2016-2017学年人教版六年级数学期末模拟试题
- 格式:doc
- 大小:96.00 KB
- 文档页数:4
2016-2017学年河南省天一大联考高三(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合A={0,2,4,6},B={x∈N|2n<33},则集合A∩B的子集个数为()A.8 B.7 C.6 D.42.设i为虚数单位,复数为纯虚数,则实数a的值为()A.﹣1 B.1 C.﹣2 D.23.“a2>b2”是“lna>lnb”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实,黄实,利用2×勾×股+(股﹣勾)2=4×朱实+黄实=弦实,化简,得勾2+股2=弦2,设勾股中勾股比为1:,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为()A.866 B.500 C.300 D.1345.已知圆(x﹣1)2+y2=的一条切线y=kx与双曲线C:﹣=1(a>0,b>0)有两个交点,则双曲线C的离心率的取值范围是()A.(1,)B.(1,2) C.(,+∞) D.(2,+∞)6.函数f(x)=的图象大致是()A.B.C.D.7.已知a>0且a≠1,如图所示的程序框图的输出值y∈[4,+∞),则实数a的取值范围是()A.(1,2]B.(,1)C.(1,2) D.[2,+∞)8.已知点M的坐标(x,y)满足不等式组,N为直线y=﹣2x+2上任一点,则|MN|的最小值是()A.B.C.1 D.9.如图,已知长方体ABCD﹣A1B1C1D1的体积为6,∠C1BC的正切值为,当AB+AD+AA1的值最小时,长方体ABCD﹣A1B1C1D1外接球的表面积()A.10πB.12πC.14πD.16π10.已知函数f(x)=Asin(2x+φ)﹣(A>0,0<φ<)的图象在y轴上的截距为1,且关于直线x=对称,若对于任意的x∈[0,],都有m2﹣3m≤f (x),则实数m的取值范围为()A.[1,]B.[1,2]C.[,2]D.[,]11.某几何体的三视图如图所示,则该几何体的体积为()A.8 B.10 C.12 D.1412.已知f′(x)是定义在(0,+∞)上的函数f(x)的导函数,若方程f′(x)=0无解,且∀x∈(0,+∞),f[f(x)﹣log2016x]=2017,设a=f(20.5),b=f(logπ3),c=f(log43),则a,b,c的大小关系是()A.b>c>a B.a>c>b C.c>b>a D.a>b>c二、填空题:本大题共4小题,每小题5分,共20分.13.已知平面向量=(1,2),=(﹣2,m),且|+|=|﹣|,则|+2|=.14.已知α∈(0,π),sinα=,则tan(α﹣)=.15.已知抛物线C1:y=ax2(a>0)的焦点F也是椭圆C2:+=1(b>0)的一个焦点,点M,P(,1)分别为曲线C1,C2上的点,则|MP|+|MF|的最小值为.16.如图,在圆内接四边形ABCD中,AB=2,AD=1,BC=BDcosα+CDsinβ,则四边形ABCD周长的取值范围为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)已知正项等比数列{b n}的前n项和为S n,b3=4,S3=7,数列{a n}满﹣a n=n+1(n∈N+),且a1=b1.足a n+1(1)求数列{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)如图,已知四边形ABCD和ABEG均为平行四边形,点E在平面ABCD 内的射影恰好为点A,以BD为直径的圆经过点A,C,AG的中点为F,CD的中点为P,且AD=AB=AE=2.(1)求证:平面EFP⊥平面BCE;(2)求几何体ADG﹣BCE,P﹣EF﹣B的体积.19.(12分)2016年是红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神,首先在甲、乙、丙、丁四个不同的公园进行支持签名活动.然后再各公园签名的人中按分层抽样的方式抽取10名幸运之星回答问题,从10个关于长征的问题中随机抽取4个问题让幸运之星回答,全部答对的幸运之星获得一份纪念品.(1)求此活动中各公园幸运之星的人数;(2)若乙公园中每位幸运之星中任选两人接受电视台记者的采访,求这两人均来自乙公园的概率;(3)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.临界值表:参考公式:K2=.20.(12分)已知椭圆C:+=1(a>b>0)的上下两个焦点分别为F1,F2,过点F1与y轴垂直的直线交椭圆C于M,N两点,△MNF2的面积为,椭圆C 的离心率为(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知O为坐标原点,直线l:y=kx+m与y轴交于点P,与椭圆C交于A,B两个不同的点,若存在实数λ,使得+λ=4,求m的取值范围.21.(12分)已知函数f(x)=x+alnx与g(x)=3﹣的图象在点(1,1)处有相同的切线.(1)若函数y=2(x+m)与y=f(x)的图象有两个交点,求实数m的取值范围;(2)设函数F(x)=3(x﹣)+g(x)﹣2f(x)有两个极值点x1,x2,且x1<x2,求证:F(x2)<x2﹣1.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分[选修4-4:参数方程与极坐标系](共1小题,满分10分)22.(10分)已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,圆C的直角坐标系方程为x2+y2+2x﹣2y=0,直线l的参数方程为(t为参数),射线OM的极坐标方程为θ=(Ⅰ)求圆C和直线l的极坐标方程(Ⅱ)已知射线OM与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.[选修4-5:不等式选讲](共1小题,满分0分)23.已知函数f(x)=|x+3|+|x﹣2|(Ⅰ)若∀x∈R,f(x)≥6a﹣a2恒成立,求实数a的取值范围(Ⅱ)求函数y=f(x)的图象与直线y=9围成的封闭图形的面积.2016-2017学年河南省天一大联考高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合A={0,2,4,6},B={x∈N|2n<33},则集合A∩B的子集个数为()A.8 B.7 C.6 D.4【分析】化简集合B,根据交集的运算写出A∩B,即可求出它的子集个数.【解答】解:集合A={0,2,4,6},B={x∈N|2n<33}={0,1,2,3,4,5},则A∩B={0,2,4},∴A∩B的子集个数为23=8.故选:A.【点评】本题考查了两个集合的交运算和指数不等式的解法以及运算求解能力.2.设i为虚数单位,复数为纯虚数,则实数a的值为()A.﹣1 B.1 C.﹣2 D.2【分析】利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0求解.【解答】解:∵=为纯虚数,∴,解得a=﹣2.故选:C.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.“a2>b2”是“lna>lnb”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】若lna>lnb,则a>b>0,可得a2>b2;反之,“a2>b2”a,b可能为负数,推不出lna>lnb.即可判断出结论.【解答】解:若lna>lnb,则a>b>0,可得a2>b2;反之,“a2>b2”a,b可能为负数,推不出lna>lnb.∴“a2>b2”是“lna>lnb”的必要不充分条件.故选:B.【点评】本题考查了函数的性质、不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.4.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实,黄实,利用2×勾×股+(股﹣勾)2=4×朱实+黄实=弦实,化简,得勾2+股2=弦2,设勾股中勾股比为1:,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为()A.866 B.500 C.300 D.134【分析】设勾为a,则股为,弦为2a,求出大的正方形的面积及小的正方形面积,再求出图钉落在黄色图形内的概率,乘以1000得答案.【解答】解:如图,设勾为a,则股为,∴弦为2a,则图中大四边形的面积为4a2,小四边形的面积为=()a2,则由测度比为面积比,可得图钉落在黄色图形内的概率为.∴落在黄色图形内的图钉数大约为1000≈134.故选:D.【点评】本题考查几何概型,考查几何概型概率公式的应用,是基础的计算题.5.已知圆(x﹣1)2+y2=的一条切线y=kx与双曲线C:﹣=1(a>0,b>0)有两个交点,则双曲线C的离心率的取值范围是()A.(1,)B.(1,2) C.(,+∞) D.(2,+∞)【分析】先求出切线的斜率,再利用圆(x﹣1)2+y2=的一条切线y=kx与双曲线C:﹣=1(a>0,b>0)有两个交点,可得>,即可求出双曲线C 的离心率的取值范围.【解答】解:由题意,圆心到直线的距离d==,∴k=±,∵圆(x﹣1)2+y2=的一条切线y=kx与双曲线C:﹣=1(a>0,b>0)有两个交点,∴>,∴1+>4,∴e>2,故选:D.【点评】本题考查直线与圆的位置关系,考查双曲线的方程与性质,考查学生的计算能力,属于中档题.6.函数f(x)=的图象大致是()A.B.C.D.【分析】判断函数的奇偶性,排除选项,然后利用函数的特殊值判断即可.【解答】解:函数f(x)=是奇函数,排除A,D.当x=时,f()=>0,函数的图象的对应点在第一象限,排除B.故选:C.【点评】本题考查函数的图象的判断,函数的奇偶性以及函数的单调性,特殊点等等是解题的常用方法.7.已知a>0且a≠1,如图所示的程序框图的输出值y∈[4,+∞),则实数a的取值范围是()A.(1,2]B.(,1)C.(1,2) D.[2,+∞)【分析】根据已知中的程序框图可得,该程序的功能是计算并输出分段函数y=的值,根据程序框图的输出值y∈[4,+∞),分类讨论可得答案.【解答】解:根据已知中的程序框图可得,该程序的功能是计算并输出分段函数y=的值,当x≤2时,y=﹣x+6≥4恒成立,当x>2时,由y=3+log a2≥4得:log a2≥1,解得:a∈(1,2],故选:A.【点评】本题考查的知识点是分段函数的应用,程序框图,根据已知分析出程序的功能是解答的关键.8.已知点M的坐标(x,y)满足不等式组,N为直线y=﹣2x+2上任一点,则|MN|的最小值是()A.B.C.1 D.【分析】画出约束条件的可行域,利用已知条件,转化求解距离的最小值即可.【解答】解:点M的坐标(x,y)满足不等式组的可行域如图:点M的坐标(x,y)满足不等式组,N为直线y=﹣2x+2上任一点,则|MN|的最小值,就是两条平行线y=﹣2x+2与2x+y﹣4=0之间的距离:d==.故选:B.【点评】本题考查线性规划的应用,平行线之间的距离的求法,考查转化思想以及计算能力.9.如图,已知长方体ABCD﹣A1B1C1D1的体积为6,∠C1BC的正切值为,当AB+AD+AA1的值最小时,长方体ABCD﹣A1B1C1D1外接球的表面积()A.10πB.12πC.14πD.16π【分析】先根据条件求出长方体的三条棱长,再求出长方体ABCD﹣A1B1C1D1外接球的直径,即可得出结论.【解答】解:由题意设AA1=x,AD=y,则AB=3x,∵长方体ABCD﹣A1B1C1D1的体积为6,∴xy•3x=6,∴y=,∴长方体ABCD﹣A1B1C1D1的体积为4x+≥3=6,当且仅当2x=,即x=1时,取得最小值,∴长方体ABCD﹣A1B1C1D1外接球的直径为=,∴长方体ABCD﹣A1B1C1D1外接球的表面积=14π,故选C.【点评】本题考查长方体ABCD﹣A1B1C1D1外接球的表面积,考查体积的计算,考查基本不等式的运用,属于中档题.10.已知函数f(x)=Asin(2x+φ)﹣(A>0,0<φ<)的图象在y轴上的截距为1,且关于直线x=对称,若对于任意的x∈[0,],都有m2﹣3m≤f (x),则实数m的取值范围为()A.[1,]B.[1,2]C.[,2]D.[,]【分析】利用函数y=Asin(ωx+φ)的图象和性质,正弦函数的定义域和值域,求得实数m的取值范围.【解答】解:∵函数f(x)=Asin(2x+φ)﹣(A>0,0<φ<)的图象在y 轴上的截距为1,∴Asinφ﹣=1,即Asinφ=.∵函数f(x)=Asin(2x+φ)﹣的图象关于直线x=对称,∴2•+φ=kπ+,k∈Z,∴φ=,∴A•sin=,∴A=,∴f(x)=sin(2x+).对于任意的x∈[0,],都有m2﹣3m≤f(x),∵2x+∈[,],sin(2x+)∈[﹣,1],sin(2x+)∈[﹣,],∴m2﹣3m≤﹣,求得≤m≤,故选:D.【点评】本题主要考查函数y=Asin(ωx+φ)的图象和性质,正弦函数的定义域和值域,属于中档题.11.某几何体的三视图如图所示,则该几何体的体积为()A.8 B.10 C.12 D.14【分析】由已知中的三视图,画出几何体的直观图,数形结合可得几何体的体积.【解答】解:由已知中的三视图,可得该几何体的直观图如下所示:三棱锥A﹣BCD的体积为:××3×4×4=8,四棱锥C﹣AFED的体积为:××(2+4)×2×3=6,故组合体的体积V=6+8=14,故选:D【点评】本题考查的知识点是棱柱的体积和表面积,棱锥的体积和表面积,简单几何体的三视图,难度中档.12.已知f′(x)是定义在(0,+∞)上的函数f(x)的导函数,若方程f′(x)=0无解,且∀x∈(0,+∞),f[f(x)﹣log2016x]=2017,设a=f(20.5),b=f(logπ3),c=f(log43),则a,b,c的大小关系是()A.b>c>a B.a>c>b C.c>b>a D.a>b>c【分析】根据f(x)﹣log2016x是定值,设t=f(x)﹣log2016x,得到f(x)=t+log2016x,结合f(x)是增函数判断a,b,c的大小即可.【解答】解:∵方程f′(x)=0无解,∴f′(x)>0或f′(x)<0恒成立,∴f(x)是单调函数,由题意得∀x∈(0,+∞),f[f(x)﹣log2016x]=2017,又f(x)是定义在(0,+∞)的单调函数,则f(x)﹣log2016x是定值,设t=f(x)﹣log2016x,则f(x)=t+log2016x,∴f(x)是增函数,又0<log43<logπ3<1<20.5∴a>b>c,故选:D.【点评】本题考查了函数的单调性、对数函数的运算以及推理论证能力,是一道中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.已知平面向量=(1,2),=(﹣2,m),且|+|=|﹣|,则|+2|=5.【分析】利用平面向量坐标运算法则求出,,由|+|=|﹣|,求出m=1,由此能求出|+2|的值.【解答】解:∵平面向量=(1,2),=(﹣2,m),∴=(﹣1,2+m),=(3,2﹣m),∵|+|=|﹣|,∴1+(2+m)2=9+(2﹣m)2,解得m=1,∴=(﹣2,1),=(﹣3,4),|+2|==5.故答案为:5.【点评】本题考查向量的模的求法,是基础题,解题时要认真审题,注意平面向量坐标运算法则的合理运用.14.已知α∈(0,π),sinα=,则tan(α﹣)=﹣或﹣7.【分析】由已知,分类讨论,利用同角三角函数基本关系式可求cosα,tanα,进而利用两角差的正切函数公式即可计算求值得解.【解答】解:当α∈(0,)时,由sinα=,可得:cosα==,tan=,可得:tan(α﹣)==﹣;当α∈(,π)时,由sinα=,可得:cosα=﹣=﹣,tan=﹣,可得:tan(α﹣)==﹣7.故答案为:﹣或﹣7.(漏解或错解均不得分)【点评】本题主要考查三角函数恒等变换与求值问题,考查分类讨论的思想方法,属于基础题.15.