收比上一年增长4.94亿元,城乡居民可支配收入分别增长8.%和8.8%.(摘自《房山区政府工作报告》)根据以上材料解答下列问题:(1)2015年,我区全年地区生产总值为567.1亿元.(2)选择统计图或统计表,将我区2014~2016年全年地区生产总值、固定资产投资和区域税收表示出来.【考点】VE:统计图的选择.【分析】(1)根据增产情况,可得答案;(2)根据每年的生产总值、固定资产投资和区域税收,可得统计表.【解答】解:(1)由题意,得530×(1+7%)=567.1亿元,故答案为:567.1;(2)我区2014~2016年全年地区生产总值、固定资产投资和区域税收统计表.26.小东根据学习函数的经验,对函数y=图象与性质进行了探究,下面是小东的探究过程,请补充完整,并解决相关问题:(1)函数y=的自变量x的取值范围是全体实数;(2)如表是y与x的几组对应值.表中m的值为;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出函数y=的大致图象;(4)结合函数图象,请写出函数y=的一条性质:①图象位于一二象限,②当x=1时,函数由值最大4,③当x<1时,y随x的增大而增大,④当x>1时,y随x的增大而减小,⑤图象与x轴没有交点.(5)解决问题:如果函数y=与直线y=a的交点有2个,那么a的取值范围是0<a<4.【考点】H3:二次函数的性质;H2:二次函数的图象.【分析】(1)根据分母不为零分式有意义,可得答案;(2)根据自变量与函数值得对应关系,可得答案;(3)根据描点法画函数图象,可得答案;(4)根据图象的变化趋势,可得答案;(5)根据图象,可得答案.【解答】解:(1)函数y=的自变量x的取值范围是:全体实数,故答案为:全体实数;(2)把x=4代入y=得,y==,∴m=,故答案为:;(3)如图所示,(4)①图象位于一二象限,②当x=1时,函数由值最大4,③当x<1时,y随x 的增大而增大,④当x>1时,y随x的增大而减小,⑤图象与x轴没有交点.故答案为:①图象位于一二象限,②当x=1时,函数由值最大4,③当x<1时,y随x的增大而增大,④当x>1时,y随x的增大而减小,⑤图象与x轴没有交点.(5)由图象,得0<a<4.故答案为:0<a<4.27.在平面直角坐标系xOy中,直线y=2x﹣3与y轴交于点A,点A与点B关于x轴对称,过点B作y轴的垂线l,直线l与直线y=2x﹣3交于点C.(1)求点C的坐标;(2)如果抛物线y=nx2﹣4nx+5n(n>0)与线段BC有唯一公共点,求n的取值范围.【考点】H3:二次函数的性质;F5:一次函数的性质.【分析】(1)根据题意分别求出点A、B、C的坐标;(2)求得抛物线的对称轴,顶点的坐标;再分类讨论①当n>3时;②当n=3时;③当0<n<3时,抛物线y=nx2﹣4nx+5n(n>0)与线段BC有唯一公共点,求n的取值范围.【解答】解:(1)∵直线y=2x﹣3与y轴交于点A(0,﹣3),∴点A关于x轴的对称点B(0,3),l为直线y=3,∵直线y=2x﹣3与直线l交于点C,∴点C坐标为(3,3),(2)∵抛物线y=nx2﹣4nx+5n(n>0),∴y=nx2﹣4nx+4n+n=n(x﹣2)2+n(n>0)∴抛物线的对称轴为直线x=2,顶点坐标为(2,n),∵点B(0,3),点C(3,3),①当n>3时,抛物线的最小值为n>3,与线段BC无公共点;②当n=3时,抛物线的顶点为(2,3),在线段BC上,此时抛物线与线段BC有一个公共点;③当0<n<3时,抛物线最小值为n,与线段BC有两个公共点;如果抛物线y=n(x﹣2)2+n经过点B,则3=5n,解得n=,由抛物线的对称轴为直线x=2,可知抛物线经过点(4,3),点(4,3)不在线段BC上,此时抛物线与线段BC有一个公共点B;如果抛物线y=n(x﹣2)2+n经过点C,则3=2n,解得n=,由抛物线的对称轴为直线x=2,可知抛物线经过点(1,3),点(1,3)在线段BC上,此时抛物线与线段BC有两个公共点;综上所述,当≤n<或n=3时,抛物线与线段BC有一个公共点.28.在△ABC中,AB=BC,∠B=90°,点D为直线BC上的一个动点(不与B、C 重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.(1)如果点D在线段BC上运动,如图1:①依题意补全图1;②求证:∠BAD=∠EDC;③通过观察、实验,小明得出结论:在点D运动的过程中,总有∠DCE=135°,.小明与同学讨论后,形成了证明这个结论的几种想法:想法一:在AB上取一点F,使得BF=BD,要证∠DCE=135°,只需证△ADF≌△DEC.想法二:以点D为圆心,DC为半径画弧交AC于点F,要证∠DCE=135°,只需证△AFD≌△DCE.想法三:过点E作BC所在直线的垂直线段EF,要证∠DCE=135°,只需证EF=CF.…请你参考上面的想法,证明∠DCE=135°(2)如果点D在线段CB的延长线上运动,利用图2画图分析,∠DCE的度数还是确定的值吗?如果是,直接写出∠DCE的度数;如果不是,说明理由.【考点】RB:几何变换综合题.【分析】(1)①根据题意作出图形即可;②根据余角的性质得到结论;③证法1:如图1,在AB上取点F,使得BF=BD,连接DF,根据等腰直角三角形的性质得到∠BFD=45°,根据全等三角形的性质得到∠DCE=∠AFD=135°;证法2:以D为圆心,DC为半径作弧交AC于点F,连接DF,根据全等三角形的性质即可得到结论;证法3:过点E作EF⊥BC交BC的延长线于点F,根据全等三角形的性质即可得到结论;(2)过E作EF⊥DC于F,根据全等三角形的性质得到DB=EF,AB=DF=BC,根据线段的和差得到FC=EF,于是得到结论.【解答】解:(1)①如图①所示;②证明:∵∠B=90°,∴∠BAD+∠BDA=90°,∵∠ADE=90°,点D在线段BC上,∴∠BAD+∠EDC=90°,∴∠BAD=∠EDC;②证法1:如图1,在AB上取点F,使得BF=BD,连接DF,∵BF=BD,∠B=90°,∴∠BFD=45°,∴∠AFD=135°,∵BA=BC,∴AF=CD,在△ADF和△DEC中,,∴△ADF≌△DEC,∴∠DCE=∠AFD=135°;证法2:以D为圆心,DC为半径作弧交AC于点F,连接DF,∴DC=DF,∠DFC=∠DCF,∵∠B=90°,AB=BC,∴∠ACB=45°,∠DFC=45°,∴∠DFC=90°,∠AFD=135°,∵∠ADE=∠FDC=90°,∴∠ADF=∠EDC,在△ADF≌△CDE中,,∴△ADF≌△CDE,∴∠AFD=∠DCE=135°;证法3:过点E作EF⊥BC交BC的延长线于点F,∴∠EFD=90°,∵∠B=90°,∴∠EFD=∠B,在△ABD和△DFE中,,∴△ABD≌△DFE,∴AB=DF,BD=EF,∵AB=BC,∴BC=DF,BC﹣DC=DF﹣DC,即BD=CF,∴EF=CF,∵∠EFC=90°,∴∠ECF=45°,∠DCE=135°;(2)解:∠DCE=45°,理由:过E作EF⊥DC于F,∵∠ABD=90°,∴∠EDF=∠DAB=90°﹣∠ADB,在△ABD和△DFE中,,∴△ABD≌△DFE,∴DB=EF,AB=DF=BC,。
