电助光催化氧化反应器的类型和设计要点
- 格式:pdf
- 大小:327.75 KB
- 文档页数:4
电化学催化氧化反应器
首先,电极是电化学催化氧化反应器的关键组成部分之一。
通
常使用的电极有阳极和阴极,它们分别承担着氧化和还原反应的作用。
阳极通常使用具有较高氧化活性的材料,如铂、铁、钴等,而
阴极则使用具有较高还原活性的材料,如银、铜、镍等。
其次,电解质在电化学催化氧化反应器中起着离子传递的作用。
它可以是液体、固体或者是气体,常见的电解质有酸、碱、盐等。
电解质的选择要考虑到反应物的性质和反应条件,以保证反应的进
行和离子的传递。
另外,催化剂在电化学催化氧化反应器中起到加速反应速率的
作用。
催化剂可以提高反应物的活性,降低反应的活化能,从而促
进反应的进行。
常见的催化剂有金属催化剂、过渡金属氧化物、贵
金属等。
选择合适的催化剂要考虑到反应物的性质和反应条件,以
达到高效催化的目的。
此外,电化学催化氧化反应器还需要考虑反应条件的控制。
例如,反应温度、电流密度、电解质浓度等因素都会对反应速率和选
择性产生影响。
合理控制这些条件可以提高反应效率和产物纯度。
最后,电化学催化氧化反应器在实际应用中有着广泛的应用。
它可以用于废水处理、电化学合成、能源转换等领域。
通过调节反应器的结构和参数,可以实现不同反应的选择性和高效催化。
总的来说,电化学催化氧化反应器是一种利用电化学原理进行氧化反应的装置,通过合理选择电极、电解质和催化剂,控制反应条件,可以实现高效催化和选择性氧化反应。
典型的光催化反应器光催化是废水净化的一个很有前途的技术,因而引起了国内外的重视,已经有了二十多年的经验积累,在光催化降解有机污染物、光催化剂的改性等方面受到了广泛的关注,有关光催化氧化法在水污染治理方面应用研究的报道很多,而在反应器的设计和选材也有一些相关的报道,但涉及到光反应器应用的报道较少。
在光催化反应中,反应器的材料、结构、形状、光源的几何位置等很多因素对光催化反应速率有很大的影响。
气相光催化反应器的设计有静态配气和动态配气的两种,种类和相关的研究较少,所以下面着重介绍液相光催化反应器的结构、种类和影响因素。
影响光催化反应器效率的因素很多,如光源(光源强度、波段与光照方式)、催化剂性质(催化剂粒径、类型与载体)、废液的外加氧化剂(如O2 ,H2O2,O3等)、待处理废水性质(废液的初始浓度组成、pH值、抑制物含量)、温度、废液的流动力学特征、停留时间等因素对反应器的最佳运行都有影响,反应器的整体设计要综合考虑这些因素。
1.光源用于光催化的光源有电光源和太阳光源。
电光源有高压汞灯、荧光灯、黑光灯、氨灯等。
光源的选择、布置及使用既要考虑效能又必须考虑经济性,因此,在设计光催化反应器时,要综合考虑各方面的影响因素。
过去,更多研究放在电光源上,使用的光波多限于光谱紫外区。
太阳光源是经济又环保的光源,开发出利用太阳能的光催化反应器一直是研究者追求的目标,但是由于在光催化反应中,太阳光的利用率很低,因此这类反应器的成功开发和真正实现工业应用目前还有很大难度,需要解决催化剂改性等许多方面的技术问题。
光源波长、光强及光源几何位置对催化反应有至关重要的影响,一般情况下,光源波长越短,效率越高;在同等波长的条件下,光强越高,效率越高,但并非线性相关的。
一般在低光强时,有机物降解速度与光强呈线性关系,高光强时,降解速度与光强的平方根存在线性关系。
光线的照射方式可分为直接照射和直接一反光结合照射,后者的使用更能充分利用光能。
