E x
第 3、4 题.
3. 有一个半径是 a 的轮子沿着直线轨道滚动, 在 轮辐上有一点 M, 与轮子中心的距离是 b (b<a), 求 点 M 的轨迹方程. y j 解: 建立如图的坐 标系. 圆心为 B, M B C BA⊥x 轴于 A, E O D A x MC⊥BA于 C, MD⊥x 轴于 D. 则 |AB|=a, |BM|=b. 取∠MBA=j (弧度) 为参变数. 则 OA 等于滚动 j 弧度的大圆弧长, 即 OA=aj, 设点 M 的坐标为 (x, y), 则 x=OD =OA-DA =aj-MC=aj-bsinj, y=DM =AB-CB =a-bcosj,
3. 有一个半径是 a 的轮子沿着直线轨道滚动, 在 轮辐上有一点 M, 与轮子中心的距离是 b (b<a), 求 点 M 的轨迹方程. y j 解: 建立如图的坐 标系. 圆心为 B, M B C BA⊥x 轴于 A, E O D A x MC⊥BA于 C, MD⊥x 轴于 D. 则 |AB|=a, |BM|=b. 取∠MBA=j (弧度) 为参变数. 则点 OA j 弧度的大圆弧长, 即 OA=aj, ∴ M等于滚动 的轨迹方程为 设点 的坐标为 =a j - bsinj ,(x, y), xM (a jj为参数 )j-bsinj, = 则x OD = OA DA = MC = a y = a - bcosj . y=DM =AB-CB =a-bcosj,
一 曲线的参数方程
二 圆锥曲线的参数方程
三 直线的参数方程
四 渐开线与摆线
1. 渐形线是怎样的图形? 怎样建立 它的方程?
2. 摆线是怎样产生的? 怎样建立摆 线的方程?
1. 渐开线
问题 1. 把一条没有弹性的细绳绕在一个圆盘上, 在绳的外端系上一支铅笔, 将绳子拉紧绕圆盘回放绳 子, 将画出一条什么样的曲线? 你能建立适当的坐标 系写出这条曲线的方程吗?