1、(2017年西城一模)2.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是(A) 0a b += (B)0a b -= (C) a b < (D)0ab > 2.1(2017年通州一模)1.如图所示,用直尺度量线段AB ,可以读出AB 的长度为A .6cmB .7cmC .9cmD .10cm2.2(2017年通州一模)2.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则这四个数中,相反数是正数的为A .aB .bC .cD .d3、(2017年房山一模)1. 实数a 、b 、c 、d 在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是A . aB . bC .cD . d 4、(2017年平谷一模)2.把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A ,则点A 对应的数是A .1 B.. D .25、(2017年丰台一模)2.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是A .b a >B .a b <C .a a <-D .a b <-6、(2017年海淀一模)8.如图,数轴上A ,B 两点所表示的数互为倒数....,则关于原点的说法正确的是A .一定在点A 的左侧B .一定与线段AB 的中点重合C .可能在点B 的右侧D .一定与点A 或点B 重合7、(2017年门头沟一模)2.如图,在数轴上有A 、B 、C 、D 、E两个点所表示的整数之间,这两个整数所对应的点是A .点A 和点B B .点B 和点C C .点C 和点D D .点D 和点E8、(2017年东城一模)2.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是A .a b <B .a b >-C .b a >D .2a >-9.1(2017年顺义一模)2.9的算术平方根是A .3B .3-C .3±D .99.2(2017年顺义一模)5.实数a ,b ,c ,d 在数轴上对应点的位置如图所示,若实数b , d 互为相反数,则这四个实数中,绝对值最小的是A .aB .bC .cD .d10、(2017年石景山一模)1.实数a ,b ,c 在数轴上的对应点的位置如图所示,则a 的相反数是E D C B A0–1–2–3–41234a c bA B–1–2–3123D C B A 0A .a B .b C .b D .c11、(2017年朝阳一模)1.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是A .aB .bC .cD .d12.1(2017年怀柔一模)1.如图所示,用刻度尺度量线段AB,可以读出线段AB 的长度为(A) 5.2cm(B) 5.4cm(C) 6.2cm(D) 6.4cm12.2(2017年怀柔一模)3.数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的两个点是(A) 点B 与点C (B) 点A 与点C(C) 点A 与点D (D)点B 与点D13、(2017年燕山一模)2.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,其中互为相反数的两个数是A.a 和dB .a 和cC .b 和dD .b 和c310-3c x。
第1题图主视图俯视图2017年房山区初中毕业会考试卷一. 选择题(本题共30分,每小题3分):下列各题均有四个选项,其中只有一个..是符合题意的. 1. 实数a 、b 、c 、d 在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是 A. a B. b C.c D. d2. 下列图案是轴对称图形的是A. B. C. D.3. 北京地铁燕房线,是北京地铁房山线的西延线,现正在紧张施工,通车后将是中国大陆第二条全自动无人驾驶线路. 预测初期客流量日均132300人次,将 132300用科学记数法表示应为 A .1.323×105B .1.323×104C .1.3×105D .1.323×1064. 如图,直线a ∥b ,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果∠1=55°,那么∠2等于A. 65°B.55°C.45°D. 35°5. 如图,A ,B ,C ,D 是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是A. B. C.D.6. 一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,从这个盒子中随机摸出一个球,摸到红球的概率为xyxyyOOOxyOyOx yyOOA .B .C .D .第7题图CBA东0°330°300°270°240°210°180°150°120°90°60°30°54321A.152 B.31 C.158 D.217. 雷达二维平面定位的主要原理是:测量目标的两个信息——距离 和角度,目标的表示方法为()αγ,,其中: γ表示目标与探测器的距离;α表示以正东为始边,逆时针旋转的角度.如图,雷达探测器显示在点A ,B ,C 处有目标出现,其中目标A 的位置表示为(5,30°) ,目标B 的位置表示为B (4,150°). 