光催化氧化反应器设计综述摘要:文章通过废水中有机物的降解问题引出光催化氧化降解有机物技术,再从技术问题引入更深层次的问题即如何提高降解效率,进而引出本文主题—光催化氧化反应器设计。
文章详细叙述了反应器的结构形式及几种不同类型反应器的优点和缺陷,以及研究现状。
关键词:光催化氧化;反应器随着经济的发展,大量工业废水、生活污水有机污染物的超标排放,造成了水体环境严重富营养化问题,目前很多地方的治理只注重对有毒重金属的处理,而忽略了有机污染物潜在的危害性,废水中大量的有机污染物。
富含洗涤剂(LAS)、COD、BOD、含氮、磷等的有机物的污水本身具有一定的毒性,对动植物和人体有慢性毒害作用,还会引起水中传氧速率降低,使水体自净受阻,从而使水体变色发臭。
所以对废水中的有机物进行处理是非常必要的。
光催化氧化分解有机污染物是当今公认的最前沿最有效的处理技术,光催化氧化反应器成功的解决了光催化氧化技术的工业化运用难题,所采用光催化氧化技术,废水有机污染物分解后的产物为水、二氧化碳及无害的无机盐,从根本上解决了有机污染问题。
目前, 用金属氧化物半导体作催化剂进行光催化氧化降解有机污染物的研究, 已引起了国内外众多学者的关注[1]。
为了提高光催化氧化反应效率,光催化氧化反应器是必不可少的。
应用光催化氧化反应器可进行化学氧化、光氧化、光化学氧化、光催化氧化和光化学催化氧化等多种类型氧化反应, 并可进行多种组合试验, 为环境科研、环境工程提供试验设备, 亦可为高等院校师生提供教学试验设备。
光催化氧化反应器的设计远比传统的化学反应器复杂,除了涉及质量传递与混合、反应物与催化剂的接触、流动方式、反应动力学、催化剂的安装、温度控制等问题外,还必须考虑光辐射这一重要因素。
目前已有多种形式的光催化氧化反应器应用于光降解的研究及实际废水的处理,并取得了一些成果,但同时也暴露出许多问题,为此有许多人从不同的角度对如何提高光催化氧化反应器的效能及实用性开展了大量的工作[2]。
光催化氧化法简介光催化氧化法是近20年才出现的水处理技术,在足够的反应时间内通常可以将有机物完全矿化为CO2和H2O 等简单无机物,避免了二次污染,简单高效而有发展前途.所谓光催化反应,就是在光的作用下进行的化学反应.光化学反应需要分子吸收特定波长的电磁辐射,受激产生分子激发态,然后会发生化学反应生成新的物质,或者变成引发热反应的中间化学产物。
光化学反应的活化能来源于光子的能量,在太阳能的利用中光电转化以及光化学转化一直是十分活跃的研究领域。
由于以二氧化钛粉末为催化剂的光催化氧化法存在催化剂分离回收的问题,影响了该技术在实际中的应用,因此将催化剂固定在某些载体上以避免或更容易使其分离回收的技术引起了国内外学者的广泛兴趣。
在我国工业废水中,印染废水因其有机物含量高、色度深、水质复杂、排放量大而成为难处理的工业废水之一。
印染废水中含有大量卤化物、硝基物、氨基物、苯胺、酚类及各种染料等有机物,主要来自纤维、纺织浆料和印染加工所使用的染料、化学药剂、表面活性剂和各类整理剂。
其COD浓度达数千至数万mg/L,色度也高达数千至数万倍,可生化性差,很多废水还含有高浓度无机盐:如氯化钠、硫化物等,严重污染水环境。
国内处理染料废水普遍以生物法为主,同时辅以化学法,但脱色及COD去除效果差,出水难以稳定达到国家规定的排放标准。
光催化氧化法是近年来水处理研究的热点之一,实验证明,此方法对印染废水有较好的处理效果.当进水COD Cr为1300 mg/L左右,色度为800倍时,经本法处理的废水,出水COD Cr达188 mg/L,色度为0~10倍,COD Cr 去除率达92%,脱色率几近100%.主要水质指标达到了GB8978—1996《污水综合排放标准》中染料工业的二级标准.本法可取代常规的生物法,适合中小型印染厂的废水处理。
