2012年华约自主招生全真模拟_数学AAA(含答案以及详解)
- 格式:doc
- 大小:2.14 MB
- 文档页数:29
2010年高水平大学自主选拔学业能力测试(华约)数学部分一、选择题 1.设复数2()1a i w i +=+,其中a 为实数,若w 的实部为2,则w 的虚部为( ) (A )32- (B )12- (C )12 (D )322.设向量,a b ,满足||||1,==⋅=a b a b m ,则||+a tb ()t R ∈的最小值为( ) (A )2 (B(C )1 (D3.已知平面α//平面β,直线,m n αβ⊂⊂,点,,A m B n AB ∈∈与平面α的夹角为4π,AB n ⊥,AB 与m 的夹角为3π,则m 与n 的夹角为( ). (A )n/3 (B )n/4 (C )n/6 (D )n/84.正四棱锥P-ABCD 中,B 1为PB 的中点,D 1为PD 的中点,则两个棱锥A-B 1CD 1与P-ABCD 的体积之比11A B CD P ABCDV V --( ).(A )1:6 (B )1:5 (C )1:4 (D )1:3 5.在ABC ∆中,三边长,,a b c ,满足3a c b +=, 则tantan 22A C的值为( ) (A )15 (B )14 (C )12 (D )236.如图,ABC ∆的两条高线,AD BE 交于H ,其外接圆圆心为O ,过O 作OF 垂直BC 于F ,OH 与AF 相交于G ,则OFG ∆与GAH ∆面积之比为( ) (A )1:4 (B )1:3 (C )2:5 (D )1:27.设()e (0)axf x a =>.过点(,0)P a 且平行于y 轴的直线与曲线:()C y f x =的交点为Q ,曲线C 过点Q 的切线交x 轴于点R ,则PQR ∆的面积的最小值是( )(A )1 (B(C )e2(D )2e 48.设双曲线2212:(2,0)4x y C k a k a -=>>,椭圆2222:14x y C a +=.若2C 的短轴长与1C 的实轴长的比值等于2C 的离心率,则1C 在2C 的一条准线上截得线段的长为( )(A ) (B )2 (C ) (D )49.欲将正六边形的各边和各条对角线都染为n 种颜色之一,使得以正六边形的任何3个顶点作为顶点的三角形有3种不同颜色的边,并且不同的三角形使用不同的3色组合,则n 的最小值为( ) (A )6 (B )7 (C )8 (D )910.设定点A B C D 、、、是以O 点为中心的正四面体的顶点,用σ表示空间以直线OA 为轴满足条件()B C σ=的旋转,用τ表示空间关于OCD 所在平面的镜面反射,设l 为过AB 中点与CD 中点的直线,用ω表示空间以l 为轴的180°旋转.设στ表示变换的复合,先作τ,再作σ。
2012年华约自主招生考试数学试题一、选择题1. 在锐角三角形ABC 中,已知A B C >>,则cos B 取值范围是( )A 、⎛ ⎝⎭B 、12⎛ ⎝⎭C 、()0,1D 、⎫⎪⎪⎝⎭2. 红蓝两色车、马、炮棋子各一枚,将这6枚棋子排成一列,其中每对同色的棋子中,均为红棋在前,蓝棋在后,满足这种条件的不同排列方式共有( )A 、36B 、60C 、90D 、1203. 正四棱锥S -ABCD 中,侧棱底面所成的角为α,侧面与底面所成的二面角为β,侧棱SB 与底面正方形ABCD 对角线所成角为γ,相邻两侧面所成二面角为θ,则四个角大小顺序为( )A 、α<β<θ<γB 、α<β<γ<θC 、α<γ<β<θD 、β<α<γ<θ4. 向量e α≠,1e =,若对t R ∀∈,te e αα-≥+,则( )A 、e α⊥B 、()e αα⊥+C 、()e e α⊥+D 、()()e e αα+⊥-5. 若C ω∈,11ωω-+的实数部为0,求复数11ω+在复平面内对应的点的轨迹( ) A 、一条直线 B 、一条线段 C 、一个圆 D 、一段圆弧6. 椭圆长轴长是4,左顶点在圆22(4)(1)4x y -+-=上,左准线为y 轴,则此椭圆的离心率的范围是( )A 、11,84⎡⎤⎢⎥⎣⎦B 、11,42⎡⎤⎢⎥⎣⎦C 、11,82⎡⎤⎢⎥⎣⎦D 、13,24⎡⎤⎢⎥⎣⎦7. 已知三棱锥S -ABC 中,底面ABC 是正三角形,点A 在侧面SBC 的射影H 是SBC 的垂心,二面角H -AB -C 为30度,且SA =2,则此三棱锥体积为( )A 、12BCD 、348. 已知锐角ABC ∆,BE AC ⊥于E ,CD AB ⊥于D ,25BC =,7CE =,15BD =,BECD H =,连接DE ,以DE 为直径画圆,该圆与AC 交于另一点F ,AF 的长度为( )A 、8B 、9C 、10D 、119. 数列{}n a 的通项公式是22lg 13n a n n ⎛⎫=+ ⎪+⎝⎭,n S 是数列的前n 项和,则lim n n S →∞=( ) A 、0B 、lg 32C 、lg2D 、lg310. 已知610i x -≤≤(1,2,,10i =),10150i i x ==∑,当1021i i x =∑取得最大值时,在i x 这10个数中等于6-的共有( )个A 、1B 、2C 、3D 、4二、解答题 11. 三角形ABC 中,22sin 1cos22A B C +=+, (1)求角C 大小; (2)22222c b a =-,求cos2cos2A B -的值.12. 点P 在y 轴上的投影为H ,若()2,0A -,()2,0B ,22AP BP PH ⋅=.(1)求点P 的轨迹;(2)过B 的直线在x 轴下方交P 点轨迹于M 、N 两点,MN 的中点为R ,求过R 与()0,2Q -的直线斜率的取值范围.13. 系统内每个元件正常工作的概率为p ,若有超过一半的元件正常工作,则系统正常工作.(1)某系统配置21k -有个元件,k 为整数,求系统正常工作的概率k P ,并讨论k P 的单调性;(2)现为改善(1)中性能,拟增加两个元件,试讨论增加两个元件后,能否提高系统可靠性. 14. 已知2()12!!n n x x f x x n =++++(n N *∈),求证:当n 为偶数时,()0n f x =无解;当n 为奇数时,()0n f x =有唯一解且2n n x x +<.15. 乒乓球队有n 个队员,在一次双打集训中,任意两名队员作为队友,恰好只搭档过一次双打比赛,求n的所有可能值并每个给一种比赛方案.16.。