已知抛物线C1:y=ax2(a>0)的焦点F也是椭圆C2:+=1(b>0)的一个焦点,点M,P(,1)分别为曲线C1,C2上的点,则|MP|+|MF|的最小值为2.【分析】先求出椭圆方程,可得焦点坐标,再设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|进而把问题转化为求|MP|+|MD|取得最小,进而可推断出当D,M,P三点共线时|MP|+|MD|最小,答案可得.【解答】解:P(,1)代入椭圆C2:+=1,可得=1,∴b=,∴焦点F(0,1),∴抛物线C1:x2=4y,准线方程为y=﹣1.设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|∴要求|MP|+|MF|取得最小值,即求|MP|+|MD|取得最小,当D,M,P三点共线时|MP|+|MD|最小,为1﹣(﹣1)=2.故答案为2.【点评】本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D,M,P三点共线时|PM|+|MD|最小,是解题的关键.16.如图,在圆内接四边形ABCD中,AB=2,AD=1,BC=BDcosα+CDsinβ,则四边形ABCD周长的取值范围为(3+,3+2).【分析】由正弦定理,三角形内角和定理,两角和的正弦函数公式化简已知等式可得cosβsinα=sinαsinβ,进而可求tan,结合范围β∈(0,π),可求,根据题意,∠BAD=,由余弦定理,基本不等式可求CB+CD≤2,利用两边之和大于第三边可求CB+CD>,即可得解四边形ABCD的周长的取值范围.【解答】解:∵BC=BDcosα+CDsinβ,∴sin∠BDC=sinβcosα+sinαsinβ,∴sin(α+β)=sinβcosα+sinαsinβ,∴(cosβsinα+cosαsinβ)=sinβcosα+sinαsinβ,∴cosβsinα=sinαsinβ,∴tan,又∵β∈(0,π),∴,根据题意,∠BAD=,由余弦定理,BD2=AB2+AD2﹣2AB•ADcos∠BAD=4+1﹣2×2×1×cos=7,又∵BD2=CB2+CD2﹣2CB•CDcosβ=(CB+CD)2﹣3CB•CD≥(CB+CD)2﹣=,∴CB+CD≤2,又∵CB+CD>,∴四边形ABCD的周长AB+CB+CD+DA的取值范围为:(3+,3+2).故答案为:(3+,3+2).【点评】本题主要考查了正弦定理,余弦定理的应用和解三角形的基本知识以及运算求解能力,属于中档题.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)已知正项等比数列{b n}的前n项和为S n,b3=4,S3=7,数列{a n}满足a n﹣a n=n+1(n∈N+),且a1=b1.+1(1)求数列{a n}的通项公式;(2)求数列{}的前n项和.【分析】(1)设等比数列{b n}的公比为q,由题意列式求得b1,得到a1,利用累加法求得数列{a n}的通项公式;(2)直接利用裂项相消法求得数列{}的前n项和.【解答】解:(1)由题意,设等比数列{b n}的公比为q,则,解得.又a n﹣a n=n+1,+1∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a3﹣a2)+(a2﹣a1)+a1=n+(n﹣1)+…+2+1=;(2)∵,∴=.【点评】本题考查数列递推式,训练了累加法求数列的通项公式,考查裂项相消法求数列的和,是中档题.18.(12分)如图,已知四边形ABCD和ABEG均为平行四边形,点E在平面ABCD 内的射影恰好为点A,以BD为直径的圆经过点A,C,AG的中点为F,CD的中点为P,且AD=AB=AE=2.(1)求证:平面EFP⊥平面BCE;(2)求几何体ADG﹣BCE,P﹣EF﹣B的体积.【分析】(1)由点E在平面ABCD内的射影恰为A,可得AE⊥平面ABCD,进一步得到平面ABCD⊥平面ABEG,又以BD为直径的圆经过A,C,AD=AB,可得BCD为正方形,再由线面垂直的性质可得BC⊥平面ABEG,从而得到EF⊥BC,结合AB=AE=GE,可得∠ABE=∠AEB=,从而得到∠AEF+∠AEB=,有EF⊥BE.再由线面垂直的判定可得EF⊥平面BCE,即平面EFP⊥平面BCE;(2)解:连接DE,由(Ⅰ)知,AE⊥平面ABCD,则AE⊥AD,又AB⊥AD,则AB⊥平面ADE,得到GE⊥平面ADE.然后利用等积法求几何体ADC﹣BCE的体积.【解答】(Ⅰ)证明:∵点E在平面ABCD内的射影恰为A,∴AE⊥平面ABCD,又AE⊂平面ABEG,∴平面ABCD⊥平面ABEG,又以BD为直径的圆经过A,C,AD=AB,∴ABCD为正方形,又平面ABCD∩平面ABEG=AB,∴BC⊥平面ABEG,∵EF⊂平面ABEG,∴EF⊥BC,又AB=AE=GE,∴∠ABE=∠AEB=,又AG的中点为F,∴∠AEF=.∵∠AEF+∠AEB=,∴EF⊥BE.又BE⊂平面BCE,BC⊂平面BCE,BC∩BE=B,∴EF⊥平面BCE,又EF⊂平面EFP,∴平面EFP⊥平面BCE;(Ⅱ)解:连接DE,由(Ⅰ)知,AE⊥平面ABCD,∴AE⊥AD,又AB⊥AD,AE∩AD=A,∴AB⊥平面ADE,又AB∥GE,∴GE⊥平面ADE.=∴V ADC﹣BCE=.∴几何体ADC﹣BCE的体积为4.【点评】本题主要考查点、线、面的位置关系以及体积的求法,考查运算求解能力及空间想象能力,是中档题.19.(12分)2016年是红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神,首先在甲、乙、丙、丁四个不同的公园进行支持签名活动.然后再各公园签名的人中按分层抽样的方式抽取10名幸运之星回答问题,从10个关于长征的问题中随机抽取4个问题让幸运之星回答,全部答对的幸运之星获得一份纪念品.(1)求此活动中各公园幸运之星的人数;(2)若乙公园中每位幸运之星中任选两人接受电视台记者的采访,求这两人均来自乙公园的概率;(3)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.临界值表:参考公式:K2=.【分析】(1)利用抽样比,求此活动中各公园幸运之星的人数;(2)求出基本事件的个数,利用古典概型概率公式求解;(3)求出K2,与临界值比较,即可得出结论.【解答】解:(1)各公园幸运之星的人数分别为=3,=4,=2,=1;(2)基本事件总数=15种,这两人均来自乙公园,有=6种,故所求概率为=;(3)K2==7.5>6.635,∴据此判断能在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.【点评】本题考查分层抽样,考查概率的计算,考查独立性检验知识的运用,知识综合性强.20.(12分)已知椭圆C:+=1(a>b>0)的上下两个焦点分别为F1,F2,过点F1与y轴垂直的直线交椭圆C于M,N两点,△MNF2的面积为,椭圆C 的离心率为(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知O为坐标原点,直线l:y=kx+m与y轴交于点P,与椭圆C交于A,B两个不同的点,若存在实数λ,使得+λ=4,求m的取值范围.【分析】(Ⅰ)根据已知设椭圆的焦距2c,当y=c时,|MN|=|x1﹣x2|=,由题意得,△MNF2的面积为|MN|×|F1F2|=c|MN|=,又∵,解得a、b即可.(Ⅱ)设A(x1,y1),B(x2,y2),P(0,y0),分类讨论:当m=0时,利用椭圆的对称性即可得出;m≠0时,直线AB的方程与椭圆的方程联立得到△>0及根与系数的关系,再利用向量相等,代入计算即可得出.【解答】解:(Ⅰ)根据已知设椭圆的焦距2c,当y=c时,|MN|=|x1﹣x2|=,由题意得,△MNF2的面积为|MN|×|F1F2|=c|MN|=,又∵,解得b2=1,a2=4,椭圆C的标准方程为:x2+.(Ⅱ)当m=0时,则P(0,0),由椭圆的对称性得,∴m=0时,存在实数λ,使得+λ=4,当m≠0时,由+λ=4,得,∵A、B、p三点共线,∴1+λ=4,⇒λ=3⇒设A(x1,y1),B(x2,y2)由,得(k2+4)x2+2mkx+m2﹣4=0,由已知得△=4m2k2﹣4(k2+4)(m2﹣4)>0,即k2﹣m2+4>0且x1+x2=,x1x2=.由得x1=﹣3x23(x1+x2)2+4x1x2=0,∴,⇒m2k2+m2﹣k2﹣4=0显然m2=1不成立,∴∵k2﹣m2+4>0,∴,即.解得﹣2<m<﹣1或1<m<2.综上所述,m的取值范围为(﹣2,﹣1)∪(1,2)∪{0}【点评】本题考查椭圆的标准方程的求法,考查了椭圆的简单性质、涉及直线与椭圆相交问题,常转化为关于x的一元二次方程,利用△>0及根与系数的关系、向量相等等基础知识与基本技能方法求解,考查了推理能力和计算能力,属于中档题.21.(12分)已知函数f(x)=x+alnx与g(x)=3﹣的图象在点(1,1)处有相同的切线.(1)若函数y=2(x+m)与y=f(x)的图象有两个交点,求实数m的取值范围;(2)设函数F(x)=3(x﹣)+g(x)﹣2f(x)有两个极值点x1,x2,且x1<x2,求证:F(x2)<x2﹣1.【分析】(1)求出函数的导数,得到关于a,b的方程组,求出f(x)的解析式,设T(x)=f(x)﹣2x﹣2m=lnx﹣x﹣2m,根据函数的单调性求出a的范围即可;(2)求出F(x)的导数,等价于方程x2﹣2x+m=0在(0,+∞)内有2个不等实根,根据函数的单调性证明结论即可.【解答】解:(1)∵f′(x)=1+,g′(x)=,根据题意得,解得:;∴f(x)=x+lnx,设T(x)=f(x)﹣2x﹣2m=lnx﹣x﹣2m,则T′(x)=﹣1,当x∈(0,1)时,T′(x)>0,当x∈(1,+∞)时,T′(x)<0,∴T(x)max=T(1)=﹣1﹣2m,∵x→0时,T(x)→﹣∞,x→+∞时,T(x)→﹣∞,故要使两图象有2个交点,只需﹣1﹣2a>0,解得:a<﹣,故实数a的范围是(﹣∞,﹣);(2)证明:由题意,函数F(x)=x﹣﹣2lnx,其定义域是(0,+∞),F′(x)=,令F′(x)=0,即x2﹣2x+m=0,其判别式△=4﹣4m,函数F(x)有2个极值点x1,x2,等价于方程x2﹣2x+m=0在(0,+∞)内有2个不等实根,又x1x2>0,故0<m<1,∴x2=1+且1<x2<2,m=﹣+2x2,F (x2)﹣x2+1=x2﹣2lnx2﹣1,令h(t)=t﹣2lnt﹣1,1<t<2,则h′(t)=,由于1<t<2,则h′(t)<0,故h(t)在(1,2)递减,故h(t)<h(1)=1﹣2ln1﹣1=0,∴F(x2)﹣x2+1=h(x2)<0,∴F(x2)<x2﹣1.【点评】本题考查导数的几何意义,利用导数研究函数的单调性、最值研究不等式恒成立问题,考查运算求解能力、函数与方程思想.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分[选修4-4:参数方程与极坐标系](共1小题,满分10分)22.(10分)已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,圆C的直角坐标系方程为x2+y2+2x﹣2y=0,直线l的参数方程为(t为参数),射线OM的极坐标方程为θ=(Ⅰ)求圆C和直线l的极坐标方程(Ⅱ)已知射线OM与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.【分析】(I)根据已知中圆C的直角坐标系方程,可得圆C的极坐标方程;先由直线l的参数方程消参得到直线l的普通方程,进而可得直线l的极坐标方程(Ⅱ)已知射线OM与圆C的交点为O,P,将θ=代和,可得P,Q点的极坐标,进而得到线段PQ的长.【解答】解:(I)∵圆C的直角坐标系方程为x2+y2+2x﹣2y=0,∴圆C的极坐标方程为:ρ2+2ρcosθ﹣2ρsinθ=0,即ρ+2cosθ﹣2sinθ=0,即,∵直线l的参数方程为(t为参数),消参得:x﹣y+1=0,∴直线l的极坐标方程为:ρcosθ﹣ρsinθ+1=0,即sinθ﹣cosθ=;(Ⅱ)当θ=时,|OP|==2,故点P的极坐标为(2,),|OQ|==,故点Q的极坐标为(,),故线段PQ的长为:.【点评】本题考查的知识点是参数方程和极坐标,熟练掌握参数方程与普通方程及极坐标方程之间的转化方式,是解答的关键.[选修4-5:不等式选讲](共1小题,满分0分)23.已知函数f(x)=|x+3|+|x﹣2|(Ⅰ)若∀x∈R,f(x)≥6a﹣a2恒成立,求实数a的取值范围(Ⅱ)求函数y=f(x)的图象与直线y=9围成的封闭图形的面积.【分析】(Ⅰ)由题意得,关于x的不等式|x+3|+|x﹣2|≥6a﹣a2在R恒成立,求出左边的最小值,即可求实数a的取值范围(Ⅱ)图象与直线y=9围成的封闭图形是等腰梯形,上底长为9,下底长为5,高为4,即可求函数y=f(x)的图象与直线y=9围成的封闭图形的面积.【解答】解:(Ⅰ)由题意得,关于x的不等式|x+3|+|x﹣2|≥6a﹣a2在R恒成立,因为|x+3|+|x﹣2|≥|(x+3)﹣(x﹣2)|=5,所以6a﹣a2≤5,解得a≤1或a≥5.(Ⅱ)f(x)=9,可得x=﹣5或x=4,如图所示,函数y=f(x)的图象与直线y=9围成的封闭图形是等腰梯形,上底长为9,下底长为5,高为4,面积为=28.【点评】本题主要考查绝对值函数,考查恒成立问题,体现了转化的数学思想,属于中档题.。
2017—2018学年度下学期六年级 数学 毕业试题学校_____________班级____________姓名__________考号______________ 一、填空。
1.十亿四千九百四十万写作( ),四舍五入到“亿”位约是( )。
2.8吨420千克=( )吨 4小时20分钟=( )小时 650公顷=( )平方千米。
3.在直线下面的□里填整数或小数,上面的□里填分数。
4.A=2×3×a ,B=2×a ×7,已知A 、B 的最大公因数是6,那么a =( );A 和B 的最小公倍数是( )。
5.已知13=⨯ba ,a 和b 成( )比例。
6.一个正方体的表面积是150cm 2,它的棱长总和是( )cm 。
7.小新和小兵玩掷骰子游戏,掷出点数大于3小新赢,小于3小兵赢,等于3重来,小兵赢得可能性为( ),这个游戏对( )有利。
8.小华双休日想帮妈妈做下面的事情:用洗衣机洗衣服要用20分钟;扫地要用6分钟;擦家具要用10分钟;晾衣服要用5分钟。
她经过合理安排,做完这些事至少要花( )分钟。
9.六年级三班有42人,每人至少订了一种报纸,其中订《少年报》的有36人,订《小学生报》的有20人。
两种报纸都订的有( )人。
10.一幅地图的比例尺是1:15000000,在这幅地图上量得我国长江的全长是42cm ,长江的实际全长是( )km 。
11.有8瓶维生素,其中一瓶少了4片。
如果用天平称,至少称( )次能保证找到少药片的那瓶。
12.王飞以每小时40千米的速度行了240千米,按原路返回时每小时行60千米,王飞往返的平均速度是每小时行()千米。
13.把一个圆柱体加工成一个最大的圆锥体后,它的体积减少了40立方厘米,原来圆柱体的体积是()立方厘米。
14.现有8cm和3cm的小棒各一根,再取一根整厘米长的小棒与它们拼成三角形,可以有()种不同取法。
15.小明过生日时,妈妈送给他一个圆锥形的陀螺,陀螺的底面直径是4厘米,高3厘米,这个陀螺的体积为()立方厘米;如果用一个长方体盒子包装,这个盒子的容积至少为()立方厘米。
