(专升本)第一章函数极限和连续
- 格式:pdf
- 大小:312.98 KB
- 文档页数:26
第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
2.了解极限的有关性质,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。
会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。
会运用等价无穷小量代换求极限。
4.熟练掌握用两个重要极限求极限的方法。
第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。
2.会求函数的间断点。
3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。
4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。
第二章一元函数微分学第一节导数与微分[复习考试要求]1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。
2.会求曲线上一点处的切线方程与法线方程。
3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。
4.掌握隐函数的求导法与对数求导法。
会求分段函数的导数。
5.了解高阶导数的概念。
会求简单函数的高阶导数。
6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。
第二节导数的应用[复习考试要求]1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。
2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。
会利用函数的单调性证明简单的不等式。
3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。
4.会判断曲线的凹凸性,会求曲线的拐点。
5.会求曲线的水平渐近线与铅直渐近线第三章一元函数积分学第一节不定积分[复习考试要求]1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。
第一章 函数、极限和连续第一单元 函数1.函数的概念函数两要素:定义域和对应法则。
原函数定义域等于反函数值域,反函数值域等于原函数定义域。
定义域:y =1x ,x ≠0y =ln x ,x >0 y =√x,x ≥0y =√x4x >0 y =arcsin x ,−1≤x ≤1y =arccos x ,−1≤x ≤12.函数的性质单调性:同增异减当x 1<x 2时,有f (x 1)<f (x 2),为增函数。
当x 1<x 2时,有f (x 1)>f (x 2),为减函数。
原函数与反函数有相同单调性。
奇偶性:f (−x )=f (x ) 为偶函数关于y 轴对称f (−x )=−f (x ) 为奇函数关于原点对称 对数专用 f (−x )+f (x )=0 f (0)=0常见偶函数:y =|x | y =2 y =x 2 y =x 4+2 y =cos x常见奇函数:y =x y =x 3 y =1x y =tan x y =cot x y =sin x arctan x arccos x常见非奇非偶函数:arccot x arccos x奇×奇=偶 偶×偶=偶 奇×偶=奇奇±奇=奇 偶±偶=偶 奇±偶=非奇非偶原函数与反函数奇偶相同;奇函数求导后为偶函数,偶函数求导后为奇函数。
有界性:|f (x )|≤M ⇔−m ≤f (x )≤M |f (x )|>M ⇔f (x )>M 或f (x )<−m 有界×有界=有界 有界±有界=有界 有界±无界=无界 常见有界函数: y =sin xy =cos xy =1sin xy =1cos xy=arcsin x y=arccos x y=arctan x y=arccot x 周期性:y=A sin(ωx+φ)+B y=A tan(ωx+φ)+B y=A cos(ωx+φ)+B y=A cot(ωx+φ)+B最小正周期T=2π|ω|最小正周期T=π|ω|3.