用这种方法表示目标C 的位置,正确的是 A. (-3,300°) B. (3,60°) C. (3,300°) D. (-3,60°)8. 2022年将在北京—张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某校开设了冰球选修课,12名同学被分成甲、乙两组进行训练,他们的身高(单位:cm )如下表所示:队员1 队员2 队员3 队员4 队员5 队员6 甲组 176 177 175 176 177 175 乙组178175170174183176设两队队员身高的平均数依次为甲x ,乙x ,方差依次为2甲s ,2乙s ,下列关系中完全正确的是A .甲x =乙x ,2甲s <2乙s B .甲x =乙x ,2甲s >2乙s C .甲x <乙x ,2甲s <2乙sD .甲x >乙x ,2甲s >2乙s9.在同一平面直角坐标系中,正确表示函数()0≠+=k k kx y 与()0≠=k xky 图象的是yxO第10题图2第10题图1203HGFE D CBA 第15题图313.5206.7139.69256.936.723.42016201520142013201220112010年份(年)业务量(亿件)22032030028026024020018016014012010080604020第13题图ba nm ABC第14题图10. 如图1,已知点E ,F ,G ,H 是矩形ABCD 各边的中点,AB=6,BD=8.动点M 从点E 出发,沿E →F →G →H →E 匀速运动,设点M 运动的路程为x ,点M 到矩形的某一个顶点的距离为y ,如果表示y 关于x 函数关系的图象如图2所示,那么矩形的这个顶点是 A. 点A B. 点B C. 点C D. 点D二.填空题(本题共18分,每小题3分)11. 如果二次根式5-x 有意义,那么x 的取值范围是 . 12. 分解因式:1822-m = .13. 右图中的四边形均为矩形.根据图形,利用图中的字母,写出一个正确的等式: .14.《九章算术》是我国古代最重要的数学著作之一,在 “勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者 高几何?”翻译成数学问题是: 如图所示,△ABC 中,∠ACB =90°,AC+AB =10,BC =3,求AC 的长. 如果设AC =x ,可列出的方程为 .15. 中国国家邮政局公布的数据显示, 2016年中国快递业务量突破313.5亿件,同比增长51.7%,快递业务量位居世界第一. 业 内人士表示,快递业务连续6年保持50%以上的高速增长,已 成为中国经济的一匹“黑马”,未来中国快递业务仍将保持快 速增长势头. 右图是根据相关数据绘制的统计图,请你预估2017年全国快递的业务量大约为 (精确到0.1)亿件.16.在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l 及其外一点A .求作:l 的平行线,使它经过点A .A小云的作法如下:小云作图的依据是 .三.解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程。
2015-2016学年北京市房山区初三一模数学试卷(WORD版含答案)房山区2016年初三数学综合练习(一)一、选择题(本大题共30分,每小题3分):1.为了减少燃煤对大气的污染,北京实施煤改电工程.每年冬季采暖季期间可压减燃煤约608000吨,将608000用科学记数法表示应为A.60.810B.6.0810C. 0.60810D. 6.08102.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是4465 A-4A.点A B0C123456D.点D -3-2-1B.点B C.点C3.有五张形状、大小、质地都相同的卡片,这些卡片上面分别画有下列图形:①正方形;②等边三角形;③平行四边形;④等腰三角形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一张,抽出的纸片正面图形是轴对称图形,但不是中心对称图形的概率是 A. B. 15234 C. D. 5554题图4.如图,在△ABC中,∠C=90°,点D在AC边上,DE∥AB,如果∠ADE=46°,那么∠B等于A.34° B.54° C.46° D.44°5.象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种。
由于用具简单,趣味性强,成为流行极为广泛的棋艺活动。
如图是一方的棋盘,如果“帅”的坐标是(0,1),“卒”的坐标是(2,2),那么“马”的坐标是A.(-2,1) B.(2,-2) C.(-2,2)D.(2,2) B6.为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A,再在河的这一边选点B和点C,使得AB⊥BC,然后再在河岸上选点E,使得EC⊥BC,设BC与AE交于点D,•如图所示,测得BD=120米,DC=60米,EC=50米,那么这条河的大致宽度是A.75米 B.25米 C.100米 D. 120米7. 在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的A. 中位数B. 众数C.平均数D. 方差8. 下列几何体中,主视图相同的是A.①② B.①④ C.①③ D.②④9.如图,将△ABC绕点C按顺时针旋转60°得到△A′B′C,已知AC=6,BC=4,则线段AB扫过的图形的面积为 A. 8210π B. π C.6π D. π 33310.如图,在正方形ABCD中,AB=3cm,动点M自点A出发沿AB方向以每秒1厘米的速度运动,同时动点N自点A出发沿折线AD—DC—CB以每秒3厘米的速度运动,到达点B时运动同时停止.设△AMN的面积为y(厘米),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是二、填空题(本大题共18分,每小题3分):11. 分解因式:a3a=________________.12.已知反比例函数的图象经过A(2,-3),那么此反比例函数的关系式为______.13. 2016年3月12日“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,求这两种树苗的进价分别是多少元.