一、选择题:1.2013年我国GDP总值为56.9万亿元,增速达7.7%,将56.9万亿元用科学记数法表示为()A.56.9×1012元B.5.69×1013元C.5.69×1012元D.0.569×1013元2.若a是有理数,则下列各式一定成立的有()(1)(﹣a)2=a2;(2)(﹣a)2=﹣a2;(3)(﹣a)3=a3;(4)|﹣a3|=a3.A.1个B.2个C.3个D.4个3.下列说法正确的是()A.零除以任何数都得0B.绝对值相等的两个数相等C.几个有理数相乘,积的符号由负因数的个数决定D.两个数互为倒数,则它们的相同次幂仍互为倒数4.一根绳子15米,截去它的后,再接上米,这时绳子的长度是()A.15米B.米C.米D.米5.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个6.下面四个图形是多面体的展开图,其中哪一个是四棱锥的展开图()A.B.C.D.7.如图,把图形折叠起来,它会变为下面的哪幅立体图形()A.B.C.D.8.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A.0 B.2 C.数D.学9.已知数轴上的A点到原点的距离是2,那么在数轴上到A点的距离是3的点所表示的数有()A.1个B.2个C.3个D.4个10.由四舍五入得到的近似数﹣8.30×104,精确到()数位.A.百分位B.十分位C.千位D.百位11.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑12.一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是()A.B.C.或D.或二、填空题:13.﹣(﹣2),﹣|﹣3|,﹣10%,|﹣|,整数有;非负数有.14.(3分)对有理数a,b,定义运算a*b=,则4*(﹣5)=.15.将如图中的图形剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去哪个小正方形?(说出两种即可)17.(3分)按图中的程序运算:当输入的数据为4时,则输出的数据是.18.(3分)如图,从一个棱长为3cm的正方体的一顶点处挖去一个棱长为1cm的正方体,则剩余部分的表面积是.三、解答题: 19.(﹣8)+(﹣7.5)+(﹣21)+(+3)(2)(﹣81)÷×÷(﹣16)(3)(﹣24)×(﹣﹣)( 4 )﹣12+[﹣4+(1﹣0.2×)]÷(﹣2)2(5)﹣|﹣|﹣|﹣×|﹣|﹣|﹣|﹣3|(6)﹣22+(﹣0.5)2÷(﹣1)﹣(﹣2)2×(﹣)(7)(﹣1)2003+(﹣32)×|﹣|﹣42÷(﹣2)2.20.如果a ,b 互为倒数,c ,d 互为相反数,x 2=16且x <0,求4c +4d ﹣(ab )2x +x 2的值.21.(4分)如图是由几个相同的小正方体块所搭成的几何体从上面看的形状图,小正方体中的数字表示在该位置上的小正方体块的个数.请画出这个几何图从正面看和左面看的形状图.22.(6分)把边长为2厘米的6个相同正方体摆成如图的形式, (1)画出从正面,左面,上面看的形状图;(2)试求出其表面积.23.(7分)请先阅读下列一段内容,然后解答后面问题:=1﹣,=﹣,=﹣,…①第四个等式为 ,第n 个等式为 ; ②根据你发现的规律计算:+++…+.24.(9分)某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.表是某周的生产情况(超产为正、减产为负):(1)根据记录可知前三天共生产多少辆;(2)产量最多的一天比产量最少的一天多生产多少辆;(3)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?25.(8分)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足用正数或负数表示,记录如下表:(1)这批样品的平均质量比标准质量多还是少?多或少几克? (2)若每袋标准质量为250克,则抽样检测的总质量是多少?2016-2017学年山东省威海市文登区六年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题:(本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题3分,共36分.)1.2013年我国GDP总值为56.9万亿元,增速达7.7%,将56.9万亿元用科学记数法表示为()A.56.9×1012元B.5.69×1013元C.5.69×1012元D.0.569×1013元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:56.9万亿元=5.69×1013元,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.若a是有理数,则下列各式一定成立的有()(1)(﹣a)2=a2;(2)(﹣a)2=﹣a2;(3)(﹣a)3=a3;(4)|﹣a3|=a3.A.1个B.2个C.3个D.4个【考点】有理数的乘方.【分析】正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.【解答】解:(1)在有理数范围内都成立;(2)(3)只有a为0时成立;(4)a为负数时不成立.故选A.【点评】应牢记乘方的符号法则:(1)负数的奇次幂是负数,负数的偶次幂是正数;(2)正数的任何次幂都是正数,0的任何正整数次幂都是0.3.下列说法正确的是()A.零除以任何数都得0B.绝对值相等的两个数相等C.几个有理数相乘,积的符号由负因数的个数决定D.两个数互为倒数,则它们的相同次幂仍互为倒数【考点】有理数的乘方.【分析】A、任何数包括0,0除0无意义;B、绝对值相等的两个数的关系应有两种情况;C、几个不为0的有理数相乘,积的符号由负因数的个数决定;D、根据倒数及乘方的运算性质作答.【解答】解:A、零除以任何不等于0的数都得0,错误;B、绝对值相等的两个数相等或互为相反数,错误;C、几个不为0的有理数相乘,积的符号由负因数的个数决定,错误;D、两个数互为倒数,则它们的相同次幂仍互为倒数,正确.故选D.【点评】主要考查了绝对值、倒数的概念和性质及有理数的乘除法、乘方的运算法则.要特别注意数字0的特殊性.4.一根绳子15米,截去它的后,再接上米,这时绳子的长度是()A.15米B.米C.米D.米【考点】有理数的混合运算.【分析】绳子截去它的,则截去的部分长度为15×(米),剩余绳子的长度是15﹣15×(米),再接上米,故这时绳子的长度表示为:15﹣15×+(米),然后计算.【解答】解:根据题意得15﹣15×+=(米).故选D.【点评】主要考查了正确列代数式解决实际问题.认真审题,准确地列出式子是解题的关键.注意截去它的与接上米的区别.5.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个【考点】认识立体图形.【分析】根据棱柱的概念、结合图形解得即可.【解答】解:第一、二、四个几何体是棱柱,故选:B.【点评】本题考查的是立体图形的认识,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥是解题的关键.6.下面四个图形是多面体的展开图,其中哪一个是四棱锥的展开图()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、6个正方形能围成一个正方体,所以,这是正方体的展开图;故本选项错误;B、6个长方形可以围成长方体.所以,这是长方体的展开图;故本选项错误;C、一个四边形和四个三角形能围成四棱锥,所以,这是四棱锥的展开图;故本选项正确;D、三个长方形和两个三角形能围成一个三棱柱,所以,这是三棱柱的展开图;故本选项错误.故选C.【点评】本题主要考查几何体展开图的知识点,熟记常见立体图形的平面展开图是解决此类问题的关键.7.如图,把图形折叠起来,它会变为下面的哪幅立体图形()A. B. C.D.【考点】展开图折叠成几何体.【分析】根据正方体的展开图中6个面的关系分别对四个选项进行判断.【解答】解:A、有O的一面所对的面没记号,还有两个没记号的面相对,所以A选项错误;B、有O的一面与没记号的面和有横线的面相邻,所以B选项正确;C、有横线的两面相对,所以C选项错误;D、横线与O的位置关系不对,所以D选项错误.故选B.【点评】本题考查了展开图折叠成几何图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.8.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A.0 B.2 C.数D.学【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“数”相对的字是“1”;“学”相对的字是“2”;“5”相对的字是“0”.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.已知数轴上的A点到原点的距离是2,那么在数轴上到A点的距离是3的点所表示的数有()A.1个B.2个C.3个D.4个【考点】数轴.【分析】本题要先对A点所在的位置进行讨论,得出A点表示的数,然后分别讨论所求点在A的左右两边的两种情况,即可得出答案.【解答】解:∵数轴上的A点到原点的距离是2,∴点A可以表示2或﹣2.(1)当A表示的数是2时,在数轴上到A点的距离是3的点所表示的数有2﹣3=﹣1,2+3=5;(2)当A表示的数是﹣2时,在数轴上到A点的距离是3的点所表示的数有﹣2﹣3=﹣5,﹣2+3=1.故选D.【点评】注意:到数轴上一个点的距离是定值的点可以在该点的左侧,也可以在该点的右侧.10.由四舍五入得到的近似数﹣8.30×104,精确到()数位.A.百分位B.十分位C.千位D.百位【考点】近似数和有效数字.【分析】把题目中的数据还原为原来的数据,从而可以得到题目中的数据精确到哪一位,本题得以解决.【解答】解:∵﹣8.30×104=﹣83000,∴﹣8.30×104精确到百位,故选D.【点评】本题考查近似数和有效数字,解题的关键是明确近似数和有效数字的意义.11.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑【考点】专题:正方体相对两个面上的文字.【分析】根据图形可得涂有绿色一面的邻边是白,黑,红,蓝,即可得到结论.【解答】解:∵涂有绿色一面的邻边是白,黑,红,蓝,∴涂成绿色一面的对面的颜色是黄色,故选C.【点评】本题考查了正方体相对两个面上的文字问题,此类问题可以制作一个正方体,根据题意在各个面上标上图案,再确定对面上的图案,可以培养动手操作能力和空间想象能力.12.一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是()A.B.C.或D.或【考点】几何体的展开图.【分析】分8为底面周长与6为底面周长两种情况,求出底面半径即可.【解答】解:若6为圆柱的高,8为底面周长,此时底面半径为=;若8为圆柱的高,6为底面周长,此时底面半径为=,故选C.【点评】此题考查了几何体的展开图,利用了分类讨论的思想,分类讨论时注意不重不漏,考虑问题要全面.二、填空题:(本大题共6小题,每小题3分,共18分.)13.把下列各数中,+8,﹣1.42,0,﹣(﹣10.7 ),﹣|﹣3|,﹣10%,|﹣|,整数有+8,0,﹣|﹣3| ;非负数有+8,0,﹣(﹣10.7),|﹣|.【考点】绝对值;有理数.【分析】根据整数、非负数的定义得出即可.【解答】解:整数有+8,0,﹣|﹣3|;非负数有+8,0,﹣(﹣10.7 ),|﹣|,故答案为:+8,0,﹣|﹣3|;+8,0,﹣(﹣10.7 ),|﹣|.【点评】本题考查了对有理数的分类的应用,能理解知识点的内容是解此题的关键,注意:有理数包括整数和分数、非负数包括正数和0.14.对有理数a,b,定义运算a*b=,则4*(﹣5)=.【考点】有理数的混合运算.【分析】根据a*b=,可以求得4*(﹣5)的值,本题得以解决.【解答】解:∵a*b=,∴4*(﹣5)==,故答案为:﹣.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.15.七棱柱有14个顶点,9个面,将其展开时,至少需要剪开13条棱.【考点】几何体的展开图.【分析】根据七棱柱的定义解答顶点和面的个数,七棱柱有21条棱,观察七棱柱的展开图可知没有剪开的棱的条数是8条,相减即可求出需要剪开的棱的条数.【解答】解:七棱柱有上下底面各有7个顶点,共14个顶点,有7个侧面,2个底面,共9个面,由图形可知:没有剪开的棱的条数是8条,则至少需要剪开的棱的条数是:21﹣8=13(条).故至少需要剪开的棱的条数是13条.故答案为:14,9,13.【点评】此题考查了几何体的展开图,关键是数出七棱柱没有剪开的棱的条数.16.将如图中的图形剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去哪个小正方形?我或喜(说出两种即可)【考点】展开图折叠成几何体.【分析】利用正方体及其表面展开图的特点解题.【解答】解:根据有“田”字格的展开图都不是正方体的表面展开图可知,故应剪去我或喜或学,故答案为:我,喜.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.17.按图中的程序运算:当输入的数据为4时,则输出的数据是 2.5.【考点】有理数的混合运算.【分析】把4按照如图中的程序计算后,若>2则结束,若不是则把此时的结果再进行计算,直到结果>2为止.【解答】解:根据题意可知,(4﹣6)÷(﹣2)=1<2,所以再把1代入计算:(1﹣6)÷(﹣2)=2.5>2,即2.5为最后结果.故本题答案为:2.5.【点评】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.18.如图,从一个棱长为3cm的正方体的一顶点处挖去一个棱长为1cm的正方体,则剩余部分的表面积是54cm2.【考点】几何体的表面积.【分析】从顶点处挖去一个小正方体,挖去小正方体后,小正方体外露的三个面正好可以补上原正方体缺失部分,故表面积不变.【解答】解:∵挖去小正方体后,其实剩下的图形的表面积与原正方体的面表积相等,∴剩余部分的表面积为:6×3×3=54(cm2).故答案为54cm2.【点评】本题考查了几何体体积、表面积的计算,明确挖去的正方体中相对的面的面积都相等是此题关键.三、解答题:(本大题共7小题,共66分,请写出必要的文字说明或演算步骤.)19.计算题(1)(﹣8)+(﹣7.5)+(﹣21)+(+3)(2)(﹣81)÷×÷(﹣16)(3)(﹣24)×(﹣﹣)(4)﹣12+[﹣4+(1﹣0.2×)]÷(﹣2)2(5)﹣|﹣|﹣|﹣×|﹣|﹣|﹣|﹣3|(6)﹣22+(﹣0.5)2÷(﹣1)﹣(﹣2)2×(﹣)(7)(﹣1)2003+(﹣32)×|﹣|﹣42÷(﹣2)2.【考点】有理数的混合运算.【分析】(1)根据有理数的加法和减法可以解答本题;(2)根据有理数的除法和乘法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据幂的乘方和有理数的乘除法和加减法可以解答本题;(5)先去掉绝对值符号,再根据有理数的减法可以解答本题;(6)根据幂的乘方和有理数的乘除法和加减法可以解答本题;(7)根据幂的乘方和有理数的乘除法和加减法可以解答本题.【解答】解:(1)(﹣8)+(﹣7.5)+(﹣21)+(+3)=[(﹣8)+(﹣21)]+[(﹣7.5)+3.5]=(﹣30)+(﹣4)=﹣34;(2)(﹣81)÷×÷(﹣16)==1;(3)(﹣24)×(﹣﹣)==(﹣8)+3+4=﹣1;(4)﹣12+[﹣4+(1﹣0.2×)]÷(﹣2)2=﹣1+[﹣4+(1﹣)]÷4=﹣1+[﹣4+]×=﹣1﹣1+=﹣1;(5)﹣|﹣|﹣|﹣×|﹣|﹣|﹣|﹣3|==;(6)﹣22+(﹣0.5)2÷(﹣1)﹣(﹣2)2×(﹣)=﹣4+×﹣4×=﹣4﹣+1=;(7)(﹣1)2003+(﹣32)×|﹣|﹣42÷(﹣2)2=(﹣1)+9×﹣16÷4=(﹣1)+2﹣4=﹣3.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.20.如果a,b互为倒数,c,d互为相反数,x2=16且x<0,求4c+4d﹣(ab)2x+x2的值.【考点】代数式求值;相反数;倒数.【分析】先求得ab、c+d的值,以及x的值,然后再代入计算即可.【解答】解:∵a,b互为倒数,c,d互为相反数,x2=16且x<0,∴ab=1,c+d=0,x=﹣4.∴原式=4(c+d)﹣(ab)2x+x2=4×0﹣1×(﹣4)+16=20.【点评】本题主要考查的是求代数式的值,求得ab、c+d的值,以及x的值是解题的关键.21.如图是由几个相同的小正方体块所搭成的几何体从上面看的形状图,小正方体中的数字表示在该位置上的小正方体块的个数.