基本初等函数幂函数:y=xα(α∈R,α≠0)指数函数:y=a x(a>0,a≠1)1)x对数函数:y=log a x(a>0,a≠1)x正弦函数 奇函数 T=2π 有界 余弦函数 偶函数 T=2π 有界x正切函数 奇函数 T=π 无界 余切函数 奇函数 T=π 无界 y =tan x y =cot x三角函数常用公式:tan x =sin xcos x cot x =1tan x =cos xsin xsec x =1cos x csc x =1sin x sin (−x )=−sin x cos (−x )=cos x tan (−x )=−tan x 降幂公式:sin 2x =1−cos 2x2cos 2x =1+cos 2x2cos 2x =(cos x )2tan x 和cot x 互为倒数 sin x 和csc x 互为倒数 cos x 和sec x 互为倒数1.度与弧度π1rad 0.017453rad 180︒=≈,1801rad 571744.8π︒⎛⎫'''=≈︒ ⎪⎝⎭22sin cos 1x x += 22tan 1sec x x += 22cot 1csc x x +=3.两角的和差公式()sin sin cos cos sin x y x y x y ±=± ()cos cos cos sin sin x y x y x y ±=m()tan tan tan 1tan tan x yx y x y±±=m4.和差化积公式sin sin 2sin cos22x y x yx y +−+= sin sin 2sincos22x y x yx y −+−= cos cos 2cos cos22x y x yx y +−+= cos cos 2sinsin22x y x yx y +−−=− 5.积化和差公式[]1sin cos sin()sin()2x y x y x y =++− []1cos sin sin()sin()2x y x y x y =+−− []1cos cos cos()cos()2x y x y x y =++− []1sin sin cos()cos()2x y x y x y =−+−− 6.倍角公式和半角公式sin 22sin cos x x x =2222cos 2cos sin 2cos 112sin x x x x x =−=−=−21cos cos 22x x+=21cos sin 22x x−=22tan tan 21tan xx x=− 1cos sin tan2sin 1cos x x xx x−==+22tan2sin 1tan 2x x x=+ 221tan 2cos 1tan 2x x x−=+ 22tan2tan 1tan 2x x x=− 8.三角形边角关系 (1)正弦定理sin sin sin a b cA B C==(2)余弦定理 2222cos a b c bc A =+− 2222cos b a c ac B =+− 2222cos c a b abc C =+−反三角函数:反正弦函数y =arcsin x 定义域[-1,1] 反余弦函数y =arccos x 定义域[﹣1,1] 值域[−π2,π2] 奇函数 有界函数 非周期函数 值域[0,π] 有界函数 非奇非偶函数非周期函数−2反正切函数y=arctan x定义域(−∞,+∞)反余切函数y=arccot x定义域(−∞,+∞)值域(−π2,π2)有界函数奇函数非周期函数值域(0,π) 有界函数非奇非偶函数非周期函数反函数:原函数定义域等于反函数值域,反函数值域等于原函数定义域。
专升本高等数学二自学教材高等数学二自学教材第一章:函数与极限1. 函数的概念和性质函数是数学中的一种重要概念,是研究自变量和因变量之间关系的工具。
函数的定义和基本性质包括定义域、值域、单调性、奇偶性等。
函数可分为初等函数和特殊函数,初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。
2. 极限的概念和性质极限是描述函数在某一点或无穷远处的趋势的一个概念。
极限包括数列极限和函数极限,其性质包括左极限、右极限、无穷极限、夹逼准则等。
通过求极限可以进行函数的连续性、可导性、可积性等性质的研究。
3. 函数的连续性与间断点连续性是函数在定义域内没有间断点的性质。
通过介绍函数的左连续、右连续和间断点的分类及性质,可以帮助我们理解函数的连续性和间断点的概念,并进行相关函数的分析和求解。
第二章:微分学1. 导数的概念和性质导数是描述函数局部变化率的概念,可理解为函数在某一点处的切线斜率。
导数的性质包括可导性、导数的求法、导数的几何意义和物理意义等。
导数在数学和物理领域中有广泛应用。
2. 高阶导数与常用函数的导数高阶导数是导数的推广,可通过重复求导得到。
常用函数的导数包括幂函数、指数函数、对数函数、三角函数和反三角函数等。
3. 微分中值定理与泰勒公式微分中值定理是微分学中的重要定理,包括拉格朗日中值定理、柯西中值定理和罗尔中值定理等。