2012年高水平大学自主选拔学业能力测试 全真模拟Advanced Assessment for Admission (AAA )数学一、选择题:本大题共10小题,每小题3分,在每小题给出的四个选项中只有一项是符合题目要求的。
1. 已知P为三角形ABC 内部任一点(不包括边界),且满足()(2)0PB PA PB PA PC -+-=,则△ABC 一定为( )A .直角三角形;B. 等边三角形;C. 等腰直角三角形;D. 等腰三角形2.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P在圆锥底面内(包括圆周)。
若AM ⊥MP ,则P 点形成的轨迹的长度为______A.7 B.72 C. 3 D.323.设有一个体积为54的正四面体,若以它的四个面的中心为顶点做一个四面体,则所作四面体的体积为______ A.1 B. 2 C. 3 D. 44. 计算器上有一个特殊的按键,在计算器上显示正整数n 时按下这个按键,会等可能的将其替换为0~n -1中的任意一个数。
如果初始时显示2011,反复按这个按键使得最终显示0,那么这个过程中,9、99、999都出现的概率是A .B.C.D.5.已知,R αβ∈,直线1sin sin sin cos x y αβαβ+=++与1cos sin cos cos x yαβαβ+=++的交点在直线y x =-上,则cos sin c in s s o ααββ+++= 。
A.0B.1. C-1 D.26.设lg lg lg 111()121418x x xf x =+++++,则1()()_________f x f x+=。
A 1 B 2 C 3 D 4 7. 已知1cos45θ=,则44sin cos θθ+= .A 4/5B 3/5 C1 D -4/58.顶点在同一球面上的正四棱柱ABCD A B C D ''''-中,12AB AA '==,,则A C ,两点间的球面距离为( ) A .π4B .π2C .24π D .22π 9. 在平面直角坐标系内,将适合,3,3,x y x y <<<且使关于t 的方程33421()(3)0x y t x y t x y-+++=-没有实数根的点(,)x y 所成的集合记为N ,则由点集N 所成区域的面积为 。
2012年高中自主招生考试数学模拟试卷3参考答案与试题解析一、选择题:1.(3分)如果a>b,且c为实数,那么下列不等式一定成立的是()A.a c>bc B.a c<bc C.a c2>bc2D.a c2≥bc2考点:不等式的性质.分析:根据不等式的性质分析判断.解答:解:c是正是负无法确定,根据不等式的基本性质,A、B式无法判定;c为实数,则c2≥0,根据不等式两边乘(或除以)同一个正数,不等号的方向不变,所以c 为0时ac2=bc2,c为不等于0的任何实数时,ac2>bc2成立,所以一定成立的是ac2≥bc2;故D成立.故选D.点评:不等式两边乘(或除以)同一个正数,不等号的方向不变.注意实数包括0在内.2.(3分)若n为整数,则能使也为整数的n的个数有()A.1个B.2个C.3个D.4个考点:分式的值;分式的加减法.专题:计算题.分析:原式=1+,则n﹣1的值,一定是±1或±2.就可以求出n的值.解答:解:当n=0时原式等于﹣1;n=2时原式等于3;n=3时原式等于2;n=﹣1时原式等于0.故选D.点评:此题主要考查分式的基本概念和性质,难易程度适中.3.(3分)已知a为实数,则代数式的最小值为()A.0B.3C.D.9考点:二次根式的性质与化简.分析:把被开方数用配方法整理,根据非负数的意义求二次根式的最小值.解答:解:∵原式===∴当(a﹣3)2=0,即a=3时代数式的值最小,为即3故选B.点评:用配方法对多项式变形,根据非负数的意义解题,是常用的方法,需要灵活掌握.4.(3分)抛物线y=2x2是由抛物线y=2(x+1)2+2经过平移得到的,则正确的平移是()A.先向右平移1个单位,再向下平移2个单位B.先向左平移1个单位,再向上平移2个单位C.先向右平移2个单位,再向下平移1个单位D.先向左平移2个单位,再向上平移1个单位考点:二次函数图象与几何变换.分析:只需看顶点坐标是如何平移得到的即可.解答:解:新抛物线y=2x2的顶点坐标为(0,0),原抛物线y=2(x+1)2+2的顶点坐标为(﹣1,2)所以是先向右平移1个单位,再向下平移2个单位得到的.故选A.点评:讨论两个二次函数的图象的平移问题.5.(3分)在平面内有线段AB和直线l,点A、B到直线l的距离分别是4cm、6cm.则线段AB的中点C到直线l的距离是()A.1或5 B.3或5 C.4D.5考点:梯形中位线定理;三角形中位线定理.专题:分类讨论.分析:本题要分两种情况讨论:线段AB分别在直线同侧和异侧.同侧时,只需根据梯形的中位线定理进行计算;异侧时,综合运用梯形的中位线定理和三角形的中位线定理进行计算.解答:解:(1)线段AB在直线l的同侧:∵AN=4,BM=6,AN∥BN∥CD,C为AB的中点,∴CD=(AN+BM)=(4+6)=5(cm);(2)线段AB在直线l的异侧:连接NB,AM.延长CD交AM于E,反向延长CD交BN于F.∵CD⊥NM,C为AB的中点,∴EF为梯形AMBN的中位线.∴EF=(AN+BM)=(4+6)=5.在△ABN中,CF为中位线,∴CF=AN=×4=2.同理,在△AMN中,CD=AN=×4=2.故CD=EF﹣CF﹣ED=5﹣2﹣2=1(cm).故选A.点评:本题涉及到三角形和梯形的中位线定理,在解答时要注意线段AB在直线同侧和异侧两种情况讨论.6.(3分)(2003•泰州)在Rt△ABC的直角边AC边上有一动点P(点P与点A,C不重合),过点P作直线截得的三角形与△ABC相似,满足条件的直线最多有()A.1条B.2条C.3条D.4条考点:相似三角形的判定.专题:动点型.分析:过点P作直线与另一边相交,使所得的三角形与原三角形已经有一个公共角,只要再作一个等于△ABC的另一个角就可以.解答:解:过点P作AB的垂线,或作AC的垂线,作AB的平行线,作∠PDC=∠A.