请画出这个几何图从正面看和左面看的形状图.【考点】作图-三视图;由三视图判断几何体.【分析】利用俯视图可得出几何体的形状,进而利用主视图以及左视图的观察角度得出不同视图即可.【解答】解:如图所示:.【点评】此题主要考查了三视图以及由三视图判断几何体的形状,正确想象出几何体的形状是解题关键.22.把边长为2厘米的6个相同正方体摆成如图的形式,(1)画出从正面,左面,上面看的形状图;(2)试求出其表面积.【考点】作图-三视图.【分析】(1)利用几何体的形状,进而利用主视图以及左视图、俯视图的观察角度得出不同视图即可;(2)直接利用几何体的表面积求法分别得出答案.【解答】解:(1)如图所示:;(2)几何体的表面积为:2×2×5+2×2×4+2×2×5+2×2×12=104(平方厘米).【点评】此题主要考查了作三视图以及几何体表面积求法,正确把握观察角度是解题关键.23.请先阅读下列一段内容,然后解答后面问题:=1﹣,=﹣,=﹣,…①第四个等式为═﹣,第n个等式为=﹣;②根据你发现的规律计算:+++…+.【考点】规律型:数字的变化类.【分析】①根据题意确定出拆项规律,写出即可;②原式利用拆项法变形,计算即可得到结果.【解答】解:①第四个等式为═﹣,第n个等式为=﹣;②原式=﹣+﹣+…+﹣=﹣=,故答案为:①═﹣, =﹣【点评】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.24.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.表是某周的生产情况(超产为正、减产为负):(1)根据记录可知前三天共生产多少辆;(2)产量最多的一天比产量最少的一天多生产多少辆;(3)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少? 【考点】正数和负数.【分析】(1)根据记录可知,前三天共生产了200×3+(5﹣2﹣4)辆自行车; (2)产量最多的一天比产量最少的一天多生产了17﹣(﹣11)辆自行车; (3)先计算超额完成几辆,然后再求算工资. 【解答】解:(1)200×3+(4﹣2﹣5)=597 (辆). 故前三天共生产597辆. (2)17﹣(﹣11)=28 (辆)答:产量最多的一天比产量最少的一天多生产28辆. (3)1400+(+4﹣2﹣5+13﹣11+17﹣9)=7, 1407×60+7×15=84525(元).答:该厂工人这一周的工资总额是84525元.【点评】本题考查正数和负数,有理数运算在实际生活中的应用,利用所学知识解答实际问题是我们应具备的能力,这也是今后中考的命题重点.认真审题,准确的列出式子是解题的关键.25.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足用正数或负数表示,记录如下表:(1)这批样品的平均质量比标准质量多还是少?多或少几克? (2)若每袋标准质量为250克,则抽样检测的总质量是多少? 【考点】正数和负数.【分析】(1)用袋数乘以差值,相加求出20袋的记录之和,再除以20即为平均质量,然后根据正负数的意义解答;(2)用标准量加上差值,计算即可得解.【解答】解:(1)1×(﹣4)+4×(﹣3)+3×0+4×1+5×2+3×6=16,=0.8,所以,这批样品的平均质量比标准质量多0.8克;(2)若每袋标准质量为250克,则抽样检测的总质量=250×20+16=5016克.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具。
2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣22.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.73.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×1066.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣18.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于.14.绝对值大于2且小于5的所有整数的和是.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.23.解方程组:.24.解不等式组:并把解集在数轴上表示出来.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.【解答】解:原式=﹣1,故选;B.【点评】本题考查了有理数的乘方,注意底数是1.2.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.7【考点】单项式.【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可.【解答】解:∵3x a﹣2是关于x的二次单项式,∴a﹣2=2,解得:a=4,故选A.【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解.3.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球【考点】认识立体图形.【分析】根据各立体图形的构成对各选项分析判断即可得解.【解答】解:A、长方体是有六个面围成,故本选项错误;B、圆柱体是两个底面和一个侧面组成,故本选项错误;C、圆锥体是一个底面和一个侧面组成,故本选项正确;D、球是由一个曲面组成,故本选项错误.故选C.【点评】本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层左边一个,第二层中间一个,右边一个,故B符合题意,故选;B.【点评】本题考查了简单几何体的三视图,从上面看的到的视图是俯视图.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5.【解答】解:14.2万=142 000=1.42×105.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm【考点】一元一次不等式的应用.【分析】设至少为xcm,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.【解答】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选:C.【点评】此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣1【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【专题】数形结合.【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选A.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于旋转所得到,故错误;B、属于轴对称变换,故错误;C、形状和大小没有改变,符合平移的性质,故正确;D、属于旋转所得到,故错误.故选C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣【考点】二元一次方程的解.【专题】计算题;方程思想.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【解答】解:把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.故选A.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5【考点】平行线的判定.【分析】由平行线的判定定理易知A、B都能判定AB∥CD;选项C中可得出∠1=∠5,从而判定AB∥CD;选项D中同旁内角相等,但不一定互补,所以不能判定AB∥CD.【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于23°40′.【考点】余角和补角.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠A=66°20′,∴∠A的余角=90°﹣66°20′=23°40′,故答案为:23°40′.【点评】本题主要考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.14.绝对值大于2且小于5的所有整数的和是0.【考点】绝对值.【分析】首先根据绝对值的几何意义,结合数轴找到所有满足条件的数,然后根据互为相反数的两个数的和为0进行计算.【解答】解:根据绝对值性质,可知绝对值大于2且小于5的所有整数为±3,±4.所以3﹣3+4﹣4=0.【点评】此题考查了绝对值的几何意义,能够结合数轴找到所有满足条件的数.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【专题】探究型.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在第三象限.【考点】点的坐标.【分析】由第二象限的坐标特点得到a<0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进行判断.【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限.【点评】题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是y=.【考点】解二元一次方程.【分析】要把方程2x﹣3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=.【解答】解:移项得:﹣3y=5﹣2x系数化1得:y=.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是60%.【考点】扇形统计图.【专题】计算题.【分析】用扇形的圆心角÷360°即可.【解答】解:扇形所表示的部分占总体的百分数是216÷360=60%.故答案为60%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【考点】多边形内角与外角.【专题】计算题.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n ﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.【考点】有理数的混合运算.【分析】先算乘方和绝对值,再算乘法,最后算加法,由此顺序计算即可.【解答】解:原式=1+×(﹣5)+8=1﹣1+8=8.【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b,当a=﹣1,b=2时,原式=﹣(﹣1)+5×2=1+10=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程组:.【考点】解二元一次方程组.【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.24.解不等式组:并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表示出来即可.【解答】解:解x﹣2>0得:x>2;解不等式2(x+1)≥3x﹣1得:x≤3.∴不等式组的解集是:2<x≤3.【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.【考点】二元一次方程组的应用.【专题】图表型.【分析】根据题意可知,本题中的相等关系是“1猫+2狗=70元”和“2猫+1狗=50”,列方程组求解即可.【解答】解:设每只小猫为x元,每只小狗为y元,由题意得.解之得.答:每只小猫为10元,每只小狗为30元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?【考点】一元一次不等式的应用.【专题】应用题.【分析】设他至少要答对x题,由于他共回答了30道题,其中答对一题加5分,一题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)>100,解此不等式即可求解.【解答】解:设他至少要答对x题,依题意得5x﹣(30﹣x)>100,x>,而x为整数,x>21.6.答:他至少要答对22题.【点评】此题主要考查了一元一次不等式的应用,解题的关键首先正确理解题意,然后根据题目的数量关系列出不等式即可解决问题.27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?【考点】条形统计图;扇形统计图.【分析】(1)根据A8袋占总数的40%进行计算;(2)根据(1)中计算的总数和B占45%进行计算;(3)根据总百分比是100%进行计算;(4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进行计算.【解答】解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.。
2017-2018学年湖北省武汉市江汉区六年级(下)期末数学试卷一、计算下面各题1.直接写出得数.+1.2 5=﹣=×=÷=×0.36=7.2÷=÷=÷=1﹣÷=(﹣)×36=2.解下列方程.+x=2x﹣x=.3.计算下面各题.(1)×÷0.75(2)(+)÷(3)(4.5×﹣)÷(4)×[(+)÷].二、观察与操作.4.我国地形复杂多样,陆地地形的五种基本类型在我国均有分布,如图我国陆地地形分布情况统计图:(1)面积最大的地形是,最小的是;(2)高原面积比山地少总面积的7%,则高原占总面积的,丘陵占总面积的;(3)平原面积是盆地面积的,是丘陵面积的%;(4)我国陆地国土总面积是960万平方千米,则我国山地面积约是万平方千米,丘陵面积约是万平方千米.5.某次军事演习场景图如图:(1)雷达站在航空母舰偏40°方向上,距离是km;(2)驱逐舰在雷达站西偏南30°方向上,距离是250km,请在平面图上标出驱逐舰位置;(3)如果雷达的最大探测半径为200km,则雷达站的覆盖面积是Km2;(4)雷达站距航空母舰的距离比距核潜艇的距离少,比距离巡洋舰的距离多%.6.数字1、2、3、4、5、6分别用如图表示:请你仔细观察,并按规律写出或画出要表示的数.7.如图,在长、宽分别为10cm,7cm的方框中,用一个半径为0.5cm的圆形纸片,无滑动地沿着方框按A﹣B﹣C﹣D﹣A的方向滚动.(本题中π取3)(1)如图1,若纸片贴着方框内侧滚动一周回到出发位置,则圆心轨迹的长度是cm;圆形纸片没有滚到的部分,面积是cm2;圆形纸片共转动了圈;(2)如图2,若圆形纸片贴着方框外侧滚动一周回到出发位置,圆纸片共转动了圈.8.计算半圆面中涂色部分的面积.(单位cm)三、填空题.9.%=0.6==12÷=:60.10.小时:20分钟化成最简整数比是,比值是.11.把12:21的前项除以3,要使比值不变,后项应该是;把8:5的后项乘a(a≠0),要使比值不变,前项应该是.12.中国工农红军长征胜利80周年纪念币的直径为4cm,则纪念币的周长是cm,正面的面积是cm2.13.甲商品原价300元,按七折出售,售价是元;乙商品降价20%后,售价是160元,则原价是元.14.甲车从A地到B地要行6小时,乙车从B地到A地要行4小时,则甲、乙两车的最简速度比是;如果两车同时从A、B两地出发,相向而行,小时相遇.15.一根彩带剪成两段,第一段长m,第二段占全长的,这根彩带全长m.16.某商场做促销,推出“满100元减50元”(比如某顾客购物240元,只需付款140元)的活动,若在该商场购买550元商品,只需付款元;若用360元可以买到标价为元或元的商品.17.图中空白部分的面积是cm2,涂色部分的面积是cm2.四、判断题.18.7kg的与9kg的一样重..(判断对错)19.如图可以表示为:×,也可以表示×..