开关电容变换器的研究概述
- 格式:ppt
- 大小:1.30 MB
- 文档页数:21
开关电容变换器的研究
1.基本原理和工作机制:开关电容变换器将输入直流电压转换为输出直流电压的主要原理是利用开关管实现周期性切断电容和电源输入之间的连接,从而实现电能的传输和转换。
在此基础上,研究者们通过对其工作机制进行深入分析和研究,不断优化其性能和效率。
2. 拓扑结构与控制策略:开关电容变换器的拓扑结构包括基础的Buck、Boost和Buck-Boost结构,以及一些改进的结构,如Cuk结构、SEPIC结构等。
研究者们致力于研究不同拓扑结构的性能差异,并提出不同的控制策略以提高其工作效率和动态响应特性。
3.电路设计与优化:电路设计是开关电容变换器研究的重要环节。
研究者需要设计出满足特定要求的电路结构,包括开关管、电容和电感元件的选择、参数计算和元件布局。
此外,还需要考虑到温度、损耗和EMI等问题,对电路进行优化,提高电路的性能和可靠性。
4.控制技术与控制算法:开关电容变换器的控制问题主要包括电压控制和电流控制两个方面。
研究者们通过设计合适的控制策略和控制算法,实现对输出电压、输出电流和转换效率的控制。
常用的控制技术包括传统PID控制、模糊控制和模型预测控制等。
5.系统特性与性能评估:对开关电容变换器的系统特性和性能进行评估是研究的重要内容。
研究者通常使用实验测试、数值仿真和理论分析相结合的方式,对开关电容变换器的输出电压波形、效率、功率因数、动态响应等重要指标进行分析和评估。
总的来说,开关电容变换器的研究内容涉及到基本原理、拓扑结构、控制策略、电路设计、控制技术和性能评估等方面。
随着电力电子技术的
发展,开关电容变换器的研究将继续深入,以满足不断增长的电力需求和不断提高的能源效率。
开关电容式变换器的工作原理多种倍增输出的开关电容式变换器的工作原理利用更多的受控开关和电容,改变输出电压与输入电压之比,并在供电电池使用过程中,随着电压的降低,自动地依次改变电路的倍增因子,伎其由小到大变化,就能保证在电池电压变化时,有足够高的输出电压来驱动。
电压倍增的原理—。
最大效率为,平均效率为腮。
采用脚薄型则封装,尺寸为,方形。
关于输出电压倍增及其模式的自动切换和没有多少区别,这里不再重复。
软启动含有软启动线路,以限制电源接退时和过渡模式下输入端的浪涌电流。
在电源接通之初,输出ABC电子电容直接由输入以斜升的电流充电电荷泵还没有工作,经过,如果所有的阴极电位没有到以上,则毗转入倍模式,的输出电流按的阶梯向预设值步进增大如果再经过,所有的阴极电位仍然没有在以上,则转入倍模式,的输出电流再一次按的阶梯向预设值步进增大。
不论何时,如果输出电压低于,则软启动程序都将复位到倍输出模式。
输出电流的设置利用串行接口,可以对主屏副屏和闪光灯皿的电流进行设置。
此串行接口有两条线和,用来控制主副屏删亮度闪光灯和的变化以及四最大电流随温度的降额情况,为串行数据线,为串行时钟线,采用标准的串行接口写字节命令。
只是一个从设备受控设备,依赖于主设备一般为微处艾博希电子理器来产生时钟信号。
主设备在总线上启动数据传送并产生时钟信号,先向传送位的地址字节,接着传送位的控制字节,控制字节包含位的命令编码和位的数据。
每次传送序列以”打头,而以”结束。
控制字节的格式如表。
输出电流为的开关电容型变换器是凌特公司产品,和的功能相似,能驱动个主屏个副屏和个删四,总输出电流为有个电流为的恒流源分别驱动每个最大的显示电流由内部的精确的基准电流源确定亮度调节有级利用两条串行接口线,位的数模转换器信号对每个电流源独立地控制其迈断调光和改变亮度水平输出电压按倍倍倍倍增电路自动切换工作模式,接通电源后开始按倍电压模式工作,只要有一个皿电流下降,电路自动转入增压模式。
电荷泵,也称为开关电容式电压变换器,是一种利用所谓的"快速"(flying)或"泵送"电容(而非电感或变压器)来储能的DC-DC(变换器)。
1.电荷泵工作原理电荷泵的基本原理是给电容充电,把电容从充电电路取下以隔离充进的电荷,然后连接到另一个电路上,传递刚才隔离的电荷。
我们形象地把这个传递电荷的电容看成是“装了电子的水桶”。
从一个大水箱把这个桶接满,关闭龙头,然后把桶里的水倒进一个大水箱[8]。
电荷泵也称为开关电容式电压变换器,是一种利用所谓的“快速”或“泵送”电容,而非电感或变压器来储能的DC-DC变换器(直流变换器)。
它们能使输入电压升高或降低,也可以用于产生负电压。
其内部的MOSFET开关阵列以一定的方式控制快速电容器的充电和放电,从而使输入电压以一定因数(1/2,2或3)倍增或降低,从而得到所需要的输出电压。
2.电荷泵升压电路原理电荷泵也称为开关电容式电压变换器,是一种利用所谓的“快速”(Flying)或“泵送”电容(而非电感或变压器)来储能的DC-DC(变换器)。
它们能使输入电压升高或降低,也可以用于产生负电压。