故选D.点评:本题主要考查三角形相似的条件,有两个角相等的三角形相似.7.(3分)如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈考点:弧长的计算;等边三角形的性质.分析:根据圆所走的路程是圆心所走过的路程即等边三角形的周长+三条圆心角是120°的弧长=4C 选择.解答:解:设圆的周长是C,则圆所走的路程是圆心所走过的路程即等边三角形的周长+三条圆心角是120°的弧长=4C,则这个圆共转了4C÷C=4圈.故选A.点评:注意正确分析圆所走过的路程,可以画出圆心所走过的路程.二、填空题:8.(3分)的绝对值是.考点:实数的性质.分析:首先比较跟2的大小关系,然后根据绝对值的代数定义即可求解.解答:解:因为 1.732,所以<0,则的绝对值是2﹣.点评:此题主要考查了实数的绝对值,对绝对值的代数定义应熟记:①正数的绝对值是它本身;②负数的绝对值是它的相反数;③零的绝对值是零.此题的关键是确定是负数.9.(3分)写出一条经过第一、二、四象限,且过点(﹣1,3)的直线解析式y=﹣x+2.考点:一次函数的性质.专题:开放型.分析:先设出一次函数的解析式,再把点(﹣1,3)代入函数解析式求出﹣k+b满足的条件,根据此条件写出一条经过第一、二、四象限的直线解析式即可.解答:解:设此函数的解析式为y=kx+b,∵函数图象经过第一、二、四象限,∴k<0,b>0,∵函数图象过点(﹣1,3),∴﹣k+b=3,∴可令k=﹣1,则b=2,故解析式可为y=﹣x+2.点评:此题考查了一次函数的性质,有一定的开放性,只要根据条件推出符合题意的k、b的值即可,答案不唯一.10.(3分)(2007•宁德)若,则=.考点:等式的性质.专题:计算题.分析:根据等式的性质1,等式两边都加上1,等式仍然成立可得出答案.解答:解:根据等式的性质:两边都加1.则=,故填.点评:观察要求的式子和已知的式子之间的关系,从而利用等式的性质进行计算.11.(3分)一顶简易的圆锥形帐蓬,帐篷收起来时伞面的长度有4米,撑开后帐篷高2米,则帐篷撑好后的底面直径是米.考点:弧长的计算.分析:根据题意可知圆锥的母线长为4米,高2米和地面半径构成直角三角形,利用勾股定理求出底面半径.解答:解:r===2,直径为4米.点评:主要考查了圆锥的特点.解此题的关键是要知道圆锥的母线,高和地面半径构成直角三角形,利用勾股定理求出底面半径是一个常用的方法.12.(3分)在Rt△ABC中,∠C=90°,AC=6,BC=8,则其外接圆的半径为5.考点:三角形的外接圆与外心;勾股定理.分析:首先根据勾股定理,得其斜边是10,再根据直角三角形的外接圆的半径是斜边的一半,得其半径是5.解答:解:∵∠C=90°,AC=6,BC=8,∴BA=10,∴其外接圆的半径为5.点评:熟练运用勾股定理;注意:直角三角形的外接圆的半径是斜边的一半.13.(3分)圆心在x轴上的两圆相交于A、B两点,已知A点的坐标为(﹣3,2),则B点的坐标是(﹣3,﹣2).考点:相交两圆的性质;坐标与图形性质.分析:圆心都在x轴上的两圆是轴对称图形,对称轴是x轴,那么A,B两点也关于x轴对称为(﹣3,﹣2).解答:解:∵两圆相交于A、B两点,且两圆的圆心都在x轴上,∴A、B两点关于X轴对称,∵A点的坐标为(﹣3,2),∴B点的坐标为(﹣3,﹣2).点评:解决本题的关键是知道相交两圆的交点也关于对称轴对称.14.(3分)用长4cm,宽3cm的邮票300枚不重、不漏摆成一个正方形,这个正方形的边长等于60 cm.考点:二元一次方程组的应用.分析:先设出未知数,然后依题意:300枚的总面积等于正方形面积.列出方程求解.解答:解:设正方形边长为x.则4×3×300=x2,解得:x=60故填60.点评:此题涉及一元二次方程的知识,难度中等.15.(3分)如图:四边形EFGH是一个长方形台球桌面,有白、黑两球分别位于A,B两点的位置上.试问,怎样撞击白球A,才能使白球A先碰撞台边GH,再碰撞FG,经两次反弹后再击中黑球B?(将白球A移动路线画在图上,不能说明问题的不予计分)考点:作图—应用与设计作图.专题:作图题.分析:分别作出点A关于HG的对称点A′,点B关于FG的对称点B′,然后连接A′B′,交HG、FG 于点M,N,再连接AM、BN,则白球A移动路线图可得.解答:解:(1)作出点A关于HG的对称点A′,点B关于FG的对称点B′,(2)连接A′B′,分别交HG、FG于点M、N,(3)连接AM,BN,所以白球A的移动路线为A→M→N→B.点评:本题是考查了作图问题的应用与设计作图,利用轴对称的性质作出对称点是解题的关键,难度中等.16.(3分)有三位学生参加两项不同的竞赛,则每位学生最多参加一项竞赛,每项竞赛只许有两位学生参加的概率为.考点:列表法与树状图法.分析:先根据题意画出树状图,从图上可知每项竞赛只许有两位学生参加的情况有6种,共有8种等可能的结果,再根据概率公式求解即可.解答:解:用A、B分别表示两项不同的竞赛,如图所示:每项竞赛只许有两位学生参加的情况是AAB,ABA,ABB,BAA,BAB,BBA,共6种,则每项竞赛只许有两位学生参加的概率为=.故答案为:.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)如图,是一个挂在墙壁上时钟的示意图.O是其秒针的转动中心,M是秒针的另一端,OM=8cm,l是过点O的铅直直线.现有一只蚂蚁P在秒针OM上爬行,蚂蚁P到点O的距离与M 到l的距离始终相等.则1分钟的时间内,蚂蚁P被秒针OM携带的过程中移动的路程(非蚂蚁在秒针上爬行的路程)是16πcm.考点:弧长的计算.分析:作出辅助线得出△OMN≌△Q2OP,进而得出∠OPQ2=∠NOM=90°,得出从而蚂蚁P在1分钟时间内被秒针OM携带的过程中移动的轨迹就是分别以OQ1,OQ2为直径的两个圆,求出即可.解答:解:过M作MN⊥L于点N,过O作L的垂线交于点Q1,Q2,连接PQ2,则MN∥OQ2,∠M=∠MOQ2,∵OM=OQ2,MN=OP,∴△OMN≌△Q2OP,∴∠OPQ2=∠MNO=90°,∴点P在以OQ1为直径的圆上,同理点P在以OQ2为直径的圆上,从而蚂蚁P在1分钟时间内被秒针OM携带的过程中移动的轨迹就是分别以OQ1,OQ2为直径的两个圆,移动的路程为:2×8π=16π.