(判断对错)20.甲车速度比乙车快,则乙车速度比甲车慢20%..(判断对错)21.从A到C有3条不同的半圆弧线图(如图),这三条线路的距离相等..(判断对错)五、选择题.22.一杯糖水,糖与糖水的质量比是5:21,再加入a克水时甜味会变淡一些,下列式子中能正确表示其中道理的是()A.=B.>C.>D.<23.下面有A、B、C、D四根绳子,如果在绳子两端用力拉,除一根外,其余三根都打不成结,则能打结的绳子是()A.B.C.D.24.江滩公园五种树木所占百分比情况如下表:按照上表数据绘制扇形统计图,下面四幅图中正确的是()图.A.B.C.D.25.甲、乙、丙三个工程队单独完成某项工程所需时间分别为4天、5天、6天,如果这项工程丙队先工作1天,剩下的由甲、乙两队合做,求还需要多少天完成?下面算式中列式正确的是()A.(1﹣)÷(+)B.(1﹣)÷(+)C.(1﹣)÷(+)D.1÷(+﹣)26.已知圆的直径是2厘米,阴影部分的周长是()厘米;A.π+2 B.πC.π+2 D.π+227.利用圆规和三角尺可以画出许多美丽的图案,下面四个图案中,深色部分不能用50%表示的是()图.A.B.C.D.六、解决问题.28.自然界中有许多动物都需要冬眠,如:熊、蛇、青蛙等,青蛙的冬眠时间是熊的,熊的冬眠时间是蛇的,蛇的冬眠时间是180天,青蛙的冬眠时间是多少天?29.位于北京市的周口店“北京人”遗址,是世界上人类化石材料最丰富、最系统、最有价值的古人类遗址,并被联合国科教文组织列入“世界文化遗产”名录,据研究发现,“北京人”平均脑量是1000毫升,比现代人少,现代人平均脑量是多少毫升?30.某路公汽从A站经过B站到达C站,然后原路返回(如图),去时在B站停车,而返回时不停,如果去时的速度是30km/h,那么返回时每小时行驶多少千米?31.我国神舟十一号飞船2016年10月17日发射升空并与天宫二号成功对接,11月18号返回舱着陆,创造了中国航天员太空驻留时间新纪录,标志着我国载人航天工程取得新的重大进展,如果返回舱底面圆的周长是7.536m,那么它的面积大约是多少平方米?(得数保留整数)32.如图是某班学生三种上学方式的人数统计图(两图均不完整),如果步行的学生中女生和男生的人数比是2:3,那么步行的男生有多少人?33.甲容器中有含盐20%的盐水500g,乙容器中有水500g.小刚做科学实验,先将甲容器中的一半盐水倒入乙,充分搅匀;再将乙容器中的一半盐水倒入甲,也充分搅匀,这时,甲容器中盐水的含盐率是多少?2017-2018学年湖北省武汉市江汉区六年级(下)期末数学试卷参考答案与试题解析一、计算下面各题1.直接写出得数.+1.2 5=﹣=×=÷=×0.36=7.2÷=÷=÷=1﹣÷=(﹣)×36=【分析】根据分数和小数加减乘除法的计算方法直接口算即可,(﹣)×36根据乘法分配律计算.【解答】解:+1.25= 2﹣=×=÷=×0.36=0.227.2÷=8.1÷=÷=1﹣÷=(﹣)×36=22.解下列方程.+x=2x﹣x=.【分析】(1)依据等式的性质,方程两边先同时减去,再同时除以求解;(2)小根据乘法分配律化简方程,再依据等式的性质,方程两边同时除以求解.【解答】解:(1)+x=x﹣=﹣x=x=x=×x=(2)2x﹣x=(2﹣)x=x=x=x=×x=3.计算下面各题.(1)×÷0.75(2)(+)÷(3)(4.5×﹣)÷(4)×[(+)÷].【分析】(1)根据乘法交换律简算;(2)根据乘法分配律简算;(3)先算小括号里面的乘法,再算小括号里面的减法,最后算括号外的除法;(4)先算小括号里面的加法,再算中括号里面的除法,最后算括号外的乘法.【解答】解:(1)×÷0.75=××=1×=(2)(+)÷=(+)×=×+×=42+13=55(3)(4.5×﹣)÷=(2﹣)÷=÷=2(4)×[(+)÷]=×[÷]=×=二、观察与操作.4.我国地形复杂多样,陆地地形的五种基本类型在我国均有分布,如图我国陆地地形分布情况统计图:(1)面积最大的地形是山地,最小的是丘陵;(2)高原面积比山地少总面积的7%,则高原占总面积的26%,丘陵占总面积的10%;(3)平原面积是盆地面积的,是丘陵面积的120%;(4)我国陆地国土总面积是960万平方千米,则我国山地面积约是316.8万平方千米,丘陵面积约是96万平方千米.【分析】(1)不用计算,观察各部分扇形的大小,很容易看出面积最大的地形是山地,最小的是丘陵;(2)用山地的百分率减去7%可得高原面积所占的百分率;用总面积这个单位“1”减去高原、平原、丘陵、山地所占的百分率的和就是丘陵占总面积的分率;(3)用平原所占的百分率除以盆地所占的百分率,就是平原面积是盆地面积的几分之几;同理,用平原所占的百分率除以丘陵所占的百分率,就是平原面积是丘陵面积的百分之几;(4)根据百分数乘法的意义,用我国陆地国土总面积是960万平方千米,分别乘山地面积所占的百分率,以及丘陵面积所占的百分率,即可求出山地面积和丘陵面积;据此解答即可.【解答】解:根据分析可得,(1)观察各部分扇形的大小,很容易看出面积最大的地形是山地,最小的是丘陵.(2)33%﹣7%=26%1﹣(26%+33%+12%+19%)=1﹣90%=10%答:高原面积比山地少总面积的7%,则高原占总面积的26%,丘陵占总面积的10%.(3)12%÷19%=12%÷10%=120%答:平原面积是盆地面积的,是丘陵面积的120%.(4)960×33%=316.8(万平方千米)960×10%=96(万平方千米)答:我国山地面积约是316.8万平方千米,丘陵面积约是96万平方千米.故答案为:山地,丘陵;26%,10%;,120;316.8,96.5.某次军事演习场景图如图:(1)雷达站在航空母舰东偏北40°方向上,距离是150km;(2)驱逐舰在雷达站西偏南30°方向上,距离是250km,请在平面图上标出驱逐舰位置;(3)如果雷达的最大探测半径为200km,则雷达站的覆盖面积是125600Km2;(4)雷达站距航空母舰的距离比距核潜艇的距离少,比距离巡洋舰的距离多50%.【分析】(1)以雷达站为观测点看航空母舰在南偏西50°方向,也就是西偏南40°方向,根据两者之间的图上距离及图中所标注的线段比例尺即可求出实际距离.从雷达站看航空母舰与从航空母舰看雷达站的方向完全相反,把偏的度数及距离不变即可解答.(2)以雷达站为观测点,驱逐舰的方向已知,根据二者之间的实际距离及图中所标注的线段比例尺求出它们的图上距离即可画出驱逐舰的位置.(3)根据圆面积计算公式“S=πr2”即可求出则雷达站的覆盖面积.(4)雷达站与航空母舰的距离距离已经求出、再求出与核潜艇的距离,用二者之差除以雷达站与核潜艇的距离;再雷达站与巡洋舰的距离,用二者之差除以雷达站与巡洋舰的距离.【解答】解:(1)50×3=150(km)答:雷达站在航空母舰东偏北40°方向上,距离是150km.(2)250÷50=5(cm)即驱逐舰在雷达站西偏南30°方向上,图上距离是距离5cm.在平面图上标出驱逐舰位置如下:(3)3.14×2002=3.14×20000=125600(km2)答:雷达站的覆盖面积是125600km2.(4)量得雷达站与核潜艇的图上距离是4cm,与航空母舰的图上距离是3cm,与巡洋舰的图上距离是2cm50×4=200(km)50×2=100(km)(200﹣150)÷200=(150﹣100)÷100=50÷100=50%答:雷达站距航空母舰的距离比距核潜艇的距离少,比距离巡洋舰的距离多50%.故答案为:东,北,150,125600,,50.6.数字1、2、3、4、5、6分别用如图表示:请你仔细观察,并按规律写出或画出要表示的数.【分析】(左起)第一列的1个格表示1;第二列的1个格表示2,这样第二列可以表示2、2×2=4;3可以用第一列的1,第二列的2之和表示,5可以用第一列的1与第二列的4之和表示,前两列最大可以表示到5.6用第三列的1格表示,这样第三列可以表示6、6×2=12、6×3=18,前三列最大可以表示1+4+18=23.24用第四列的一个格表示,第四列可以表示24、24×2=48、24×3=72、24×4=96.图1表示2+6×2=14;图2表示1+2×0+6×3=19;22可以用第二列的2格,第三列的3格表示,即2×2+6×3=22;60用第三列的2格,第四列的3格表示,即6×2+24×【解答】解:按规律写出或画出要表示的数:7.如图,在长、宽分别为10cm,7cm的方框中,用一个半径为0.5cm的圆形纸片,无滑动地沿着方框按A﹣B﹣C﹣D﹣A的方向滚动.(本题中π取3)(1)如图1,若纸片贴着方框内侧滚动一周回到出发位置,则圆心轨迹的长度是30cm;圆形纸片没有滚到的部分,面积是40.25cm2;圆形纸片共转动了10圈;(2)如图2,若圆形纸片贴着方框外侧滚动一周回到出发位置,圆纸片共转动了圈.【分析】(1)圆心的轨迹是一个长方形,其长是长方形长减去两条圆半径,宽也是长方形宽减去两条圆半径,根据长方形周长计算公式“C=2(a+b)”即可求出.圆没有滚动到的部分是边长为圆半径的正方形的面积减去圆的面积的4倍和中间长为10﹣2×2×0.5,宽为7﹣2×2×0.5长方形面积;根据圆周长计算公式“C=2πr”求出圆形纸处转动一周的长度,再用圆心的轨迹长度(已求出)除以圆周长.(2)圆形纸片贴着方框外侧滚动一周,圆纸片在长方形每个顶点处转动90°,四个顶点正好转动一圈.然后圆纸片贴着方框外侧滚动,也就是长方形的周长除以圆的周长.【解答】解:(1)10﹣0.5×2=10﹣1=9(cm)7﹣0.5×2=7﹣1=6(cm)(9+6)×2=15×2=30(cm)(0.5×0.5﹣3×0.52×)×4+(10﹣2×2×0.5)(7﹣2×2×0.5)=(0.25﹣0.1875)×4+8×5=0.0625×4+40=40.25(cm2)30÷(3×0.5×2)=30÷3=10(圈)答:圆心轨迹的长度是30cm;圆形纸片没有滚到的部分,面积是0.25cm2;圆形纸片共转动了10圈.(2)(10+7)×2=17×2=34(厘米)2π×0.5=3(厘米)34÷3+1=(圈)答:圆纸片共转动了圈.故答案为:30,40.25,10,.8.计算半圆面中涂色部分的面积.(单位cm)【分析】由图形可得图中阴影部分的面积=圆的面积﹣直角三角形的面积,据此据此计算即可.【解答】解:﹣(8÷2)×(8÷2)=4π﹣=4π﹣8(cm2),答:半圆面中涂色部分的面积为(4π﹣8)cm2.三、填空题.9.60%=0.6==12÷20=36:60.【分析】把0.6化成分数并化简是;根据分数与除法的关系=3÷5,再根据商不变的性质被除数、除数都乘4就是12÷20;根据比与分数的关系=3:5,再根据比的基本性质比的前、后项都乘12就是36:60;把0.6的小数点向右移动两位添上百分号就是60%.【解答】解:60%=0.6==12÷20=36:60.故答案为:60,3,20,36.10.小时:20分钟化成最简整数比是3:4,比值是.【分析】先统一单位,把小时化成15分,再用比的前项和比的后项同时除以5进行化简,得出最简比;然后用比的前项除以比的后项,求出比值.【解答】解:小时:20分钟=15分钟:20分钟=15:20=(15÷5):(20÷5)=3:4小时:20分钟=15分钟:20分钟=3:4=3÷4=答:小时:20分钟化成最简整数比是3:4,比值是.故答案为:3:4,.11.把12:21的前项除以3,要使比值不变,后项应该是4;把8:5的后项乘a(a≠0),要使比值不变,前项应该是8a.【分析】比的前项和后项同时乘或除以一个相同的数(0除外),比值才不变;据此解答.【解答】解:把12:21的前项除以3,要使比值不变,后项应该是除以3,即12÷3=4;把8:5的后项乘a(a≠0),要使比值不变,前项应该是乘a,即8a.故答案为:4,8a.12.中国工农红军长征胜利80周年纪念币的直径为4cm,则纪念币的周长是12.56cm,正面的面积是12.56cm2.【分析】圆的周长=πd;圆的面积=πr2,据此代入数据即可解答.【解答】解:3.14×4=12.56(cm)3.14×(4÷2)2=3.14×4=12.56(cm2)答:纪念币的周长是12.56cm,正面的面积是12.56cm2.故答案为:12.56;12.56.13.甲商品原价300元,按七折出售,售价是210元;乙商品降价20%后,售价是160元,则原价是200元.【分析】(1)七折是指现价是原价的70%,把原价看成单位“1”,用原价乘70%即可求出现在的售价;(2)要把原价看作是单位“1”,乙商品降价20%后是160元,就是原价的(1﹣20%)是160元,用除法可求出原价是多少,据此解答.【解答】解:(1)300×70%=210(元)答:售价是210元.(2)160÷(1﹣20%)=160÷80%=200(元)答:原价200元.故答案为:210,200.14.甲车从A地到B地要行6小时,乙车从B地到A地要行4小时,则甲、乙两车的最简速度比是2:3;如果两车同时从A、B两地出发,相向而行,小时相遇.【分析】把从A、B两地之间的路程看成单位“1”,甲的速度是,乙的速度是,用甲的速度比上乙的速度,再化简,即可求出两车的速度比;求出两车的速度和,再用全长1除以速度和,即可求出相遇时间.【解答】解:甲的速度是,乙的速度是,:=2:3;1÷(+)=1÷=(小时)答:甲、乙两车的最简速度比是2:3;如果两车同时从A、B两地出发,相向而行,小时相遇.故答案为:2:3,.15.一根彩带剪成两段,第一段长m,第二段占全长的,这根彩带全长m.【分析】把彩带的全长看成单位“1”,第二段占全长的,第一段就是全长的(1﹣),也就是米,根据分数除法的意义,用米除以(1﹣)即可求出全长.【解答】解:÷(1﹣)=÷=(米)答:这根彩带全长m.故答案为:.16.某商场做促销,推出“满100元减50元”(比如某顾客购物240元,只需付款140元)的活动,若在该商场购买550元商品,只需付款300元;若用360元可以买到标价为660元或710元的商品.【分析】首先看550元里面有几个100元(用550元除以100元,商用去尾法求近似数),再用50元乘几就是少付的钱数,然后再用原价550元减去少付的钱数.600元可以少付600﹣(600÷100)×50=300(元),即标价600元的只付300元,60元不足100元,不会优惠,因此,若用360元可以买到标价为660元的商品;700元可以少付700﹣(700÷100)×50=350(元),即700元的商品只需付350元,10元不会优惠,因此,用360元可以买到标价为710元的商品.由此即可总结出:“实付款(50元的整数倍)×2+零头(少于100元)=原价”.【解答】解:550÷100≈5(个)50×5=250(元)550﹣250=300(元)300×2+60=660(元)350×2+10=710(元)答:若在该商场购买550元商品,只需付款300元;若用360元可以买到标价为660元或710元的商品.故答案为:300,660,710.17.图中空白部分的面积是10.28cm2,涂色部分的面积是6cm2.【分析】(1)图中空白部分的面积=半圆的面积+下方空白三角形的面积;(2)把下方的两个阴影部分补到上方,那么涂色部分的面积就等于底是6厘米,高是4÷2厘米的三角形的面积;据此解答即可.【解答】解:(1)3.14×(4÷2)2÷2+4×(4÷2)÷2=6.28+4=10.28(平方厘米)(2)6×(4÷2)÷2=6×2÷2=6(平方厘米)答:图中空白部分的面积是10.28cm2,涂色部分的面积是6cm2.故答案为:10.28;6.四、判断题.18.7kg的与9kg的一样重.×.(判断对错)【分析】先把7千克看成单位“1”,用7千克乘,求出7千克的,同理求出9千克的是多少千克,再比较即可求解.【解答】解:7×=(千克)9×=4(千克)<47千克的小于9千克的,原题说法错误.故答案为:×.19.如图可以表示为:×,也可以表示×.×.(判断对错)【分析】通过观察图示,把大长方形看作“1”,把整个图形平均分成3份,取其中的2份,即;图中的浅色部分表示又把这2份平均分成了5份,取其中的3份,即.因此图中的深色部分写成乘法算式为×,据此解答即可.【解答】解:根据分析可知,图中的深色部分可以表示为×,所以题干说法错误.故答案为:×.20.甲车速度比乙车快,则乙车速度比甲车慢20%.√.(判断对错)【分析】甲车的速度比乙车快,即甲车的速度是乙车速度的1+,则乙车的速度就比甲车慢:÷(1+),由此判断即可.