光催化氧化法原理光降解通常是指有机物在光的作用下,逐步氧化成低分子中间产物最终生成CO2、H2O及其他的离子如NO3—、PO43—、Cl-等。
光催化氧化反应器光催化氧化反应器是一种利用光催化剂将光能转换成化学能的设备。
它广泛应用于废水处理、空气净化和有机废气处理等领域。
本文将从反应器的结构、工作原理、应用和发展等方面进行介绍。
一、反应器的结构光催化氧化反应器主要由反应器本体、光源、催化剂和气体循环系统组成。
其中反应器本体一般采用光学玻璃或石英材料制成,以保证反应器对光的透过率。
而光源则是为了提供光能,一般采用紫外光灯或LED灯等。
催化剂则是提高反应速率的重要因素,常用的催化剂有二氧化钛、氧化锌等。
气体循环系统则是为了保持反应器内气体的循环和流动,常用的气体有氧气、氮气等。
二、反应器的工作原理光催化氧化反应器的工作原理是将光能转化为化学能,通过催化剂的存在,使有机物分解成无害物质。
在反应器内,光源照射到催化剂表面时,会激发出电子和空穴,这些电子和空穴会与氧分子发生反应,产生活性氧物种(如羟基自由基、超氧自由基等)。
这些活性氧物种具有氧化性,可以氧化有机物质,将其分解成二氧化碳、水和无害的无机物质。
三、反应器的应用光催化氧化反应器广泛应用于废水处理、空气净化和有机废气处理等领域。
在废水处理方面,光催化氧化反应器可以有效去除水中难以降解的有机物质和色度。
在空气净化方面,光催化氧化反应器可以去除空气中的挥发性有机物质、氮氧化物和臭氧等有害物质。
在有机废气处理方面,光催化氧化反应器可以将有机废气中的有害物质分解成无害的物质。
四、反应器的发展随着环保意识的增强和科技的发展,光催化氧化反应器也在不断地发展和完善。
目前,光催化氧化反应器已经应用于多个领域,例如:医疗卫生、食品加工、纺织、杀菌、清洁等。
同时,随着新型材料的研发和新技术的出现,反应器的性能和效率也在不断提高。
光催化氧化反应器是一种非常重要的环保设备,可以有效地去除水中有机物质和空气中的有害物质。
随着科技的发展,反应器的应用领域和效率也在不断扩大和提高。
光催化反应器的设计摘要光化学反应过程由于具有选择性好且可在常温常压下进行等特点而在许多领域有着良好的应用前景。
其中光催化技术作为一种真正环境友好的绿色技术,既可以在能源领域应用,将低密度的太阳能转化为可储存的高密度的洁净能源氢能;也可在环境领域应用,利用光能降解和矿化环境中的有机和无机污染物。
光催化反应器作为光催化技术的核心设备,在光催化技术的应用中具有十分重要的地位。
本文介绍了光催化反应的相关内容,并以FCC汽油光催化脱硫工艺为例,对实际情况作合理简化,建立了光催化反应器的数学模型。
关键词:光催化、反应器、数学模型。
1、前言1.1 光化学反应工程光化学反应是指在外界光源的照射下所发生的化学反应过程。
[1]光化学反应器作为光化学生产中的关键设备,其性能优劣对于光化学反应过程的应用有十分重要的作用。
因此,从工程应用的角度出发,研究光化学反应器的特性、模拟、设计、放大等问题已引起重视,并逐渐发展成化学反应工程学的一个新的分支—光化学反应工程。
与一般反应器相比,光化学反应器的设计与开发有很大的差异。
光源的种类,光子的传播、吸收、发射及光化学反应器的几何形状,与光源间的相互位置等均会对光化学反应过程产生直接影响。
[2]1.2 光化学反应器类型与普通的化学反应器一样,光化学反应器也可以按不同的方法分类。