如果设每棵柏树苗的进价是x元,那么可列方程为______________.14.关于x的一元二次方程mx+4x+1=0有两个实数根,那么m的取值范围是 .15. 二次函数y=ax+bx+c(a≠0)图象经过A(-1,m),B(2,m).写出一组满足条件的a、b的值:a=_____,b=______.16.如图,已知∠AOB.小明按如下步骤作图:① 以点O为圆心,任意长为半径画弧,交OA于点D,交OB于点E.222DCNAMB② 分别以D,E为圆心,大于③ 画射线OC. 1DE长为半径画弧,在∠AOB的内部两弧交于点C. 2所以射线OC为所求∠AOB的平分线.根据上述作图步骤,回答下列问题:(1)写出一个正确的结论:________________________.(2)如果在OC上任取一点M,那么点M到OA、OB的距离相等.依据是:_______________________________________________________.三、解答题(本大题共72分,其中第17—26题,每小题5分,第27题7分,第28题7分,第29题8分):17. 计算: 3tan30+(2016-)13().18.已知3a4a70,求代数式(2a1)2(a b)(a b)b2的值.19. 解分式方程:20.已知:如图,在△ABC中,∠ABC = 90°,BD为AC边的中线,过点C 作CE∥AB与BD延长线交于点E.求证:∠A =∠E.21.列方程(组)解应用题:为提高饮用水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价为每台150元,B型号家用净水器进价为每台350元,购进两种型号的家用净水器共用去36000元.求A、B两种型号家用净水器各购进了多少台.BE20121x221. xx 222. 如图,在ABCD中,E为BC中点,过点E作EG AB 于G,连结DG,延长DC,交GE的延长线于点H.已知BC10,GDH45,DG求 CD的长.23 .如图,在平面直角坐标系中,点A(2,0),B(0,3),C(0,2),点D在第二象限,且△AOB≌△OCD.(1) 请在图中画出△OCD,并直接写出点D的坐标; (2) 点P在直线AC上,且△PC D是等腰直角三角形.求点P的坐标.24.如图,AB为⊙O的直径,点C在⊙O上,且∠CAB=30°,点D为弧AB的中点, AC=求CD的长.xAB25. “PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,也称可入肺颗粒物.公众对于大气环境质量越来越关注,某市为了了解市民对于“PM 2.5浓度升高时,对于户外活动的影响”的态度,随机抽取了部分市民进行调查.根据调查的相关数据,绘制的统计图表如下:PM2.5浓度升高时对于户外活动公众的态度的扇形统计图2%6%30% BPM2.5浓度升高时对于户外活动公众的态度的条形统计图D42% C根据以上信息解答下列问题:(1)直接写出统计表中m的值;(2)根据以上信息,请补全条形统计图;(3)如果该市约有市民400万人,根据上述信息,请你估计一下持有“影响很大,尽可能不去户外活动”这种态度的约有多少万人.26.如图,在平面直角坐标系xOy中,双曲线y1(1)当x 时,y1>0;2 x(2)直线y2xb,当b线有唯一公共点,问:b 时,直线与双曲线有两个公共点;(3)如果直线y2x b与双曲线y1交于A、xB两点,且点A的坐标为(1,2),点B的纵坐标为1.设E为线段AB的中点,过点E作x轴的垂线EF,交双曲线于点F.求线段EF的长.27. 如图,二次函数y x2bx c的图象(抛物线)与x轴交于A(1,0), 且当x0和x2时所对应的函数值相等.(1)求此二次函数的表达式;(2)设抛物线与x轴的另一交点为点B,与y轴交于点C,在这条抛物线的对称轴上是否存在点D,使得△DAC的周长最小?如果存在,求出D点的坐标;如果不存在,请说明理由.(3)设点M在第二象限,且在抛物线上,如果△MBC的面积最大,求此时点M的坐标及△MBC的面积.28.如图1,在四边形ABCD中,BA=BC,∠ABC=60°,∠ADC=30°,连接对角线BD.(1)将线段CD绕点C顺时针旋转60°得到线段CE,连接AE.①依题意补全图1;②试判断AE与BD的数量关系,并证明你的结论;(2)在(1)的条件下,直接写出线段DA、DB和DC之间的数量关系;(3)如图2,F是对角线BD上一点,且满足∠AFC=150°,连接FA和FC,探究线段FA、FB和FC之间的数量关系,并证明.(图1)(图2)29.在平面直角坐标系xoy中,对于任意三点A,B,C给出如下定义:如果正方形的任何一条边均与某条坐标轴平行,且A,B,C三点都在正方形的内部或边界上,那么称该正方形为点A,B,C的外延正方形,在点A,B,C所有的外延正方形中,面积最小的正方形称为点A,B,C的最佳外延正方形.例如,图1中的正方形A1B1C1D1,A2B2C2D2 ,A3B3CD3都是点A,B,C的外延正方形,正方形A3B3CD3是点A,B,C的最佳外延正方形.(图1)(图2)(1)如图1,点A(-1,0),B(2,4),C(0,t)(t为整数).① 如果t=3,则点A,B,C的最佳外延正方形的面积是;② 如果点A,B,C的最佳外延正方形的面积是25,且使点C在最佳外延正方形的一边上,请写出一个符合题意的t值;(图3 )(图4)(2)如图3,已知点M(3,0),N(0,4),P(x,y)是抛物线y=x2-2x-3上一点,求点M,N,P的最佳外延正方形的面积以及点P的横坐标x的取值范围;(3)如图4,已知点E(m,n)在函数y6(x>0)的图象上,且点D的坐标为(1,1),设点O,xD,E的最佳外延正方形的边长为a,请直接写出a的取值范围.房山区2016年初三数学综合练习(一)参考答案及评分标准三、选择题(本大题共30分,每小题3分):四、填空题(本大题共18分,每小题3分):11.a a1a1. 12. y= 6. 13. 200x1202x5. x14.m4且m0. 15. a=1,b=-1. 答案不唯一(全对给3分).16. (1) OD=OE或DC=EC或OC平分∠AOB等等均可;--------------------------1分(2)角平分线上的点到角两边距离相等. --------------------------3分三、解答题(本大题共72分,其中第17—26题,每小题5分,第27题7分,第28题7分,第29题8分):17.