【解答】解:÷(1+)=÷==20%所以甲车速度比乙车快,则乙车速度比甲车慢20%,说法正确;故答案为:√.21.从A到C有3条不同的半圆弧线图(如图),这三条线路的距离相等.√.(判断对错)【分析】观察图发现:三条线路都可以看成直径是AC的半圆弧的长度,所以这三条线路的长度相等,由此判断.【解答】解:①号线路半圆弧的直径是线段AC;②号线路两部分半圆弧的直径和是线段AC的长度;③号线路两部分半圆弧的直径和是线段AC的长度;根据半圆弧的长度的求解方法可得它们的长度都是:πAC÷2,所以三条路的长度相等;故答案为:√.五、选择题.22.一杯糖水,糖与糖水的质量比是5:21,再加入a克水时甜味会变淡一些,下列式子中能正确表示其中道理的是()A.=B.>C.>D.<【分析】糖水的甜和糖水的浓度有关:糖水的浓度=糖的质量÷糖水的质量×100%.此题分别表示出两次糖水的浓度,列出不等式即可.【解答】解:初始的浓度:后来的浓度:后来的浓度要比原来的低一些,即:>.故选:C.23.下面有A、B、C、D四根绳子,如果在绳子两端用力拉,除一根外,其余三根都打不成结,则能打结的绳子是()A.B.C.D.【分析】假定固定绳子的一头,拉起绳子的另一头,顺着绳子观察,想象是否会出现打结的情况.【解答】解:由分析逐一验证,会发现D选项会出现打结的情况.故选:D.24.江滩公园五种树木所占百分比情况如下表:按照上表数据绘制扇形统计图,下面四幅图中正确的是()图.A.B.C.D.【分析】根据统计表的数据,比较江滩公园五种树木所占百分比的大小,即可得五种树木在扇形统计图中所占面积的大小,据此解答即可.【解答】解:因为5%<10%<18%<25%<42%,所以在扇形图中所占面积从小到大为:松树、杨树、柏树、柳树、樟树,故选:B.25.甲、乙、丙三个工程队单独完成某项工程所需时间分别为4天、5天、6天,如果这项工程丙队先工作1天,剩下的由甲、乙两队合做,求还需要多少天完成?下面算式中列式正确的是()A.(1﹣)÷(+)B.(1﹣)÷(+)C.(1﹣)÷(+)D.1÷(+﹣)【分析】把工作总量看成单位“1”,甲、乙、丙三个工程队单独完成某项工程所需时间分别为4天、5天、6天,那么这三个工程队的工作效率分别是,,,先用工作总量减去丙一天完成的工作量,求出剩下的工作量,再用剩下的工作量除以甲乙的工作效率和即可求出需要的时【解答】解:(1﹣)÷(+)=÷=(天)答:求还需要天完成.故选:C.26.已知圆的直径是2厘米,阴影部分的周长是()厘米;A.π+2 B.πC.π+2 D.π+2【分析】由图意可知:阴影部分的周长=×圆的周长+2r,据此代入数据即可得解.【解答】解:×π×2+2=π+2(厘米).答:阴影部分的周长是(π+2)厘米.故选:D.27.利用圆规和三角尺可以画出许多美丽的图案,下面四个图案中,深色部分不能用50%表示的是()图.A.B.C.D.【分析】图1相当于2个圆的面积减去一个边长等于圆直径的正方形面积.设圆的半径为1,直径为2.阴影部分面积为π×12×2﹣22=2π﹣4,正方形面积为22=4,(2π﹣4)÷4=57%.图2中涂色部分相当于一个以大圆半径为直径的两个小圆的面积.设小圆的半径为1,则大圆的半径为2.涂色部分的面积是π×12×2=2π,大圆面积是π×22=4π,2π÷4π=50%.图3通过作辅助线,A部分旋转到A′的位置,B部分旋转到B′的位置,涂色部分正好是正方形面积的一半,也就是50%.图4通过作辅助线,A部分旋转到A′的位置,B部分旋转到B′的位置,涂色部分正好是大圆面积的一半,也就是50%.【解答】解:A设圆的半径为1,直径为2.阴影部分面积为π×12×2﹣22=2π﹣4,正方形面积为22=4,(2π﹣4)÷4=57%.B设小圆的半径为1,则大圆的半径为2.涂色部分的面积是π×12×2=2π,大圆面积是π×22=4π,2π÷4π=50%.CA部分旋转到A′的位置,B部分旋转到B′的位置,涂色部分正好是正方形面积的一半,也就是50%.DA部分旋转到A′的位置,B部分旋转到B′的位置,涂色部分正好是大圆面积的一半,也就是50%.故选:A.六、解决问题.28.自然界中有许多动物都需要冬眠,如:熊、蛇、青蛙等,青蛙的冬眠时间是熊的,熊的冬眠时间是蛇的,蛇的冬眠时间是180天,青蛙的冬眠时间是多少天?【分析】首先根据题意,先把蛇冬眠的时间看作单位“1”,根据分数乘法的意义,用蛇冬眠的时间乘,求出熊冬眠的时间是多少;然后根据题意,再把熊冬眠的时间看作单位“1”,根据分数乘法的意义,用熊冬眠的时间乘,求出青蛙冬眠的时间是多少.【解答】解:180××=120×=150(天)答:青蛙的冬眠时间是150天.29.位于北京市的周口店“北京人”遗址,是世界上人类化石材料最丰富、最系统、最有价值的古人类遗址,并被联合国科教文组织列入“世界文化遗产”名录,据研究发现,“北京人”平均脑量是1000毫升,比现代人少,现代人平均脑量是多少毫升?【分析】把现代人的平均脑量看成单位“1”,现代人平均脑量的(1﹣)是1000毫升,然后根据:对应数÷对应分率=单位“1”的量“进行解答即可.【解答】解:1000÷(1﹣)=1000=1400(毫升)答:现代人平均脑量是1400毫升.30.某路公汽从A站经过B站到达C站,然后原路返回(如图),去时在B站停车,而返回时不停,如果去时的速度是30km/h,那么返回时每小时行驶多少千米?【分析】通过观察统计图可知:从A站到B站行驶4小时,在B 站停车1小时;从B站到C站行驶5小时;已知去时的速度是30千米/时,根据速度×时间=路程,求出从A站到C 站之间的路程,返回行驶了6小时,再根据速度=路程÷时间,据此解答即可.【解答】解:10﹣1=9(小时),19﹣13=6(小时),30×9÷6=270÷6=45(千米/时),答:返回时每小时行驶45千米.31.我国神舟十一号飞船2016年10月17日发射升空并与天宫二号成功对接,11月18号返回舱着陆,创造了中国航天员太空驻留时间新纪录,标志着我国载人航天工程取得新的重大进展,如果返回舱底面圆的周长是7.536m,那么它的面积大约是多少平方米?(得数保留整数)【分析】根据圆的周长公式:C=2πr可知r=C÷2π,据此求出圆的半径,再根据圆的面积公式:S=πr2解答.【解答】解:7.536÷(2×3.14)=7.536÷6.28=1.2(米)3.14×1.22=3.14×1.44=4.5216≈5(平方米)答:它的面积大约是5平方米.32.如图是某班学生三种上学方式的人数统计图(两图均不完整),如果步行的学生中女生和男生的人数比是2:3,那么步行的男生有多少人?【分析】把总人数看作单位“1”,用乘车的人数25除以所占的分率50%求出总人数,然后用总人数减去乘车的人数(25人)与骑车的人数(15人),求出步行的人数,再根据“步行的学生中女生和男生的人数比是2:3”利用按比例分配的方法,求出步行的男生所占的分率,再根据分数乘法的意义解答即可.【解答】解:25÷50%﹣25﹣15=50﹣40=10(人)10×=6(人)答:步行的男生有6人.33.甲容器中有含盐20%的盐水500g,乙容器中有水500g.小刚做科学实验,先将甲容器中的一半盐水倒入乙,充分搅匀;再将乙容器中的一半盐水倒入甲,也充分搅匀,这时,甲容器中盐水的含盐率是多少?【分析】根据甲容器中有含盐20%的盐水500g将甲容器中的一半盐水倒入乙,可知甲容器中剩下含盐量为500×20%÷2=50g,盐水量为500÷2=250g,倒入乙中乙的含盐量为500×20%=50g,盐水量为500÷2=250g,再将乙容器中的一半盐水倒入甲,也充分搅匀,可知甲容器中含盐量增加50÷2=25g,盐水量增加(250+500)÷2=375g,再根据含盐率=含盐量÷盐水量列式计算即可求解.【解答】解:500×20%÷2=50(g)500÷2=250(g)50÷2=25(g)(250+500)÷2=375(g)(50+25)÷(250+375)×100%=75÷625×100%=12%答:甲容器中盐水的含盐率是12%.。
2016-2017学年度第二学期高二期末检测数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题)一、选择题(本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若复数满足,则A. B. C. D.2. 设随机变量X~B(8,p),且D(X)=1.28,则概率p的值是A. 0.2B. 0.8C. 0.2或0.8D. 0.163. 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;②设有一个回归方程,变量x增加一个单位时,y平均增加3个单位;③线性回归方程必经过点(,);④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是()A. 0B. 1C. 2D. 34. 用反证法证明:若整系数一元二次方程有有理数根,那么中至少有一个是偶数.下列假设正确的是A. 假设都是偶数;B. 假设都不是偶数C. 假设至多有一个偶数D. 假设至多有两个偶数5. 过点O(1,0)作函数f(x)=e x的切线,则切线方程为()A. y=e2(x-1)B. y=e(x-1)C. y=e2(x-1)或y=e(x-1)D. y=x -16. 随机变量ξ服从二项分布ξ~B(n,P),且E(ξ)=300,D(ξ)=200,则等于()A. 3200B. 2700C. 1350D. 12007. 从1,2,3,4,5中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)等于( )A. B. C. D.8. 如图,AB∩α=B,直线AB与平面α所成的角为75°,点A是直线AB上一定点,动直线AP与平面α交于点P,且满足∠PAB=45°,则点P在平面α内的轨迹是()A. 双曲线的一支B. 抛物线的一部分C. 圆D. 椭圆9. 下表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为=0.7x +0.35,则下列结论错误的是( )A. 产品的生产能耗与产量呈正相关B. t的值是3.15C. 回归直线一定过(4.5,3.5)D. A产品每多生产1吨,则相应的生产能耗约增加0.7吨10. 将5件不同的奖品全部奖给3个学生,每人至少一件奖品,则不同的获奖情况种数是A. 150B. 210C. 240D. 30011. 设矩形ABCD,以A、B为左右焦点,并且过C、D两点的椭圆和双曲线的离心率之积为()A. B. 2 C. 1 D. 条件不够,不能确定12. 已知函数f(x)=x3+bx2+cx+d的图象如图,则函数的单调递减区间是()A. (-∞,-2)B. (-∞,1)C. (-2,4)D. (1,+∞)第Ⅱ卷(非选择题)二、填空题(本大题共4小题.把答案直接填在题中的相应横线上.)13. 直线是曲线的一条切线,则实数的值为____________14. 连续掷一枚质地均匀的骰子4次,设事件A=“恰有2次正面朝上的点数为3的倍数”,则P(A)=________.15. 已知,则的值等于________.16. 已知函数,如果存在,使得对任意的,都有成立,则实数a的取值范围是__________.三、解答题(本大题共6小题.解答应写出文字说明、证明过程或演算步骤.)17. 在的展开式中,求:(1)第3项的二项式系数及系数;(2)含的项.18. 设正项数列的前项和为,且,(1)求,并猜想数列的通项公式(2)用数学归纳法证明你的猜想.19. 某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.(Ⅰ)设甲、乙两个班所抽取的10名同学成绩方差分别为、,比较、的大小(直接写出结果,不写过程);(Ⅱ)从甲班10人任取2人,设这2人中及格的人数为X,求X的分布列和期望;(Ⅲ)从两班这20名同学中各抽取一人,在已知有人及格的条件下,求抽到乙班同学不及格的概率.20. 如图,四棱锥P—ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F 是PC的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)若底面ABCD为正方形,,求二面角C—AF—D大小..21. 已知函数(a<0).(Ⅰ)当a=-3时,求f(x)的单调递减区间;(Ⅱ)若函数f(x)有且仅有一个零点,求实数a的取值范围;参考答案:1【答案】C2【答案】C3【答案】D4【答案】B5【答案】A6【答案】B7【答案】B8【答案】D9【答案】B10【答案】A11【答案】C12【答案】A13【答案】14【答案】15【答案】16【答案】17.解:(1)第3项的二项式系数为C=15,又T3=C (2)42=24·Cx,所以第3项的系数为24C=240.(2)T k+1=C (2)6-k k=(-1)k26-k Cx3-k,令3-k=2,得k=1.所以含x2的项为第2项,且T2=-192x2.18.解:(1)当时,,∴或(舍,).当时,,∴.当时,,∴.猜想:.(2)证明:①当时,显然成立.②假设时,成立,则当时,,即∴.由①、②可知,,.19.解:(Ⅰ)由茎叶图可得.(Ⅱ)由题可知X取值为0,1,2.,,,所以X的分布列为:所以.(Ⅲ)由茎叶图可得,甲班有4人及格,乙班有5人及格.设事件A=“从两班这20名同学中各抽取一人,已知有人及格”,事件B=“从两班这20名同学中各抽取一人,乙班同学不及格”.则.20解:(Ⅰ)连接BD,设AC∩BD=O,连结OE,∵四边形ABCD为矩形,∴O是BD的中点,∵点E是棱PD的中点,∴PB∥EO,又PB平面AEC,EO平面AEC,∴PB∥平面AEC.(Ⅱ)由题可知AB,AD,AP两两垂直,则分别以、、的方向为坐标轴方向建立空间直角坐标系.明确平面DAF的一个法向量为,利用二面角公式求角.设由可得AP=AB,于是可令AP=AB=AD=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),F(1,1,1)设平面CAF的一个法向量为.由于,所以,解得x=-1,所以.因为y轴平面DAF,所以可设平面DAF的一个法向量为.由于,所以,解得z=-1,所以.故.所以二面角C—AF—D的大小为60°.点睛:立体几何是高中数学的重要内容之一,也历届高考必考的题型之一.本题考查是空间的直线与平面的平行问题和空间两个平面所成角的范围的计算问题.解答时第一问充分借助已知条件与判定定理,探寻直线PB与EO平行,再推证PB∥平面AEC即可.关于第二问中的二面角的余弦值的问题,解答时巧妙运用建构空间直角坐标系,探求两个平面的法向量,然后运用空间向量的数量积公式求出二面角的余弦值21.解(Ⅰ)∵a=-3,∴,故令f′(x)<0,解得-3<x<-2或x>0,即所求的单调递减区间为(-3,-2)和(0,+∞)(Ⅱ)∵(x>a)令f′(x)=0,得x=0或x=a+1(1)当a+1>0,即-1<a<0时,f(x)在(a,0)和(a+1,+∞)上为减函数,在(0,a+1)上为增函数.由于f(0)=aln(-a)>0,当x→a时,f(x)→+∞.当x→+∞时,f(x)→-∞,于是可得函数f(x)图像的草图如图,此时函数f(x)有且仅有一个零点.即当-1<a<0对,f(x)有且仅有一个零点;(2)当a=-1时,,∵,∴f(x)在(a,+∞)单调递减,又当x→-1时,f(x)→+∞.当x→+∞时,f(x)→-∞,故函数f(x)有且仅有一个零点;(3)当a+1<0即a<-1时,f(x)在(a,a+1)和(0,+∞)上为减函数,在(a+1,0)上为增函数.又f(0)=aln(-a)<0,当x→a时,f(x)→+∞,当x→+∞时,f (x)→-∞,于是可得函数f(x)图像的草图如图,此时函数f(x)有且仅有一个零点;综上所述,所求的范围是a<0.。
2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。