泰勒公式是用多项式逼近函数的重要工具,通过泰勒公式可以得到函数在某一点附近的展开式。
第三章:微分方程1. 微分方程的基本概念与分类微分方程是描述函数与其导数或高阶导数之间关系的方程。
微分方程可分为一阶微分方程和二阶微分方程等。
一阶微分方程包括可分离变量型、齐次型和一阶线性微分方程等,具有广泛的应用。
2. 一阶线性微分方程与常系数齐次线性微分方程一阶线性微分方程是具有形如y'+P(x)y=Q(x)的方程,可以通过求解特解和通解来得到一般解。
常系数齐次线性微分方程是具有形如y''+ay'+by=0的方程,可通过特征方程求解。
(完整版)高职专升本第一章函数极限与连续习题及答案高等数学习题集第一章函数极限与连续一.选择题1.若函数)(x f 的定义域为[0,1],则函数)(ln x f 的定义域是( B )。
A [0,1]B [1,e]C [0,e]D (1,e)2.设xx f 11)(+=,则)]([x f f =( A )。
(2002-03电大试题) A.x x ++11 B.x x +1 C.x ++111 D.x+11。
3.设)(x f =e 2x ,则函数)()()(x f x f x F -+=是( B )。
A 奇函数;B 偶函数;C 既是奇函数又是偶函数;D 非奇非偶函数。
4.下列说法错误的是( D )。
A y=2x 与y=|x|表示同一函数;B x x f 3sin 21)(=是有界函数; C x x x f +=cos )(不是周期函数; D 12+=x y 在(-∞,+∞)内是单调函数。
5.下列函数中非奇非偶的函数是( D )。
A ||lg )(x x f =;B 2)(xx e e x f --=; C x x x f sin )(+=; D ||)(x x x f -=。
6.下列函数中( A )是基本初等函数。
A x x f 2=)(;B x x f 2=)(;C 2)(+=x x f ;D x x x f +=2)(。
7.函数( A )是初等函数: A x x y arccos 12-=;B =≠--=.1,0,1,112x x x x y C xx y ln )ln(-=;D ΛΛ+++++=+12421n y 8.“数列{x n }的极限存在”是“数列{x n }有界”的( A )。
A 充分但非必要条件;B 必要但非充分条件;C 充分必要条件;D 既非充分亦非必要条件。
9.∞→x lim 5x 的值是( D )。
A +∞; B -∞; C 0; D 不存在。
10.+∞→x lim e -x 的值是( A )。
成考(专升本)-高等数学二(专升本)-第1章函数、极限和连续[单选题]1.当x→0时,x2是x-ln(1+x)的()。
A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价的无穷小量D.较低阶的无穷小(江南博哥)量正确答案:C参考解析:本题考查的知识点为无穷小阶的比较。
由于可知当x→0时,x2与x-ln(1+x)为同阶但不等价无穷小,故应选C。
[单选题]3.()。
A.0B.1C.2D.不存在正确答案:D[单选题]4.()。
A.减少B.有增有减C.不增不减D.增加正确答案:B[单选题]5.设函数f(x)=,在x=2处连续,则a=()。
A.B.C.D.正确答案:B参考解析:[单选题]6.当x→1时,下列变量中不是无穷小量的是()。
A.x2-1B.sin(x2-1)C.lnxD.e x-1正确答案:D参考解析:[单选题]7.设z=f(x,y)在点(1,1)处有f x’(1,1)=f y’(1,1)=0,且f xx”(1,1)=2,fxy”(1,1)=0,fyy”(1,1)=1,则fy(1,1)=()。
A.是极大值B.是极小值C.不是极大值D.不是极小值正确答案:B参考解析:根据极值的充分条件:B2-AC=-2,A=2>0所以f(1,1)为极小值,选B。
[单选题]8.当x→0时,若sin2x与x k是等价无穷小量,则k=()。
A.1/2B.1C.2D.3正确答案:C参考解析:当k=2时,有选C。
[单选题]9.()。
A.(1,1)B.(e,e)C.(1,e+1)D.(e,e+2)正确答案:A参考解析:本题将四个选项代入等式,只有选项A的坐标使等式成立。
[单选题]10.下列命题正确的是()。
A.无穷小量的倒数是无穷大量B.无穷小量是绝对值很小很小的数C.无穷小量是以零为极限的变量D.无界变量一定是无穷大量正确答案:C参考解析:根据无穷小量的定义可知选项C正确。
[单选题]11.()。
A.-3B.0C.1D.3正确答案:D参考解析:[单选题]12.()。