故答案为:16π.点评:此题主要考查了弧长的计算以及物体移动路线问题,此题综合性较强得出从而蚂蚁P在1分钟时间内被秒针OM携带的过程中移动的轨迹就是分别以OQ1,OQ2为直径的两个圆是解决问题的关键.三、解答题:18.(5分).考点:实数的运算.专题:计算题.分析:本题涉及零指数幂、负整数指数、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1+9+3﹣9×=1+9+3﹣3=10.点评:此题主要考查了学生对零指数、负指数以及二次根式的化简与特殊的三角函数值掌握情况.19.(6分)(2005•常德)解方程:考点:解分式方程;解一元二次方程-因式分解法.专题:计算题.分析:本题考查解分式方程的能力.因为x2﹣1=(x+1)(x﹣1),所以可得方程最简公分母为(x+1)(x﹣1).再去分母整理为整式方程即可求解.结果需检验.解答:解:方程两边同乘(x+1)(x﹣1),得6﹣3(x+1)=x2﹣1,整理得x2+3x﹣4=0,即(x+4)(x﹣1)=0,解得x1=﹣4,x2=1.经检验x=1是增根,应舍去,∴原方程的解为x=﹣4.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)分式方程去分母时不要漏乘常数项,本题要避免出现6﹣(x+1)=1的错误出现.20.(10分)将分别标有数字0,1,2,3的四张卡片洗匀后,背面朝上放在桌面上.抽取一张作为百位上的数字,再抽取一张作为十位上的数字,再抽取一张作为个位上的数字,每次抽取都不放回.(1)能组成几个三位数请写出个位数是“0”的三位数.(2)这些三位数中末两位数字恰好是“01”的概率为多少.考点:列表法与树状图法.分析:列举出符合题意的各种情况的个数,再根据概率公式解答即可.解答:解:树状图分析如下(5分)(1)能组成18个三位数.(6分)个位数是“0”的三位数有120,130,210,230,310,320.(8分)(2)末两位数恰好是“01”的概率为P=.(10分)点评:树状图法适用于两步或两步以上完成的事件,此题为三步完成的事件,选择树状图法最简单.用到的知识点为:概率=所求情况数与总情况数之比.21.(12分)已知:关于x的方程x2+2x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)若α,β是这个方程的两个实数根,求:的值;(3)根据(2)的结果你能得出什么结论?考点:根与系数的关系;根的判别式.分析:(1)由方程x2+2x﹣k=0有两个不相等的实数根,可以求出△>0,由此可求出k的取值范围;(2)欲求的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.(3)只要满足△>0(或用k的取值范围表示)的值就为一定值.解答:解:(1)△=4+4k,∵方程有两个不等实根,∴△>0,即4+4k>0∴k>﹣1(2)由根与系数关系可知α+β=﹣2,αβ=﹣k,∴=,(3)由(1)可知,k>﹣1时,的值与k无关.点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.22.(12分)如图,Rt△ABC中,∠ABC=90°,OA=OB=1,与x轴的正方向夹角为30°.求直线AB的解析式.考点:一次函数综合题.专题:综合题.分析:欲求直线AB的解析式,只要求出点A和点B的坐标,再根据待定系数法列方程组解答.解答:解:作AC⊥x轴于C,BD⊥x轴D,在Rt△AOC中,OC=1×cos30°=,AC=×1=,∴A点坐标为(,),OD=1×cos60°=,DB=1×sin60°=,∴B点坐标为(﹣,),设解析式为y=kx+b,把(,),(﹣,)分别代入解析式得:,解得k=﹣2+,b=﹣1+,∴解析式为y=(﹣2+)x+(﹣1+).点评:待定系数法:先设某些未知的系数,然后根据已知条件求出未知系数的方法叫待定系数法,在求函数解析式时经常要用到.23.(12分)已知:如图,AB是⊙O的直径,点C是⊙O上一点,CD⊥AB,垂足为D,点P在BA的延长线上,且PC是圆O的切线.(1)求证:∠PCD=∠POC;(2)若OD:DA=1:2,PA=8,求圆的半径的长.考点:切线的性质;圆周角定理.专题:计算题;证明题.分析:(1)根据切线的性质发现直角OCP,再根据等角的余角相等进行证明;(2)根据OD:DA=1:2,设OD=x,DA=2x,根据直角三角形的射影定理列方程求解.解答:解:(1)∵PC是圆O的切线,∴OC⊥PC.又CD⊥AB,∴∠PCD=∠POC.(2)设OD=x,DA=2x,根据两个角对应相等得到△PCO∽△CDO,则OC2=OD•OP,即9x2=x(8+3x),解得x=或x=0(不合题意,应舍去),则圆的半径是3x=4.点评:考查了切线的性质定理和直角三角形的射影定理.24.(12分)已知:如图,⊙O1和⊙O2相交于A、B两点,动点P在⊙O2上,且在⊙1外,直线PA、PB分别交⊙O1于C、D,问:⊙O1的弦CD的长是否随点P的运动而发生变化?如果发生变化,请你确定CD最长和最短时P的位置,如果不发生变化,请你给出证明.考点:圆周角定理;三角形内角和定理;三角形的外角性质;圆心角、弧、弦的关系.专题:动点型.分析:连接AD、AB,∠ADP在⊙O1中所对的弦为AB,所以∠ADP为定值,∠P在⊙O2中所对的弦为AB,所以∠P为定值.再利用三角形内角与外角的关系求出∠CAD为定值,则弦CD 为定值,与P的位置无关.解答:解:当点P运动时,CD的长保持不变,A、B是⊙O1与⊙O2的交点,弦AB与点P的位置关系无关,证明:如图,连接AD,∵∠ADP在⊙O1中所对的弦为AB,∴∠ADP为定值,∵∠P在⊙O2中所对的弦为AB,∴∠P为定值,∵∠CAD=∠ADP+∠P,∴∠CAD为定值,∵在⊙O1中∠CAD对弦CD,∴CD的长与点P的位置无关.点评:本题为动态性题目,解答此题的关键是熟知圆周角与弦的关系,即在同圆或等圆中相等的圆周角所对的弦相等.25.(14分)已知A、B两地相距45千米,骑车人与客车分别从A、B两地出发,往返于A、B两地之间.如图中,折线表示某骑车人离开A地的距离y与时间x的函数关系.