2016-2017学年四川省成都七中高二(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题p:“a=﹣2”是命题q:“直线ax+3y﹣1=0与直线6x+4y﹣3=0垂直”成立的()A.充要条件B.充分非必要条件C.必要非充分条件D.既不充分也不必要条件2.成都七中为了全面落实素质教育,切实有效减轻学生课业负担,拟从林荫、高新两个校区的初高中学生中抽取部分学生进行调查,事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按年级分层抽样D.系统抽样3.圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离4.已知双曲线的离心率为2,那么双曲线的渐近线方程为()A.B.x±y=0 C.2x±y=0 D.5.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.6.设实数x,y满足,则μ=的取值范围是()A.[,2]B.[,]C.[,2]D.[2,]7.有5名高中优秀毕业生回母校成都7中参加高2015级励志成才活动,到3个班去做学习经验交流,则每个班至少去一名的不同分派方法种数为()A.200 B.180 C.150 D.2808.柜子里有3双不同的鞋,随机地取2只,下列叙述错误的是()A.取出的鞋不成对的概率是B.取出的鞋都是左脚的概率是C.取出的鞋都是同一只脚的概率是D.取出的鞋一只是左脚的,一只是右脚的,但它们不成对的概率是9.执行如图所示的程序框图,若输出的结果为43,则判断框内应填入的条件是()A.z≤42?B.z≤20? C.z≤50? D.z≤52?10.某学校随机抽查了本校20个同学,调查他们平均每天在课外从事体育锻炼的时间(分钟),根据所得数据的茎叶图,以5为组距将数据分为八组,分别是[0,5),[5,10),…[35,40],作出的频率分布直方图如图所示,则原始的茎叶图可能是()A.B.C D.11.如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈(0,),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,则()A.随着角度θ的增大,e1增大,e1e2为定值B.随着角度θ的增大,e1减小,e1e2为定值C.随着角度θ的增大,e1增大,e1e2也增大D.随着角度θ的增大,e1减小,e1e2也减小12.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C,其左、右焦点分别是F1,F2,已知点M坐标为(2,1),双曲线C上点P(x0,y0)(x0>0,y0>0)满足=,则﹣S()A.2 B.4 C.1 D.﹣1二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题∀x∈R,|x|<0的否定是.14.已知双曲线x2﹣my2=1的虚轴长是实轴长的3倍,则实数m的值是.15.在平面直角坐标系xOy中,曲线x2+y2=2|x|+2|y|围成的图形的面积为.16.已知圆C:(x﹣1)2+y2=r2(r>0)与直线l:y=x+3,且直线l上有唯一的一个点P,使得过点P 作圆C的两条切线互相垂直.设EF是直线l上的一条线段,若对于圆C上的任意一点Q,,则的最小值是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500).(1)求居民收入在[3000,3500)的频率;(2)根据频率分布直方图算出样本数据的中位数、平均数及其众数;(3)为了分析居民的收入与年龄、职业等方面的关系,按收入从这10000人中用分层抽样方法抽出100人作进一步分析,则应在月收入为[2500,3000)的人中抽取多少人?18.口袋中装有4个形状大小完全相同的小球,小球的编号分别为1,2,3,4,甲、乙、丙依次有放回地随机抽取1个小球,取到小球的编号分别为a,b,c.(1)在一次抽取中,若有两人抽取的编号相同,则称这两人为“好朋友”,求甲、乙两人成为“好朋友”的概率;(2)求抽取的编号能使方程a+b+2c=6成立的概率.19.某科研所对新研发的一种产品进行合理定价,该产品按事先拟定的价格试销得统计数据.(1)①求线性回归方程y=x+;②谈谈商品定价对市场的影响;(2)估计在以后的销售中,销量与单价服从回归直线,若该产品的成本为4.5元/件,为使科研所获利最大,该产品定价应为多少?(附:=,=﹣,=8.5,=80)20.已知⊙C:x2+y2﹣2x﹣4y﹣20=0,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0.(1)求证:直线l与⊙C恒有两个交点;(2)若直线l与⊙C的两个不同交点分别为A,B.求线段AB中点P的轨迹方程,并求弦AB的最小值.21.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(1)求曲线C的方程;(2)是否存在整数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有|FA|2+|FB|2<|AB|2?若存在,求出m的取值范围;若不存在,请说明理由.22.已知椭圆的上顶点M与左、右焦点F1,F2构成三角形MF1F2面积为,又椭圆C的离心率为,左右顶点分别为P,Q.(1)求椭圆C的方程;(2)过点D(m,0)(m∈(﹣2,2),m≠0)作两条射线分别交椭圆C于A,B两点(A,B在长轴PQ同侧),直线AB交长轴于点S(n,0),且有∠ADP=∠BDQ.求证:mn为定值;(3)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C交于E,F两点.若△TMN的面积是△TEF的面积的λ倍,求λ的最大值.2016-2017学年四川省成都七中高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题p:“a=﹣2”是命题q:“直线ax+3y﹣1=0与直线6x+4y﹣3=0垂直”成立的()A.充要条件B.充分非必要条件C.必要非充分条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据直线垂直的等价条件,结合充分条件和必要条件的定义进行判断即可.【解答】解:若“直线ax+3y﹣1=0与直线6x+4y﹣3=0垂直”,则6a+3×4=0,解得a=﹣2,故p是q成立的充要条件,故选:A2.成都七中为了全面落实素质教育,切实有效减轻学生课业负担,拟从林荫、高新两个校区的初高中学生中抽取部分学生进行调查,事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按年级分层抽样D.系统抽样【考点】收集数据的方法.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大,按年级分层抽样,这种方式具有代表性,比较合理.故选:C.3.圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切 B.相交C.外切D.相离【考点】圆与圆的位置关系及其判定.【分析】求出两圆的圆心和半径,计算两圆的圆心距,将圆心距和两圆的半径之和或半径之差作对比,判断两圆的位置关系.【解答】解:圆(x+2)2+y2=4的圆心C1(﹣2,0),半径r=2.圆(x﹣2)2+(y﹣1)2=9的圆心C2(2,1),半径R=3,两圆的圆心距d==,R+r=5,R﹣r=1,R+r>d>R﹣r,所以两圆相交,故选B.4.已知双曲线的离心率为2,那么双曲线的渐近线方程为()A.B.x±y=0 C.2x±y=0 D.【考点】双曲线的简单性质.【分析】利用双曲线的离心率,转化求出a,b关系,即可求解双曲线的渐近线方程.【解答】解:双曲线的离心率为2,可得,即,可得,双曲线的渐近线方程为:y=±,即.故选:D.5.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.【考点】几何概型;一元二次不等式的解法.【分析】先解不等式f(x0)≤0,得能使事件f(x0)≤0发生的x0的取值长度为3,再由x0总的可能取值,长度为定义域长度10,得事件f(x0)≤0发生的概率是0.3【解答】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==,故选C6.设实数x,y满足,则μ=的取值范围是()A.[,2] B.[,]C.[,2]D.[2,]【考点】简单线性规划.【分析】根据不等式组画出可行域,得到如图所示的△ABC及其内部的区域.设P(x,y)为区域内一点,根据斜率计算公式可得μ=表示直线OP的斜率,运动点P得到PQ斜率的最大、最小值,即可得到μ=的取值范围.【解答】解:作出不等式组表示的平面区域,得到如图所示的△ABC及其内部的区域其中A(1,2),B(4,2),C(3,1),设P(x,y)为区域内的动点,可得μ=表示直线OP的斜率,其中P(x,y)在区域内运动,O是坐标原点.运动点P,可得当P与A点重合时,μ=2达到最大值;当P与C点重合时,μ=达到最小值.综上所述,μ=的取值范围是[,2]故选:A7.有5名高中优秀毕业生回母校成都7中参加高2015级励志成才活动,到3个班去做学习经验交流,则每个班至少去一名的不同分派方法种数为()A.200 B.180 C.150 D.280【考点】排列、组合的实际应用.【分析】根据题意,分2步进行分析,①、先将5个人分成3组,分析可得有2种分组方法:分成2﹣2﹣1的三组或分成3﹣1﹣1的三组,分别求出每种情况的分组方法数目,由分类计数原理可得分组方法数目,②、将分好的3组对应三个班级,由排列数公式可得其方法数目,进而由分步计数原理计算可得答案.【解答】解:根据题意,分2步进行分析,①、先将5个人分成3组,若分成2﹣2﹣1的三组,有=15种情况,若分成3﹣1﹣1的三组,有=10种情况,一共有15+10=25种分组方法;②、将分好的3组对应三个班级,有=6种方法,则一共有25×6=150种不同分派方法,故选:C.8.柜子里有3双不同的鞋,随机地取2只,下列叙述错误的是()A.取出的鞋不成对的概率是B.取出的鞋都是左脚的概率是C.取出的鞋都是同一只脚的概率是D.取出的鞋一只是左脚的,一只是右脚的,但它们不成对的概率是【考点】古典概型及其概率计算公式.【分析】利用等可能事件概率计算公式分别求解,能求出结果.【解答】解:∵柜子里有3双不同的鞋,随机地取2只,∴基本事件总数n==15,在A中,取出的鞋是成对的取法有3种,∴取出的鞋不成对的概率是:1﹣=,故A 正确;在B中,取出的鞋都是左脚的取法有=3种,∴取出的鞋都是左脚的概率为:,故B正确;在C中,取出的鞋都是同一只脚的取法有:=6,∴取出的鞋都是同一只脚的概率是p==;在D中,取出的鞋一只是左脚的,一只是右脚的,由题意,可以先选出左脚的一只有=3种选法,然后从剩下两双的右脚中选出一只有=2种选法,所以一共6种取法,∴取出的鞋一只是左脚的,一只是右脚的,但它们不成对的概率是,故D错误.故选:D.9.执行如图所示的程序框图,若输出的结果为43,则判断框内应填入的条件是()A.z≤42? B.z≤20? C.z≤50? D.z≤52?【考点】程序框图.【分析】根据已知中的程序框图可得,该程序的功能是计算并输出变量z的值,模拟程序的运行过程,可得答案.【解答】解:第一次执行z=2x+y后,z=1,不满足输出条件,应满足进行循环的条件,则x=1,y=1,第二次执行z=2x+y后,z=3,不满足输出条件,应满足进行循环的条件,则x=1,y=3,第三次执行z=2x+y后,z=5,不满足输出条件,应满足进行循环的条件,则x=3,y=5,第四次执行z=2x+y后,z=11,不满足输出条件,应满足进行循环的条件,则x=5,y=11,第五次执行z=2x+y后,z=21,不满足输出条件,应满足进行循环的条件,则x=11,y=21,第六次执行z=2x+y后,z=43,满足输出条件,故进行循环的条件可以为z≤42?,故选:A10.某学校随机抽查了本校20个同学,调查他们平均每天在课外从事体育锻炼的时间(分钟),根据所得数据的茎叶图,以5为组距将数据分为八组,分别是[0,5),[5,10),…[35,40],作出的频率分布直方图如图所示,则原始的茎叶图可能是()A.B.C D.【考点】频率分布直方图;茎叶图.【分析】由频率分布直方图可得,[25,30),[30,35)的频率相同,频数为3,即可得出结论.【解答】解:由频率分布直方图可得,[25,30),[30,35)的频率相同,频数为3,故选:B.11.如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈(0,),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,则()A.随着角度θ的增大,e1增大,e1e2为定值B.随着角度θ的增大,e1减小,e1e2为定值C.随着角度θ的增大,e1增大,e1e2也增大D.随着角度θ的增大,e1减小,e1e2也减小【考点】椭圆的简单性质.【分析】连接BD、AC,假设AD=t,根据余弦定理表示出BD,进而根据双曲线的性质可得到a的值,再由AB=2c,e=可表示出e1=,最后根据余弦函数的单调性可判断e1的单调性;同样表示出椭圆中的c'和a'表示出e2的关系式,最后令e1、e2相乘即可得到e1e2的关系.【解答】解:连接BD,AC设AD=t,则BD==∴双曲线中a=, e 1= ∵y=cosθ在(0,)上单调减,进而可知当θ增大时,y==减小,即e 1减小∵AC=BD ∴椭圆中CD=2t (1﹣cosθ)=2c ∴c'=t (1﹣cosθ)AC +AD=+t ,∴a'=(+t ), e 2==∴e 1e 2=×=1 故选B .12.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为(2,1),双曲线C 上点P (x 0,y 0)(x 0>0,y 0>0)满足=,则﹣S( )A .2B .4C .1D .﹣1 【考点】椭圆的简单性质.【分析】通过已知条件,写出双曲线方程,结合已知等式及平面几何知识得出点M 是△F 1PF 2的内心,利用三角形面积计算公式计算即可.【解答】解:∵椭圆方程为+=1, ∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0), ∴双曲线方程为,设点P (x ,y ),记F 1(﹣3,0),F 2(3,0), ∵=,∴=,整理得:=5,化简得:5x=12y ﹣15,又∵,∴5﹣4y 2=20,解得:y=或y=(舍), ∴P (3,), ∴直线PF 1方程为:5x ﹣12y +15=0,∴点M到直线PF1的距离d==1,易知点M到x轴、直线PF2的距离都为1,结合平面几何知识可知点M(2,1)就是△F1PF2的内心.故﹣===2,故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题∀x∈R,|x|<0的否定是∃x0∈R,|x0|≥0.【考点】命题的否定.【分析】利用全称命题的否定是特称命题,去判断.【解答】解:因为命题是全称命题,根据全称命题的否定是特称命题,所以命题的否定:∃x0∈R,|x0|≥0.故答案为:∃x0∈R,|x0|≥0.14.已知双曲线x2﹣my2=1的虚轴长是实轴长的3倍,则实数m的值是.【考点】双曲线的简单性质.【分析】利用双曲线x2﹣my2=1的虚轴长是实轴长的3倍,列出方程求解即可.【解答】解:双曲线x2﹣my2=1的虚轴长是实轴长的3倍,可得:=3,解得m=.故答案为:.15.在平面直角坐标系xOy中,曲线x2+y2=2|x|+2|y|围成的图形的面积为6π+8.【考点】圆的一般方程.【分析】x>0,y>0时,方程化为(x﹣1)2+(y﹣1)2=2,其面积为=+2,根据图象的对称性,可得曲线x2+y2=2|x|+2|y|围成的图形的面积.【解答】解:x>0,y>0时,方程化为(x﹣1)2+(y﹣1)2=2,其面积为=+2根据图象的对称性,可得曲线x2+y2=2|x|+2|y|围成的图形的面积为6π+8,故答案为6π+8.16.已知圆C:(x﹣1)2+y2=r2(r>0)与直线l:y=x+3,且直线l上有唯一的一个点P,使得过点P作圆C的两条切线互相垂直.设EF是直线l上的一条线段,若对于圆C上的任意一点Q,,则的最小值是4+4.【考点】直线和圆的方程的应用.