如按操作方式的不同可分为连续式和间歇式;按反应器内包括的流体的相数不同可分为均相和非均相;按反应器内流体流动状况可分为全混流、部分返混、活塞流等。
然而,对于光化学反应器,除了操作方式、流动状况等会对其性能造成影响,更能反映光化学反应器特征并直接影响光化学反应器性能的则是光源种类、反应器几何形状及反应器与光源间的相互位置。
[3]这些因素的不同组合就构成了不同类型的光化学反应器。
光化学反应器可以有许多变化方式,大体可分为均相和非均相两大类。
[4]光化学反应器的选型包括光源、透光材料、反应器几何形状的确定等几个方面。
86环境污染治理技术与设备第6卷
参比
工作
图2“H”型电助光催化反应器示意图Fig.2Schematicdiagramof“H”typeEAPreactor
激光灯,它们的主波长和光强不同,应根据半导体的
禁带宽度来选择。
此外,为了提高反应器内的物质传输速率,可以通过在反应器外设置贮水槽进行溶液循环或向反应
器内通气的方式达到,但通气种类的不同会导致反“
应进行的氛围不同,对电助光催化的过程和效率有影响。
电助光催化反应一般在恒温条件下进行以避
免温度因素的影响,恒温方式有设置双层反应器外壁
或双层石英灯管通入冷却水和冷却贮水槽等方式。
位(如TiO,,Efb一一0.24V,相对于标准氢电极,pH=7),就可以促进光生电子和空穴的分离。
因此,对催化剂工作电极施加数十至数百毫伏的阳极电位,就可以使光生电子和空穴得到充分分离。
在悬浮态反应器中多在两极间施加高电压,如AnT.c.
等¨纠分别采用圆柱形和槽式的两电极系统反应器,在两极间施加高电压,如图3所示。
这种系统中不可避免地同时伴有水的电解的问题。
Hec.等"’”。
在固定膜式反应器中对Ag或Cu沉积的TiO:/导电玻璃电极施加较高的阳极电位电助光催化氧化甲酸,发现沉积在催化剂表面的Ag或Cu被氧化溶解到溶液中,处理效率急剧下降,他们通过脉冲方式施加电位以避免催化剂的失活。
Sunc.c.等¨引用TiO:/Ti电极电助光催化处理NOf,施加0~4V(相对于Ag/AgCl电极)的阳极电位,发现电位为2V(相对于Ag/Agcl电极)时即可达到最高的降解效率,进一步增大电位,降解效率保持不变。
1.5光源及其他反应器要素的设置
电助光催化过程所需的光源可位于反应器外,通过石英窗口辐射到催化剂表面,即外辐照式电助光催化反应器,也可位于反应器中心,即浸入式电助光催化反应器。
浸入式的优点是辐射均匀并能充分利用光源的辐射能量,在电助光催化的应用研究中使用广泛。
其缺点是体系的冷却比较困难,灯的寿命也会降低。
外辐照式的优点是冷却方式灵活、简便、可靠,光源使用寿命长。
缺点是光源有效光的利用率低,在理论研究中使用较多。
电助光催化反应器中使用的光源的种类和个数也很不相同,常用的光源有高、中、低压汞灯,氙灯,钨灯,卤素灯及各种
(a)圆柱形反应器
光源
微孔钛板
(b)长方体槽形反应器
图3施加高电压的两电极悬浮态
电助光催化反应器示意图
Fig.3Schematicdiagramoftwoelectrode
EAPre8ctorconsistedofsuspendedphotocatalyst
andappliedwithhighvoltage
2电助光催化反应器的设计要点
电助光催化反应器设计中的核心问题是如何提高对光的利用效率,如何增加催化剂与溶液接触的面积,如何对半导体空间电荷层施加电场以及如何促进反应物的物质传输效率等问题。
由于目前电助光催化技术仍处于实验室研究阶段,尚未有实际应
用的报导,因此,反应器更多的是用于验证外加电场。