解: 3tan30+(2016-)1() 012 1=33131 2 ----------------------------4分 3=2 2 ----------------------------5分18.解:法1:(2a1)2(a b)(a b)b2=4a4a1(a b) b ---------------------------2分=4a4a1a b b=3a4a 1 ----------------------------3分∵3a4a70,∴3a4a7, -----------------------------4分当3a4a7时原式=71=8 --------------------------5分法2:(2a1)(a b)(a b) b=4a4a1(a b) b ---------------------------2分=4a4a1a b b=3a4a 1 ----------------------------3分22222222222222222222222∵3a4a70,∴a11,a227 -----------------------------4分 3当a11时,原式=8 当a219.解: (x2)(x2)x(x2)2x ---------------------------1分 7时,原式=8 ------------------------------5分 3x24x22x2x ----------------------------2分解得:x 1 ------------------------------------------------3分经检验x1是原方程的解. ------------------------------------------------4分∴原方程的解是x 1. -------------------------------------------------5分20.证明:法1:∵在△ABC中, ∠ABC = 90°,BD为AC边的中线.∴BD = AD = 1AC. ---------------------------------------------1分 2∴∠A= ∠ABD, ---------------------------------------------3分∵CE∥AB ,∴∠ABD =∠E. --------------------------------------------4分∴∠A=∠E. ---------------------------------------------5分法2:∵CE∥AB ,∴∠ABC +∠ECB =180°. ---------------------------------------------1分∵∠ABC = 90°,∴∠ECB = 90°. ---------------------------------------------2分∴∠A +∠ACB =90°,∠E +∠EBC= 90°.∵在△ABC中, ∠ABC = 90°,BD为AC边的中线,∴CD = BD = 1AC. ---------------------------------------------3分 2∴∠ACB = ∠EBC, -----------------------------------------------4分∴∠A=∠E. ------------------------------------------------5分法3:∵CE∥AB ,∴∠ABC +∠ECB =180°. ---------------------------------------------1分∵∠ABC = 90°,∴∠ECB = 90°. ----------------------------------------------2分∴∠ABC =∠ECB.∵在△ABC中, ∠ABC = 90°,BD为AC边的中线,∴CD = BD = 1AC. --------------------------------------------3分 2∴∠ACB = ∠EBC, --------------------------------------------4分∴△ABC∽△ECB.∴∠A=∠E. --------------------------------------------5分法4:∵在△ABC中, ∠ABC = 90°,BD为AC边的中线,∴CD = BD = 1AC. ---------------------------------------------1分 2∴∠DCB = ∠DBC, -------------------------------------------2分∵CE∥AB ,∴∠ABC +∠ECB =180°. ----------------------------------------------3分∵∠ABC = 90°,∴∠ECB =90°.∴∠ABC =∠ECB . ----------------------------------------------4分∵BC=CB∴△ABC ≌△ECB.∴∠A=∠E. ----------------------------------------------5分法5:∵在△ABC中, ∠ABC = 90°,BD为AC边的中线,∴BD = CD = 1AC. ---------------------------------------------1分 2∴∠DBC= ∠DCB, ---------------------------------------------2分∵CE∥AB ,∴∠ABC +∠ECB =180°. --------------------------------------------3分∵∠ABC = 90°,∴∠ECB =90°.∴∠ABC =∠ECB . ---------------------------------------------4分∴∠ABC-∠DBC =∠ECB-∠DCB .即:∠ABD =∠ECD∵∠ADB =∠EDC .∴∠A=∠E. --------------------------------------------5分21.