客车8点从B地出发,以45千米/时的速度匀速行驶.(乘客上、下车停车时间忽略不计)①在阅读如图的基础上,直接回答:骑车人共休息几次?骑车人总共骑行多少千米?骑车人与客车总共相遇几次?②试问:骑车人何时与客车第二次相遇?(要求写出演算过程).考点:一次函数的应用.专题:应用题;图表型.分析:(1)看图可知,折线图中有两段水平的线,故休息了两次,时间是两次之和(看横轴);(2)根据题意,客车一小时行驶45千米,故它的图象是两小时一个来回.从左向右看,两条折线的第二个交点就是它们第二次相遇.求出EF的函数解析式就可以了,找到特殊点(9,0)和(10,45)用待定系数法可求出.解答:解:(1)依题意得:骑车人共休息2次;骑车人总共骑行90千米;骑车人与客车总共相遇8次;(2)已知如图:设直线EF所表示的函数解析式为y=kx+b.把E(9,0),F(10,45)分别代入y=kx+b,得,解得,∴直线EF所表示的函数解析式为y=45x﹣405,把y=20代入y=45x﹣405,得45x﹣405=20,∴.答:时骑车人与客车第二次相遇.点评:本题考查了一次函数的应用:通过表格当中的信息是解题关键;根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.此题比较复杂,首先是正确理解题意,这要求仔细观察图象,从图象中得到需要的信息,关键知道它们走的方向不同.此外还用到了待定系数法求函数解析式.26.(16分)已知抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0)(A在B的左边),且x1+x2=4.(1)求b的值及c的取值范围;(2)如果AB=2,求抛物线的解析式;(3)设此抛物线与y轴的交点为C,顶点为D,对称轴与x轴的交点为E,问是否存在这样的抛物线,使△AOC和△BED全等,如果存在,求出抛物线的解析式;如果不存在,请说明理由.考点:二次函数综合题.专题:开放型.分析:(1)由已知得:x1、x2是方程﹣x2+bx+c=0的两根,则△>0,及根与系数关系可求b的值及c的取值范围;(2)由根与系数关系及AB=|x1﹣x2|,可求c的值;(3)根据图形的全等分两种情况,当OC=DE时和当OC=BE时,分别讨论.解答:解:(1)由已知得:x1、x2是方程﹣x2+bx+c=0的两根,∴△=b2﹣4•(﹣1)•c>0,x1+x2=b,又x1+x2=4,∴b=4,c>﹣4;(2)由(1)可得y=﹣x2+4x+c,x1+x2=4,x1•x2=﹣c,而AB=|x1﹣x2|=2,∴(x1﹣x2)2=4,即(x1+x2)2﹣4x1x2=4,16+4c=4,解得c=﹣3,∴抛物线解析式为y=﹣x2+4x﹣3;(3)存在;由(1)可得y=﹣x2+4x+c,∴C(0,c),D(2,c+4);当OC=DE时,|c|=c+4,解得c=﹣2,当OC=BE时,AB=2OC,即|x1﹣x2|=2|c|,∴(x1﹣x2)2=4c2;16+4c=4c2解得c=或;满足题意的抛物线解析式为:y=﹣x2+4x+,y=﹣x2+4x+.点评:本题考查了二次函数图象和x轴的交点与一元二次方程两根的关系,掌握用两根的表达式表示线段的长度,解决全等三角形的问题.。
2012年北约自主招生数学试题1、求x 的取值范围使得12)(-+++=x x x x f 是增函数.2、求1210272611=+-+++-+x x x x 的实数根的个数.3、已知0)2)(2(22=+-+-n x x m x x 的4个根组成首项为41的等差数列,求n m -.4、如果锐角ABC ∆的外接圆的圆心为O ,求O 到三角形三边的距离之比.5、已知点)0,2(),0,2(B A -,若点C 是圆0222=+-y x x 上的动点,求ABC ∆面积的最小值.6、在2012,,2,1 中取一组数,使得任意两数之和不能被其差整除,最多能取多少个数?7、求使得a x x x x =-3sin sin 2sin 4sin 在),0[π有唯一解的a .8、求证:若圆内接五边形的每个角都相等,则它为正五边形.9、求证:对于任意的正整数n ,n )21(+必可表示成1-+s s 的形式,其中+∈N s .2012年自主招生华约联考数学试题解答(前4题)2011年北约物理试题1.在平直的轨道上,有一辆静止的火车,假设它与地面没有摩擦力,车后有N 个组员和一个组长列队排列,沿这辆火车的直线跑步,组长在最后。
火车的质量为M ,人的质量为m ,假设M=2m 。
(1)组员和组长追火车的速度为0v ,随后组员们以02v 的速度跳上火车,则最后一个组长正好追不上火车,求N 是多少?(2)此后组长减速为20v ,为使组长能上车,组员相继以相对车厢速度u 向前跳出,求该过程至少消耗组员多少人体内能?解:(1)002)(mv N v Nm M ⋅=+解得N=2(2)设第一个人跳出后车对地的速度为1v ,第二个人跳出后车对地的速度为2v ,则 1103)(4mv u v m mv ++=2212)(3mv u v m mv ++=0221v v = 20202222219851421221)(21)(21mv mv mv v u m v u m E =-++++=∆2、两个相同的铁球,质量均为m ,由原长为l 、劲度系数为k 的弹簧连接,设法维持弹簧在原长位置由静止释放两球(两球连线竖直),设开始时下球距离桌面的高度为h ,而且下球与桌面的碰撞为完全非弹性的。
2011年“北约”13校联考自主招生数学试题2012年北约自主招生数学试题1、求x 的取值范围使得12)(-+++=x x x x f 是增函数;2、求1210272611=+-+++-+x x x x 的实数根的个数;3、已知0)2)(2(22=+-+-n x x m x x 的4个根组成首项为41的等差数列,求n m -;4、如果锐角ABC ∆的外接圆的圆心为O ,求O 到三角形三边的距离之比;5、已知点)0,2(),0,2(B A -,若点C 是圆0222=+-y x x 上的动点,求ABC ∆面积的最小值。