其内部的FET开关阵列以一定方式控制快速电容器的充电和放电,从而使输入电压以一定因数(0.5,2或3)倍增或降低,从而得到所需要的输出电压。
这种特别的调制过程可以保证高达80%的效率,而且只需外接陶瓷电容。
由于电路是开关工作的,电荷泵结构也会产生一定的输出纹波和EMI(电磁干扰)。
电荷泵通过控制泵电容及调节开关来保持稳定的输出电压,电荷泵开关网络在泵电容充电和放电变换周期内可以实现泵电容的并行或串行排列。
在给定的输入、输出条件(差分电压)下,应选择电荷泵的最优工作模式以保持要求的输出电压。
电荷泵开关网络采用的MOSFET 器件具有尺寸小,成本低,开关速度快,损耗最低等特点。
3.电荷泵快充原理电荷泵也叫无电感式DC-DC转换器,利用电容作为储能元件来进行电压电流的变换。
开关电容变换器组成原理及发展趋势丘东元张波(华南理工大学电力学院, 广东省广州市 510641)Composing Principle and Development of Switched Capacitor ConvertersQiu Dongyuan, Zhang Bo(College of Electric Engineering, South China University of Technology, Guangzhou, 510641)ABSTRACT: Switched capacitor (SC) converters do not require any inductor or transformer, only use capacitors as energy storage components. With the advantages of small size, lightweight, high efficiency and high power density, SC converters are more popular in power electronic system. This paper divided the existed SC converters into several kinds. Based on the concept of basic SC cell, the composing principles of each kind of SC converters have been proposed. Next, the main control methods and new applications of SC converters are introduced.KEYWORDS: Switched capacitor (SC) converter, step-up, step-down, inverting摘要:开关电容变换器不含磁性元件,仅以电容作为储能元件,有体积小,重量轻,效率高和功率密度大等优点,在电力电子电路中的应用越来越广泛。
隔离型高增益有源开关电容DC-DC变换器:电力系统的微型“变形金刚”在现代电力系统的复杂舞台上,隔离型高增益有源开关电容DC-DC变换器如同一位微型的“变形金刚”,以其独特的结构和功能,为电能的高效转换和安全传输扮演着关键角色。
这种变换器的设计理念,就像是一场精心编排的交响乐,每个部分都精确地协同工作,以实现最佳的性能表现。
首先,让我们来揭开这位“变形金刚”的面纱。
它的心脏是由多个电容器组成的阵列,这些电容器通过精密的控制逻辑进行快速切换,就像一支训练有素的舞蹈队伍,在指挥家的棒下有序地变换队形。
这种切换不仅保证了电能的连续流动,还实现了电压的倍增,从而满足了特定应用对高电压的需求。
然而,这位“变形金刚”的真正魅力在于它的隔离功能。
它采用了高频变压器技术,这就好比是在电能的河流中建立了一座坚固的水坝,有效地将输入端与输出端隔离开来。
这种隔离不仅保护了系统免受潜在的电气噪声影响,还确保了用户设备的安全,避免了可能的电流泄露风险。
在实际应用中,这种变换器的效率和稳定性是衡量其性能的关键指标。
它能够在极短的时间内响应负载的变化,就像是一位反应敏捷的运动员,在比赛中迅速做出调整以应对对手的挑战。
而且,由于其内部结构的优化设计,即使在极端的工作条件下,也能保持出色的热稳定性和长期可靠性。
然而,尽管这位“变形金刚”拥有诸多令人赞叹的特性,它的设计和制造过程却充满了挑战。
工程师们必须精确计算每个部件的参数,确保它们能够无缝协作,同时还要考虑到成本效益比,以确保最终产品的市场竞争力。
这是一个需要深厚专业知识和丰富经验的领域,每一位参与者都是这场科技盛宴的重要嘉宾。
总的来说,隔离型高增益有源开关电容DC-DC变换器是电力电子领域的一颗璀璨明珠。
它以其卓越的性能、灵活的应用和可靠的安全保障,成为了现代电力系统不可或缺的组成部分。
随着技术的不断进步和创新,我们有理由相信,这位微型的“变形金刚”将继续在电力转换的舞台上扮演着越来越重要的角色,为人类社会的可持续发展贡献自己的力量。