解:设购进A型号净水器每台x元,B型号净水器每台y元,-----------------------1分根据题意,得:解得: ---------------------------3分x100 ----------------------------5分y60答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.22.解:∵四边形ABCD是平行四边形∴AB∥CD,∵EG ⊥AB于点G,∴BGE EHC90.在△DHG中,GHD90,GDH45,DG∴DH GH8. -------------------------1分∵E为BC中点,BC10,∴BE EC5. ------------------------2分∵BEG CEH∴△BEG≌△CEH.∴GE HE12GH4. ------------------------3分在△EHC中,H90,CE5,EH4,∴CH3. -----------------------4分∴CD 5 -------------------------5分23.(1)图1,正确画出△COD ---------------------------1分x点D的坐标为:D(-3,2). -----------------------2分 (2) 由OC =OA=2,∠AOC=90°,∴∠OAC=45°.∵A(2,0),C(0,2)∴过A、C两点的一次函数的关系式为:y x 2 ------------------3分① 当CD为直角边时,如图2,此时,点P的横坐标为-3.∴P(-3,5). --------------------------------------4分② 当CD为斜边时,如图,此时3,点P的横坐标为 32. ∴P(3722). ---------------------------------------5分∴在直线AC 上,使△PCD是等腰直角三角形的点P坐标为:(-3,5)或(32,72).(图1)(图2)(图3)24.解法1:连结BC∵AB为⊙O的直径,点C在⊙O上,∴∠ACB =90°. -------------1分∵∠CAB =30°,∴∠D =60°. ---------------2分∵点D为弧AB的中点,∴∠ACD =45°.过点A作AE⊥CD,∵AC=AB∴AE=CE =分∴DE =分∴CD =分解法2:∵AB为⊙O的直径,点D为弧AB的中点,∴∠DAB =∠ACD =45°. ------------1分∵∠CAB =30°,∴弧BC=60°,弧AC =120°.∴∠ADC =60°. ------------------2分过点A作AE⊥CD,∵AB∴AE=CE =分∴DE =分∴CD =分25. 解:(1)20%; ---------------------------------- 1分(2)如图-----------------------3分(3)400×20%=80(万人). -----------------------5分26.解:(1)x>0 -----------1分(2)当b<22或b>22,-----3分(3)∵点B的纵坐标为1,∴点B的横坐标为2,∵点E为AB中点,33∴点E坐标为(,) ---------4分2234∴点F的坐标为(,)23341∴EF= -------------5分23627.解:(1)∵二次函数y x2bx c,当x0和x2时所对应的函数值相等,∴二次函数y x2bx c的图象的对称轴是直线x1.∵二次函数y x2bx c的图象经过点A(1,0),1b c0 b∴ ----------------------------------------1分1 2解得b 2c 3∴二次函数的表达式为:y x22x3. ---------------------------------------2分(2)存在由题知A、B两点关于抛物线的对称轴x=﹣1∴连接BC,与x=﹣1的交于点 D,此时△DAC长最小 ----------------------3分∵y x22x 3∴C的坐标为:(0,3)直线BC解析式为:y=x+3 --------------------4分∴D(﹣1,2); ---------- 5分(3)设M点(x,x2x3)(﹣3<x<0)作过点M作ME⊥x轴于点E,则E(x,0) ∵S△MBC=S四边形BMCO﹣S△BOC=S四边形BMCO﹣29, 2S四边形BMCO=S△BME+S四边形MEOC11BE ME OE(ME OC) 221122=(x+3)(x2x3)+(﹣x)(x2x3+3) 2233927=x2228∵要使△MBC的面积最大,就要使四边形BMCO面积最大23927时,四边形BMCO在最大面积= 228927927∴△BMC最大面积= --------------------------------6分2828315当x=-时,y x22x3=24315∴点M坐标为(-,) --------------------------------7分24当x=-28. (1)①补全图形,如图1 ---------------------------------1分②判断: AE=BD ---------------------------------2分证明:如图2,连接AC∵BA=BC,且∠ABC=60° ∴△ABC是等边三角形∴∠ACB=60°,且CA=CB∵将线段CD绕点C顺时针旋转60°得到线段CE ∴CD=CE,且∠DCE=60° ∴∠BCD=∠ACE∴△BCD≌△ACE(SAS)B∴AE=BD ------------------------------3分(2)判断:DA DC DB ------------------------4分(3)判断:FA FC FB -------------------------5分证明:如图3,连接AC∵BA=BC,且∠ABC=60° ∴△ABC是等边三角形∴∠ACB=60°,且CA=CB将线段CF绕点C顺时针旋转60°得到线段CE,连接EF、EA222222B∴CE=CF,且∠FCE=60°,∴△CEF是等边三角形∴∠CFE=60°,且FE=FC ∴∠BCF=∠ACE∴△BCF≌△ACE(SAS)∴AE=BF ---------------------------------6分∵∠AFC=150°, ∠CFE=60° ∴∠AFE=90°在Rt△AEF中,有:FA FE AE∴FA FC FB. ---------------------------------7分29.解:(1)① 16 ; ---------------------------------2分② 5或-1 ; ----------------------------------3分(2)以ON为一边在第一象限作正方形OKIN,如图3①点M在正方形OKIN的边界上,抛物线一部分在正方形OKIN内,P是抛物线上一点,∴正方形OKIN是点M,N,P的一个面积最小的最佳外延正方形∴点M,N,P的最佳外延正方形的面积的最小值是16;∴点M,N,P的最佳外延正方形的面积S的取值范围是:S16 -----------------5分满足条件的点P的横坐标x的取值范围是x 3 ------------------------------6分BC28-图322D2222(3)a 6 ----------------------------------8分。