6、在2012,,2,1Λ中取一组数,使得任意两数之和不能被其差整除,最多能取多少个数?7、求使得a x x x x =-3sin sin 2sin 4sin 在),0[π有唯一解的a ; 8、求证:若圆内接五边形的每个角都相等,则它为正五边形;9、求证:对于任意的正整数n ,n )21(+必可表示成1-+s s 的形式,其中+∈N s2012年自主招生北约联考数学试题解答2013年北约自主招生数学试题解析12312为两根的有理系数多项式的次数最小是多少?解析:显然,多项式23()(2)(1)2f x x x ⎡⎤=---⎣⎦2和312-于是知,2和312为两根的有理系数多项式的次数的最小可能值不大于5. 若存在一个次数不超过4的有理系数多项式432()g x ax bx cx dx e =++++,其两根分别为和1,,,,a b c d e不全为0,则:420(42)(2020a c eg a c e b db d++=⎧=++++=⇒⎨+=⎩(1(7)(232(630g a b c d e a b c d a b c=-+----+++++702320a b c d ea b c d+---=⎧⇒⎨+++=⎩即方程组:420(1)20(2)70(3)2320(4)630(5)a c eb da b c d ea b c da b c++=⎧⎪+=⎪⎪+---=⎨⎪+++=⎪++=⎪⎩,有非0有理数解.由(1)+(3)得:110a b c d++-=(6)由(6)+(2)得:1130a b c++=(7)由(6)+(4)得:13430a b c++=(8)由(7)-(5)得:0a=,代入(7)、(8)得:0b c==,代入(1)、(2)知:0d e==.于是知0a b c d e=====,与,,,,a b c d e不全为0矛盾.所以不存在一个次数不超过4的有理系数多项式()g x和1-和1为两根的有理系数多项式的次数最小为5.2.在66⨯的表中停放3辆完全相同的红色车和3辆完全相同的黑色车,每一行每一列只有一辆车,每辆车占一格,共有几种停放方法?解析:先从6行中选取3行停放红色车,有36C种选择.最上面一行的红色车位置有6种选择;最上面一行的红色车位置选定后,中间一行的红色车位置有5种选择;上面两行的红色车位置选定后,最下面一行的红色车位置有4种选择。
2012年清华等五校(华约)自主招生试题−−通用基础测试数学一、选择题1.若P 为ABC ∆内部任一点(不包括边界),且()(2)0PB PA PB PA PC -+-=,则ABC ∆必为( )A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形2.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周).若MA MP ⊥,则P 点形成的轨迹的长度为( )A B C .3 D .32 3.某种型号的计算器上有一个特殊的按键,在计算器上显示正整数n 时按下这个按键,会等可能的将其替换为0,1,2,,1n -中的任意一个数.如果初始时显示2011,反复按这个按键使得最终显示0,那么这个过程中,9,99,999都出现的概率是( )A .4110B .5110C .6110D .7110 4.已知,R αβ∈,直线1sin sin sin cos x y αβαβ+=++与1cos sin cos cos x y αβαβ+=++的交点在直线y x =-上,则cos sin c in s s o ααββ+++=( )A .0B .1C .1-D .25.若正整数集合A k 的最小元素为1,最元素为2007,并且各元素可以从小到大排成一个公差为k 的等差数列,则并集1759A A 中的元素个数为A .119B .120C .151D .1546.三角式111cos0cos1cos1cos 2cos88cos89+++化简为 A .cot1csc1 B .tan1csc1 C .cot1sec1 D .tan1sec17.设k<3,k≠0,则二次曲线2213x y k k-=-与22152x y +=必有 (A )不同的顶点(B )不同的准线 (C )相同的焦点 (D )相同的离心率8.若P 为椭圆221169x y +=在第一象限上的动点,过点P 引圆x 2+y 2=9的两条切线PA 、PB ,切点分别为A 、B ,直线AB 与x 轴、y 轴分别交于点M 、N ,则S MON ∆的最小值为( )A .92 BC .274 D9. 设x 1、x 2是实系数一元二次方程ax 2+bx +c=0的根,若x 1是虚数,212x x 是实数,则 248200711111222221x x x x x S x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值为A .0B .−1003C .1004D .−100410.函数f:R →R ,对任意的实数x 、y ,只要x+y≠0,就有f (xy )=()()f x f y x y ++成立,则函数f (x )(x ∈R )的奇偶性为A .一定是奇函数B .一定是偶函数C .既是奇函数,又是偶函数D .既不是奇函数,又不是偶函数 二、解答题11. 系统内有2k −1(k ∈N+)个元件,每个元件正常工作的概率为p (0<p <1),若有超过一半的元件正常工作,则系统正常工作.求系统正常工作的概率p 并讨论p k 的单调性.12.已知2()12!!n n x x f x x n =++++(*n N ∈),求证:当n 为偶数时,方程()0n f x =无解;当n 为奇数时,方程()0n f x =有唯一解n x ,且2n n x x +<.13.已知锐角三角形ABC 中,BE ⊥ AC 于点E ,CD ⊥ AB 于点D ,且BC=25,CE =7,BD =15,若BE 、CD 交于点H ,联结DE ,以DE 为直径作圆,该圆与AC 交于另一点F ,求AF 的长度.14.已知有n (n ≥2)位乒乓球选手,他们互相进行了若干场乒乓球双打比赛,并且发现任两名选手作为队友恰好只参加过一次比赛,试求n 的所有可能值·15.已知动点P 在y 轴上投影为H ,A (−2,0),B (2,O ),满足22||AP BP PH =.(1)求点P 的轨迹方程C ;(2)已知一条直线过点B ,且与曲线C 交于x 轴下方两点C 、D ,M 为CD 中点,求M 与点Q (0,−2)连线的斜率取值范围.。