【分析】由圆的对称性知直线l上的唯一点P与圆心C(1,0)所在直线必与直线l垂直,求得PC所在直线方程,与直线l求得交点P,再根据对称性可得r=2,由题意,知|EF|取得最小值时,一定关于直线y=﹣x+1对称,画出图形,通过图形观察,当两圆相内切时,求得最小值.【解答】解:根据圆的对称性知直线l上的唯一点P与圆心C(1,0)所在直线必与直线l垂直,则PC所在直线的方程为x+y=1,与直线y=x+3联立求得P(﹣1,2),再根据对称性知过点P(﹣1,2)的两条切线必与坐标轴垂直,r=2;由题意,知|EF|取得最小值时,一定关于直线y=﹣x+1对称,如图所示,因此可设以点P(﹣1,2)为圆心,以R为半径的圆,即(x+1)2+(y﹣2)2=R2与圆C内切时,的最小值即为2R,由相切条件易知2R=2(|CP|+2)=2(2+2)=4+4.故答案为:4+4.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500).(1)求居民收入在[3000,3500)的频率;(2)根据频率分布直方图算出样本数据的中位数、平均数及其众数;(3)为了分析居民的收入与年龄、职业等方面的关系,按收入从这10000人中用分层抽样方法抽出100人作进一步分析,则应在月收入为[2500,3000)的人中抽取多少人?【考点】频率分布直方图.【分析】(1)根据频率=小矩形的高×组距来求;(2)根据中位数的左右两边的矩形的面积和相等,所以只需求出从左开始面积和等于0.5的底边横坐标的值即可,运用取中间数乘频率,再求之和,计算可得平均数,求出众数即可;(3)求出月收入在[2500,3000)的人数,用分层抽样的抽取比例乘以人数,可得答案.【解答】解:(1)月收入在[3000,3500)的频率为0.0003×500=0.15;(2)从左数第一组的频率为0.0002×500=0.1;第二组的频率为0.0004×500=0.2;第三组的频率为0.0005×500=0.25;∴中位数位于第三组,设中位数为2000+x,则x×0.0005=0.5﹣0.1﹣0.2=0.2⇒x=400.∴中位数为2400(元)由1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400,样本数据的平均数为2400(元);众数是:=2250,和=2750;(3)月收入在[2500,3000)的频数为0.25×10000=2500(人),∵抽取的样本容量为100.∴抽取比例为=,∴月收入在[2500,3000)的这段应抽取2500×=25(人).18.口袋中装有4个形状大小完全相同的小球,小球的编号分别为1,2,3,4,甲、乙、丙依次有放回地随机抽取1个小球,取到小球的编号分别为a,b,c.(1)在一次抽取中,若有两人抽取的编号相同,则称这两人为“好朋友”,求甲、乙两人成为“好朋友”的概率;(2)求抽取的编号能使方程a+b+2c=6成立的概率.【考点】列举法计算基本事件数及事件发生的概率.【分析】(1)将甲、乙依次取到小球的编号记为(a,b),利用列出法求出基本事件个数和甲、乙两人成为好朋友包含的情况种数,由此能求出甲、乙两人成为“好朋友”的概率.(2)将甲、乙、丙依次取到小球的编号记为(a,b,c),求出基本事件个数,利用列举法求出丙抽取的编号能使方程a+b+2c=6成立包含的基本事件个数,由此能求出抽取的编号能使方程a+b+2c=6成立的概率.【解答】解:(1)将甲、乙依次取到小球的编号记为(a,b),则基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.记“甲、乙两人成为好朋友”为事件M,则M包含的情况有:(1,1),(2,2),(3,3),(4,4),共4个人,故甲、乙两人成为“好朋友”的概率为P(M)==.(2)将甲、乙、丙依次取到小球的编号记为(a,b,c),则基本事件有n=4×4×4=64个,记“丙抽取的编号能使方程a+b+2c=6成立”为事件N,当丙抽取的编号c=1时,工+子4,∴(a,b)分别为(1,3),(2,2),(3,1),当丙抽取的编号c=2时,a+b=2,∴(a,b)为(1,1),当丙抽取的编号c=3或c=4时,方程a+b+2c=6不成立.综上,事件N包含的基本事件有4个,∴.19.某科研所对新研发的一种产品进行合理定价,该产品按事先拟定的价格试销得统计数据.(1)①求线性回归方程y=x+;②谈谈商品定价对市场的影响;(2)估计在以后的销售中,销量与单价服从回归直线,若该产品的成本为4.5元/件,为使科研所获利最大,该产品定价应为多少?(附:=,=﹣,=8.5,=80)【考点】线性回归方程.【分析】(1)①根据公式求出和的值,求出回归方程即可;②根据b的值判断即可;(2)求出关于w的表达式,结合二次函数的性质求出w的最大值即可.【解答】解:(1)①依题意:==﹣20,=﹣=80+20×8.5=250,∴回归直线的方程为y=﹣20x+250;②由于=﹣20<0,则x,y负相关,故随定价的增加,销量不断降低.(2)设科研所所得利润为w,设定价为x,∴w=(x﹣4.5)(﹣20x+250)=﹣20x2+340x﹣1125,∴当时,w max=320,故当定价为8.5元时,w取得最大值.20.已知⊙C:x2+y2﹣2x﹣4y﹣20=0,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0.(1)求证:直线l与⊙C恒有两个交点;(2)若直线l与⊙C的两个不同交点分别为A,B.求线段AB中点P的轨迹方程,并求弦AB的最小值.【考点】直线和圆的方程的应用.【分析】(1)求出圆C的圆心和半径,整理直线方程为m(2x+y﹣7)+(x+y﹣4)=0,求出直线2x+y ﹣7=0,x+y﹣4=0的交点,判断它在圆内,即可得证;(2)由题意知,设点P(x,y)为弦AB的中点,连接CP,则CP⊥PQ,由平面几何知识可得点P的轨迹方程是以CQ为直径的圆,求得圆心和半径,注意运用中点坐标公式,再由当Q(3,1)是弦AB 的中点时,|AB|最小,运用勾股定理即可得到所求值.【解答】解:(1)证明:⊙C:x2+y2﹣2x﹣4y﹣20=0,即(x﹣1)2+(y﹣2)2=25,圆心C(1,2),半径r=5,又直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,化为m(2x+y﹣7)+(x+y﹣4)=0,由解得,则直线l恒过定点Q(3,1),由|CQ|==<5,可得Q在圆C内,则直线l与⊙C恒有两个交点;(2)由题意知,设点P(x,y)为弦AB的中点,由(1)可知CP⊥PQ,点P的轨迹方程是以CQ为直径的圆,线段CQ的中点为(2,),|CQ|=,则线段AB中点P的轨迹方程为;由圆的几何性质可知,当Q(3,1)是弦AB的中点时,|AB|最小.弦心距,⊙C的半径为5,可得|AB|min=2=4.21.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(1)求曲线C的方程;(2)是否存在整数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有|FA|2+|FB|2<|AB|2?若存在,求出m的取值范围;若不存在,请说明理由.【考点】直线与抛物线的位置关系.【解答】解:(1)设P(x,y)(x>0)是曲线C上任意一点,那么点P(x,y)满足:,化简得y2=4x(x>0).(2)设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2).设l的方程为x=λy+m,由得y2﹣4λy﹣4m=0,△=16(λ2+m)>0,于是①,又,②,又,于是不等式②等价于③,由①式,不等式③等价于m2﹣6m+1<4λ2④对任意实数λ,4λ2的最小值为0,所以不等式④对于一切π成立等价于m2﹣6m+1<0,即.由此可知,存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有|FA|2+|FB|2<|AB|2,且m的取值范围为.22.已知椭圆的上顶点M与左、右焦点F1,F2构成三角形MF1F2面积为,又椭圆C的离心率为,左右顶点分别为P,Q.(1)求椭圆C的方程;(2)过点D(m,0)(m∈(﹣2,2),m≠0)作两条射线分别交椭圆C于A,B两点(A,B在长轴PQ同侧),直线AB交长轴于点S(n,0),且有∠ADP=∠BDQ.求证:mn为定值;(3)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C交于E,F两点.若△TMN的面积是△TEF的面积的λ倍,求λ的最大值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;直线与椭圆的位置关系.【解答】解:(1)椭圆离心率,又,解得a=2,b=1,∴椭圆.(2)由已知AB必有斜率,设AB:y=k(x﹣n)(k≠0),A(x1,y1),B(x2,y2).联立.⇒k(x1﹣n)(x2﹣m)+k(x1﹣m)(x2﹣m)=0⇒2x1x2﹣(m+n)(x1+x2)+2mn=0⇒mn=4.(3)设E(x3,y3),F(x4,y4),因为,直线TM方程为:x=t(y﹣1),直线TN:3x﹣ty﹣t=0,联立,联立,所以E到直线TN:3x﹣ty﹣t=0的距离,,∴,(取等条件),λ的最大值为.。
六年级数学试题第 1 页 (共 4 页)
2016-2017学年第一学期期末考试
六年级数学模拟试题
(时间:90分钟,满分:120分)
一、请你精心选一选,把正确的答案的序号填在括号里。(每小题2分,共30分)
1. 女生人数相当于男生人数的106,是把( )看作单位“1”。
A、女生 B、男生 C、女生人数 D、男生人数
2.有两根绳子,一根长160米,比另一根短91,另一根长( )米。
A. )(91-1160 B.)(911160 C.)(911160 D.)(911160
3.修同一条公路,甲队单独修用8天,乙队单独修用12天,甲队和乙队的工作效率之比是( )
A. 81121: B. 2:3 C. 3:2 D. 3:4
4. 把5千克的糖溶解在100千克的水里,糖占糖水的( )。
A、120 B、121 C、119 D、
5. 三角形的一个顶点A,可以用数对(5,6)表示,如果把这个三角形向上平移4格,再向左平移3格,
这时点A用数对( )表示。
A、(9,9) B、(8,10) C、(2,10) D、(3,10)
6.一根钢管锯成两段需要76分钟,那么锯成5段需要( )分钟。
A、730 B、724 C、 712 D、725
7.若两个有理数的和是正数,那么一定有结论( )
(A)两个加数都是正数; (B)两个加数有一个是正数;
(C)一个加数正数,另一个加数为零; (D)两个加数不能同为负数
8. 一根绳子剪成两段,第一段长37 米,第二段占全长的37 ,两段相比( )。
A. 第一段长 B. 第二段长 C. 一样长 D. 无法确定
9.小圆的直径是2厘米,大圆的直径是3厘米,它们的周长之比是( )。
A、2:3 B、3:2 C、9:4 D、4:9
10.9月份用水量比8月份节约了112,9月份用水量是8月份的( )
A、119 B、112 C、1113 D、911
11.在等腰三角形、长方形、正方形、圆形、扇形中,有一条对称轴的图形有( )个。
班
级
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
姓
名
_
_
_
_
_
_
_
_
_
_
_
_
_
_
考
号
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
座
号
„
„
„
„
„
„
„
„
„
„
„
„
„
密
-
-
-
-
-
-
-
-
封
-
-
-
-
-
-
-
-
线
-
-
-
-
-
-
-
-
密
-
-
-
-
-
-
-
-
封
-
-
-
-
-
-
-
-
线
-
-
-
-
-
-
-
-
密
-
-
-
-
-
-
-
-
封
-
-
-
-
-
-
-
-
线
-
-
-
-
-
-
-
-
密
-
-
-
-
-
-
-
-
封
-
-
-
-
-
-
-
-
线
-
-
-
-
-
-
-
-
密
-
-
-
-
-
-
-
-
封
-
-
-
-
-
-
-
-
线
-
-
-
-
-
-
-
-
密
-
-
-
-
-
-
-
-
封
„
„
„
22
1
六年级数学试题第 2 页 (共 4 页)
A.2 B.1 C.0 D.3
12.某商品售价60元,比原来定价便宜15%,求比原来定价便宜多少元?正确算式是( )。
A、60÷(1-15%)-60 B、60÷(1-15%)
C、60÷(1+15%)-60 D、60×(1-15%)
13.笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有( )。
A、3只和5只 B、6只和2只 C、5只和3只 D、2只和6只
14.一个长方形的周长是32厘米
,长与宽的比是5:3,则这个长方形的面积是( )
A、16 平方厘米 B、60 平方厘米 C、24平方厘米
15.要剪一个面积是12.56平方厘米的圆形纸片,至少需要面积是( )平方厘米的正方形纸片(π取
3.14)。
A. 12.56 B. 14 C. 16 D. 20
二、“相信你的能力!”请你耐心填一填.(每小题2分,共20分)
16.( )∶( )=40( ) =80%=( )÷40
17.3:( )=24, ( ):8=0.5。
小红15 小时行38 千米,她每小时行 千米,行1千米要用 小时。
18.甲居委会为灾区捐棉衣240件,比乙居委会多捐了20%,比乙居委会多捐棉衣 件。
19.小亮练习投篮160次,失败率是60%,他有 次命中。
20..若|m-2|+|n+3|=0,则2n-3m= 。
21. 的相反数是21,0的相反数是 ,-(-4)的倒数是 。
22.观察右图,这个班共有 人参加兴趣小组,
有 人参加体育小组。
23..一根绳子剪去它的51,正好是54米,它原来长
米。
24.比90多20%的数是 ;90比多 20%。
25.某日,某地参观人数达到37.7万人,37.7万人用科学记数法表示应为
三、坚信你的“运算本领”,请你细心算一算。(本题32分)
26.计算:(1)1-38.0-68.1--68.1-38.0)()( (2))()()()(974-615-922-612;
(3)1--14(35)(7) (4) 2122227317-713713)()(
音乐组
45%
体育组
25%
美术组
18人
六年级数学试题第 3 页 (共 4 页)
(5)73131-125.0128-)()( (6))()(7.1-5.2-4.25.23.75.2-
(7)32211-]811-)321()311[()()(;(8)|41-|4-2--3-32)()(
四、“发挥你的聪明才智”,请你用心解一解(本题38分)
28.(本题5分)
光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是
多少?
29.(本题5分)
春运期间,深圳到武汉的飞机票涨价10%后,票价为880元,春运前的飞机票
价是多少元?
30.(本题5分)
用84cm长的铁丝围成一个三角形,这个三角形三条边长度的比是3:4:5。三
条边各是多少厘米?
31.(本题5分)
某修路队计划修一条长1200米的路。第一周修了全长的15%,第二周修了
全长的13 。第一周比第二周少修多少米?
六年级数学试题第 4 页 (共 4 页)
32.(本题5分)
正方形的面积是16m2,阴影部分的面积是多少m2?
33.(本题7分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录
如下:(单位:米) +5,-3,+10,-8,-6,+12,-10.
(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?
(3)守门员全部练习结束后,他共跑了多少米?
34.(本题6分)某产粮专业户出售余粮10袋,每袋质量如下(单位:千克)
199,201,197,203,200,195,197,199,202,201
用简便方法计算出售的余粮共多少千克。