2017年北京中考一模数学考试各区汇总-类第19题(简单证明和推导题型) (11区) 1.(5分)如图,在△ABC 中,∠B =55°,∠C =30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,求∠BAD 的度数.2.(5分)如图,四边形ABCD 中,AB ∥DC ,∠B = 90º,F 为DC 上一点,且AB =FC ,E 为AD 上一点,EC 交AF 于点G ,EA = EG .求证:ED = EC .G F E D CB A3.(5分)如图,在矩形ABCD 中,点E 是BC 上一点,且DE =DA ,AF ⊥DE 于F ,求证:AF=CD .4.(5分)已知:如图,△ABC 是等边三角形,BD ⊥AC 于D ,E 是BC 延长线上的一点,且∠CED =30º.求证:BD =DE.E DC B A5.(5分)已知:在△ABC 中,AD 是BC 边上的中线,点E 是AD 的中点;过点A 作AF∥BC 交BE 的延长线于F ,连接CF .(1)求证:四边形ADCF 是平行四边形;(2) 填空:①如果AB =AC ,四边形ADCF 是形;②如果∠BAC =90°,四边形ADCF 是形;.6.(5分)如图,四边形ABCD 中,AB ∥DC ,AE ,DF 分别是∠BAD ,∠ADC的平分线,AE ,DF 交于点O .求证:AE ⊥DF .FED CB AB7.(5分)如图,在△ABC 中,D ,E 是BC 边上两点,AD=AE ,BAD CAE ∠=∠. 求证:AB=AC .8.(5分)如图,在四边形ABCD 中,AB ∥DC ,E 是CB 的中点,AE 的延长线与DC 的延长线相交于点F .求证:AB FC =.B D EC A9.(5分)如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.10.(5分)如图,在矩形ABCD中,连接对角线AC,BD,延长BC至点E,使BC=CE,连接DE.求证:DE=AC.B11.(5分)如图,在△ABC 中,BD 是∠ABC 的平分线,EF 垂直平分BD . 求证:ABD BDF ∠=∠.12.(5分)如图,□ABCD 中,BE ⊥CD 于E ,CE =DE .求证:∠A=∠ABD .A B C DEB。
2017年北京房山区初三一模数学试卷一、选择题(共10小题;共50分)1. 实数,,,在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是A. B. C. D.2. 下列图案是轴对称图形的是A. B.C. D.3. 北京地铁燕房线,是北京地铁房山线的西延线,现正在紧张施工,通车后将是中国大陆第二条全自动无人驾驶线路.预测初期客流量日均人次,将用科学记数法表示应为A. B. C. D.4. 如图,直线,三角板的直角顶点放在直线上,两直角边与直线相交,如果,那么等于A. B. C. D.5. 如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是A. B.C. D.6. 一个不透明的盒子中装有个白球,个红球和个黄球,这些球除颜色外,没有任何其他区别,从这个盒子中随机摸出一个球,摸到红球的概率为A. B. C. D.7. 雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为,其中:表示目标与探测器的距离;表示以正东为始边,逆时针旋转的角度.如图,雷达探测器显示在点,,处有目标出现,其中目标的位置表示为,目标的位置表示为.用这种方法表示目标的位置,正确的是A. B. C. D.8. 年将在北京—张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某校开设了冰球选修课,名同学被分成甲、乙两组进行训练,他们的身高(单位:)如下表所示:队员队员队员队员队员队员甲组乙组设两队队员身高的平均数依次为甲,乙,方差依次为甲,乙,下列关系中完全正确的是A. 甲乙,甲乙B. 甲乙,甲乙C. 甲乙,甲乙D. 甲乙,甲乙9. 在同一平面直角坐标系中,正确表示函数与图象的是A. B.C. D.10. 如图,已知点,,,是矩形各边的中点,,.动点从点出发,沿匀速运动,设点运动的路程为,点到矩形的某一个顶点的距离为,如果表示关于函数关系的图象如图所示,那么矩形的这个顶点是A. 点B. 点C. 点D. 点二、填空题(共6小题;共30分)11. 如果二次根式有意义,那么的取值范围是.12. 分解因式:.13. 图中的四边形均为矩形.根据图形,利用图中的字母,写出一个正确的等式:.14. 《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,中,,,,求的长.如果设,可列出的方程为.15. 中国国家邮政局公布的数据显示,年中国快递业务量突破亿件,同比增长,快递业务量位居世界第一.业内人士表示,快递业务连续年保持以上的高速增长,已成为中国经济的一匹“黑马”,未来中国快递业务仍将保持快速增长势头.如图是根据相关数据绘制的统计图,请你预估年全国快递的业务量大约为(精确到)亿件.16. 在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线及其外一点.求作:的平行线,使它经过点.小云的作法如下:()在直线上任取一点;()以为圆心,长为半径作弧,交直线于点;()分别以,为圆心,长为半径作弧,两弧相交于点;()作直线.直线即为所求.