2011年自主招生华约数学试题1. 求值:444)70(sin )50(sin )10(sin +︒+︒2.长为L (L 为整数)的木棒可以锯成长为整数的两段,要求任何时刻所有木棒中的最长者长度严格小于最短者长度的2倍。
例如长为4的木棒可以锯成2+2两段,而长为7的木棒第一次可以锯成3+4,第二次可以再将长为4的木棒锯成2+2,这时2+2+3三段不能再锯。
问:长为30的木棒至多可以锯成多少段?3. 将数轴上的每个点用N 种颜色之一染色,要求任意距离为1、根号2 或 根号5的两点不同色。
求N 的最小值。
4. 12个人玩一个游戏,游戏开始后每个人被随机的戴上红、黄、蓝、绿四种颜色之一的帽子,每个人可以看到其余11个人帽子的颜色,但不能看到自己帽子的颜色,游戏开始后12个人不能再交流,并被要求猜出自己帽子的颜色。
请为这12个人在游戏前商定一个方案,使得他们同时猜对自己头上帽子颜色的概率尽可能大。
2011年自主招生华约数学试题一、选择题 (1) 设复数z 满足|z|<1且15||2z z +=则|z| = ( ) 4321A B C D 5432 (2) 在正四棱锥P-ABCD 中,M 、N 分别为PA 、PB 的中DM 与AN 所成角的余弦为( ) 1111A B C D 36812(3)过点(-1, 1)的直线l 与曲线相切,且(-1, 1)不是切点,则直线l 的斜率为 ( )A 2B1C 1D 2 - -此题有误,原题丢了,待重新找找。
(4)若222cos cos 3A B A B π+=+,则的最小值和最大值分别为 () 3131A1B ,C1D ,12222 (5)如图,1eO 和2eO 外切于点C ,1eO ,2eO 又都和eO 内切,切点分别为A 、B .设βα=∠=∠ACB AOB ,,则( )A 02sin cos =+αβ B 02cos sin =-αβC 0sin 2sin =+αβD 0sin 2sin =-αβ(6) 已知异面直线a ,b 成60°角。
1.1正数负数练习题1一﹑选择题 (共10个小题,每小题3分,共30分)1. 李华把向北移动记作“+”,向南移动记作“—”,下列说法正确的是( ) A. —5米表示向北移动了5米 B. +5米表示向南移动了5米C. 向北移动—5米表示向南移动5米D. 向南移动5米,也可记作向南移动—5米 2. *下列有正数和负数表示相反意义的量,其中正确的是( )A. 一天凌晨的气温是—50C ,中午比凌晨上升100C ,所以中午的气温是+100CB. 如果生产成本增加12%,记作+12%,那么—12%表示生产成本降低12%C. 如果+5.2米表示比海平面高5.2米,那么—6米表示比海平面低—6米D. 如果收入增加10元记作+10元,那么—8表示支出减少8元 3. 下列说法错误的是( )A. 有理数是指整数、分数、正有理数、零、负有理数这五类数B. 一个有理数不是整数就是分数C. 正有理数分为正整数和正分数D. 负整数、负分数统称为负有理数4.如图所示的图形为四位同学画的数轴,其中正确的是( )5.如图所示,点M 表示的数是( )A. 2.5B. 5.3-C. -25.D. 2.5 6. *6,2008,212,0,-3,+1,41-中,正整数和负分数共有( ) A. 3个 B. 4个 C. 5个 D. 6个7. 若字母a 表示任意一个数,则—a 表示的数是( )A. 正数B. 负数C. 0D. 以上情况都有可能 8.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B 时,点B 所表示的实数是 ( )A 1B -6 C 2或-6 D 不同于以上答案第Ⅱ卷(非选择题)一、填空题(共8个小题,每小题3分,共24)11.数轴上离表示-3的点的距离等于3个单位长度的点表示数是 .12.有理数中最小的非负数 .最大的非正数是 .13.在数轴上A 点表示-31,B 点表示21,则离原点较近的点是__ _点.14.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.15.#如果全班某次数学测试的平均成绩为80分,某同学考了85分,记作+5分,得分90分和80分应分别记作_________________________.16.某粮店出售三种品牌的面粉,袋上分别标有质量为(50±0.1)kg 、(50±0.2)kg 、(50±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差 .17.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的个数有 .18.*神舟六号飞船于北京时间(UTC+8)2005年10月12日上午9:00在酒泉卫星发射中心发 射升空, 费俊龙和聂海胜两名中国航天员被送入太空。
按照神舟号飞船环境控制与生命保障系统的设计指标,通过温湿度控制系统“神舟”六号飞船返回舱的温度为21°C ±4°C ,相对湿度50%±20%该返回舱的最高温度为 °C ,最低温度为 °C 三、解答题(共66分)19.(共8分)把下列各数分别填在相应集合中:1,-0.20,513,325,-789,0,-23.13,0.618,-2008. 负数集合: { …}; 非负数集合: { …}; 非负整数集合:{…};20. (共8分)#在北京2008奥运会召开的前夕,为了相应绿色奥运的号召,小莉同学调查了她所在居民楼一个月内扔垃圾袋的数量,如以每户每个月扔30个垃圾袋为基准,超出次基数用正数表示,不足此基数用负数表示,其中10户居民某个月扔垃圾袋的个数如下:+1 -4 +4 -7 +2 -2 0 -3 +6,+3求这10户居民这个月共扔掉多少个垃圾袋?21.(共8分)新华制药厂集团,为了了解其所属药厂七月份的经营情况,对其各厂上报的情况进行分析,各厂七月份盈亏的具体情况是:一厂盈利5万元,二厂亏损3万元,三厂亏损1.5万元,四厂盈利1万元,五厂盈利4万元,请你用数轴来判断一下这个月那个厂经营情况较好22. (共8分)*观察下面的一列数:21,-32,41,-54,61,76-…… 请你找出其中排列的规律,解答(1)第9个数是________,第14个数是________. (2)第2008个数是多少?(3)如果这一组数据无限排列下去,与哪两个数越来越接近?23. (共8分)#在数轴上有三个点A 、B 、C 如图所示,请回答:(1)把点A 向右移动7个单位后,A 、B 、C 三个点表示的数那个最小,是多少? (2)把B 点向左移动5个单位后,这是A 点所表示的数比B 所表示的数大多少? (3)如果让A 表示的数最大,则A 点应该怎样移动,至少移动几个单位?A7、()05++= 8、1312-= 9、()()144+--=10、()()99-+-= 11、()130--= 12、()()28---= 13、154--=14、()()()555-+-+-= 15、()()()()9249++-+-+-= 16、()()35++-= 17、()()611-+-= 18、()120+-= 19、()()611++-=20、()()()()()5161414-+-+-+-++=二、计算:(前5题可以口算)21、3121--= 22、3121+-23、3141-=24、3141--=25、214181161----= 26、()208912-+---27、()()27183217929-+---28、⎪⎭⎫⎝⎛+--⎪⎭⎫ ⎝⎛-657131176129、⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--215434321数 学 练 习(一)〔有理数加减法运算练习〕一、加减法法则、运算律的复习。
A .△同号两数相加,取__________________,并把____________________________。
1、(–3)+(–9) 2、85+(+15)3、(–361)+(–332) 4、(–3.5)+(–532)△绝对值不相等的异号两数相加,取_________________________,并用____________________ _____________. 互为__________________的两个数相加得0。
1、(–45) +(+23)2、(–1.35)+6.353、412+(–2.25) 4、(–9)+7△ 一个数同0相加,仍得_____________。
1、(–9)+ 0=______________;2、0 +(+15)=_____________。
B 1、(–1.76)+(–19.15)+ (–8.24) 2、23+(–17)+(+7)+(–13)3、(+ 341)+(–253)+ 543+(–852)4、52+112+(–52) 5、-57+(+101) 6、90-(-3)7、-0.5-(-341)+2.75-(+721) 8、 712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C .有理数的减法可以转化为_____来进行,转化的“桥梁”是△减法法则:减去一个数,等于_____________________________。
1、(–3)–(–5) 2、341–(–143) 3、0–(–7)D .加减混合运算可以统一为_______1、(–3)–(+5)+(–4)–(–10) 2、341–(+5)–(–143)+(–5)△把–2.4–(–3.5)+(–4.6)+ (+3.5)写成省略加号的和的形式是______________, 读作:__________________________,也可以读作:__________________________。
1、 1–4 + 3–5 2、–2.4 + 3.5–4.6 + 3.5 3、 381–253 + 587–852二、综合提高题。
1、 –99 + 100–97 + 98–95 + 96–……+22、–1–2–3–4–……–1003、一个病人每天下午需要测量一次血压,下表是病人星期一至星期五收缩压的变化情况,请算出星期五该病人的收缩压。
数 学 练 习 (二)(乘除法法则、运算律的复习)一、乘除法法则、运算律的复习。
A.有理数的乘法法则:两数相乘,同号得________,异号得_______,并把___________________。
任何数同0相乘,都得______。
1、(–4)×(–9) 2、(–52)×813、(–6)×04、(–253)×135B.乘积是_____的两个数互为倒数。
数a (a ≠0)的倒数是_________。
1、 3的倒数是______,相反数是____,绝对值是____。
2、–4的倒数是____,相反数是____,绝对值是____。
2、 -3.5的倒数是_____,相反数是____,绝对值是____。
C.多个__________的数相乘,负因数的个数是________时,积是正数;负因数的个数是________时,积是负数。
几个数相乘,如果其中有因数为0,积等于_________。
1.(–5)×8×(–7) 2.(–6)×(–5)×(–7) 3.(–12)×2.45×0×9×100D1、100×(0.7–103–254+ 0.03) 3、(–11)×52+(–11)×953E.有理数的除法可以转化为_______来进行,转化的“桥梁”是____________。
除法法则一:除以一个不等于0的数,等于____________________________________。
除法法则二:两数相除,同号得_____,异号得_____,并把绝对值相_______. 0除以任何一个不等于0的数,都得____.1. (–18)÷(–9)2. (–63)÷(7)3. 0÷(–105)4. 1÷(–9)F .有理数加减乘除混合运算,无括号时,“先________,后_________”,有括号时,先算括号内的,同级运算,从_____到______. 计算时注意符号的确定,还要灵活应用运算律使运算简便。
二、加减乘除混合运算练习。
1. 3×(–9)+7×(–9)2. 20–15÷(–5)3. [65÷(–21–31)+281]÷(–181)4. 冰箱开始启动时内部温度为10℃,如果每小时冰箱内部的温度降低5℃,那么3小时后冰箱内部的温度是多少?5.体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女18秒。