小云作图的依据是.三、解答题(共13小题;共169分)17. 计算:.18. 已知:如图,是等边三角形,于点,是延长线上的一点,且.求证:.19. 解不等式组:20. 当时,求的值.21. 已知:在中,是边上的中线,点是的中点;过点作交的延长线于点,连接.(1)求证:四边形是平行四边形;(2)填空:①如果,四边形是形;②如果,四边形是形.22. 已知:如图,点,,三点在上,平分,交于点,交于点,过点作直线,连接.(1)求证:直线是的切线;(2)如果,,写出求的长的思路.23. 如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于,两点,点在第一象限,点的坐标为,直线与轴交于点,为轴正半轴上一点,且.(1)求点的坐标;(2)求一次函数的表达式;(3)求的面积.24. 如图,,分别是正方形的边,上的点.已知:,,的面积为.(1)求的度数;(2)求正方形的边长.25. 阅读下面的材料:年,是全面深化改革的起步之年,是实施“十二五”规划的攻坚之年.房山区经济发展稳中有升、社会局面和谐稳定,年初确定的主要任务目标圆满完成:全年地区生产总值和全社会固定资产投资分别为和亿元;区域税收完成亿元;城乡居民人均可支配收入分别达到万元和万元.年,我区开启了转型发展的崭新航程:全年地区生产总值比上年增长左右;全社会固定资产投资完成亿元;区域税收完成亿元;城乡居民人均可支配收入分别增长和.年,发展路径不断完善,房山区全年地区生产总值完成亿元,全社会固定资产投资完成亿元,超额实现预期目标,区域税收比上一年增长亿元,城乡居民可支配收入分别增长和.(摘自《房山区政府工作报告》)根据以上材料解答下列问题:(1)年,我区全年地区生产总值为亿元;(2)选择统计图或统计表,将房山区年全年地区生产总值、固定资产投资和区域税收表示出来.26. 小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:(1)函数的自变量的取值范围是;(2)下表是与的几组对应值.表中的值为;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出函数的大致图象;(4)结合函数图象,请写出函数的一条性质:.(5)解决问题:如果函数与直线的交点有个,那么的取值范围是.27. 在平面直角坐标系中,直线与轴交于点,点与点关于轴对称,过点作轴的垂线,直线与直线交于点.(1)求点的坐标;(2)如果抛物线与线段有唯一公共点,求的取值范围.28. 在中,,,点为直线上一个动点(不与,重合),连接,将线段绕点按顺时针方向旋转,使点旋转到点,连接.(1)如果点在线段上运动,如图:①依题意补全图;②求证:;③通过观察、实验,小明得出结论:在点运动的过程中,总有.小明与同学讨论后,形成了证明这个结论的几种想法:想法一:在上取一点,使得,要证,只需证.想法二:以点为圆心,为半径画弧交于点.要证,只需证.想法三:过点作所在直线的垂线段,要证,只需证.请你参考上面的想法,证明;(2)如果点在线段的延长线上运动,利用图画图分析,的度数还是确定的值吗?如果是,直接写出的度数;如果不是,说明你的理由.29. 在平面直角坐标系中,对于点,如果点的纵坐标满足当时,那么称点为点的“关联点”.当时(1)请直接写出点的“关联点”的坐标;(2)如果点在函数的图象上,其“关联点”与点重合,求点的坐标;(3)如果点的“关联点”在函数的图象上,当时,求线段的最大值.答案第一部分1. C2. A3. A4. D5. D6. B7. C8. A9. A 10. B第二部分11.12.13. (答案不唯一)14.15. (答案不唯一)16. 四条边相等的四边形是菱形;菱形的对边平行;两点确定一条直线第三部分17. 原式18. 如图,是等边三角形,,,平分,.,..19.解不等式得:解不等式得:原不等式组的解集是原式20.,,原式.21. (1),,,点是的中点,,在和中,,,是边上的中线,,,又,四边形是平行四边形.(2)矩;菱22. (1)连接,,,,平分,,,,又点为圆心,垂直平分,即.直线,直线,直线与相切.(2)根据等弧()所对的圆周角相等可证,根据,可证,根据相似三角形对应边成比例可得,将,代入即可求.23. (1)过点作轴于点,在中,,可设,,即,其中.点在的图象上,解得(舍负),点坐标为.(2)点在的图象上,,即.的图象经过点,,解得一次函数表达式为.(3)在中令,得,即,.24. (1)四边形是正方形,.在和中..又,,.(2)如图,过点作于点.,,在中,设,则,,又,,,在中,..解得:(舍负)..答:正方形的边长为.25. (1)(2)26. (1)全体实数(2)(3)如图所示.(4)以下情况均给分:①图象位于第一、二象限;②当时,函数有最大值;③图象有最高点;④时,随增大而减小;⑤时,随增大而增大;⑥图象与轴没有交点;⑦图象与轴有一个交点;⑧图象关于直线对称.(5)27. (1)当时,,直线与轴交于点,点关于轴的对称点为,直线为直线,直线与直线交于点,当时,,点的坐标为.(2)抛物线,,抛物线的对称轴为直线,顶点坐标为,点,点,①当时,抛物线最小值为,与线段无公共点;②当时,抛物线顶点为,在线段上,此时抛物线与线段有一个公共点;③当时,抛物线最小值为,与直线有两个交点,如果抛物线经过点,则,解得,由抛物线的对称轴为直线,可知抛物线经过点,点不在线段上,此时抛物线与线段有一个公共点,如果抛物线经过点,则,解得,由抛物线的对称轴为直线,可知抛物线经过点,点在线段上,此时抛物线与线段有两个公共点,综上所述,当或时,抛物线与线段有一个公共点.28. (1)①补全图形,如图;②,,,点在线段上,,;③证法:在上取点,使得,连接,如图,,,,,,,,在和中,,.【解析】③证法:以点为圆心,为半径作弧交于点,连接,如图,,,,,,,,,,,在和中,,.③证法:过点作交延长线于点.,,,在和中,,,,,,,即,,,,.(2)如图,的度数还是确定的值,.29. (1)(2)点在函数的图象上,点的坐标为,,根据关联点的定义,点的坐标为,点和点重合,解得,点的坐标是.(3)点的关联点是点,由关联点定义可知第一种情况:当时,点的坐标为,点在函数的图象上,,,即,,,①当时,,,当时,线段的最大值是.②当时,,,当时,线段的最大值是;综合①与②,当时线段的最大值是,第二种情况:当时,点的坐标为,点在函数的图象上,即,,,,,,当时,线段的最大值是;综上所述,线段的最大值是.。