概率论与数理统计:第六章 数理统计的基本概念
- 格式:ppt
- 大小:711.50 KB
- 文档页数:39
概率论与数理统计考研复习题(6)数理统计的基本概念1.X 与Y 相互独立且都服从)3,0(2N ,而9191,Y Y X X ,和分别是来自总体X 和Y 的简单随机样本,求统计量 292191Y Y X X U ++++= 服从的分布.2.求总体)3,20(N 的容量分别为10,15的两独立样本均值差的绝对值大于0.3的概率.3.设n X X X ,,,21 是来自具有)(2n χ分布的总体样本。
求样本均值X 的数学期望和方差.4.设总体X ~N (0,1),从此总体中取一个容量为6的样本(621,,,X X X ),设Y =(26542321)()X X X X X X +++++,试决定常数C ,使得随机变量CY 服从2χ分布.5.从正态总体)6,4.3(2N 中抽取容量为n 的样本,如果要求其样本均值位于区间 (1.4, 5.4)内的概率不小于0.95,问样本容量n 至少应取多大?6.从装有一个白球,两个黑球的罐子里有放回地取球,令X =0表示取到白球,X =1表示取到黑球,求容量为5的样本(521,,,X X X )的和的分布,并求样本的均值X 和样本的方差2S 的期望值.7.设总体X ~),0(2σN ,(21,X X )为取自这总体的一个样本,求: (1)221221)()(X X X X Y -+=的概率密度;(2)P {Y <4}. 8.设总体服从参数为λ的指数分布,分布密度为⎩⎨⎧≤>=-0,00,);(x x e x F xλλλ,求E (X ),D (X ),E )(2S .9.从正态总体)5.0,(2μN 中抽取样本1021,,,X X X .(1)已知0=μ,求概率P {}41012≥∑=i i X; (2)未知μ,求概率P {85.2)(2101≥-∑=i i X X}.。
概率论与数理统计基本概念
概率论与数理统计是研究事件发生的可能性,以及由此衍生的结果
的一门学科。
它可以帮助人们提高分析和预测能力。
可以帮助我们了
解自然界及其客观原理,以及把握当代社会经济实体及其活动。
一、概率概念:
1. 随机事件:指事件发生以来,在所有结果中,用概率值去衡量其发
生的可能性,及其各个单一结果的概率分布情况;
2. 概率:是用来衡量某一随机事件发生的可能性的数值,可以给出这
个事件发生的可能性大小;
3. 概率分布:是某一随机变量及其可能取值之间发生关系的一种描述;
二、数理统计概念:
1、统计:是指对数据进行定量描述,尝试从数据中获得解释性的统计
特征;
2、变量:是指以数值形式表示的某类事物,是研究目标内容分析的一
种实际基础;
3、统计分布:是给定一组数据,通过统计手段,计算出变量的概率分
布情况,及其可能的变化规律;
4、极限定理:是一种概率论的定理,旨在探讨一个系统在重复抽样下,抽样结果的收敛情况;
5、数据描述:是指对数据的描述,可以让人简单明了地理解数据,及
其特征和趋势;
6、统计推断:是指根据统计样本信息,以概率结果作为有效依据,做
出关于总体参数情况的推断;
7、回归分析:是指建立一条回归函数模型,以描述解释变量对被解释
变量的影响;
8、判别分析:是指构建一个准确的模型,能够根据输入的观测值来准
确地判断属于哪一类人或物;
9、聚类分析:是指将一组数据进行分类,从而揭示内部数据间的关系,辅助决策;
10、卡方检验:是指判断某一种统计判断是否证实对某一总体分布结
果的检验,从而决定是否接受或拒绝假设。
第六章6.4 在例6.2.3 中, 设每箱装n 瓶洗净剂. 若想要n 瓶灌装量的平均阻值与标定值相差不超 过0.3毫升的概率近似为95%, 请问n 至少应该等于多少? 解:因为1)3.0(2)/3.0|/(|)3.0|(|-Φ≈<-=<-n nnX P X P σσμμ依题意有,95.01)3.0(2=-Φn ,即)96.1(975.0)3.0(Φ==Φn于是 96.13.0=n ,解之得 7.42=n 所以n 应至少等于43.6.5 假设某种类型的电阻器的阻值服从均值 μ=200 欧姆, 标准差σ=10 欧姆的分布, 在一个电子线路中使用了25个这样的电阻.(1) 求这25个电阻平均阻值落在199 到202 欧姆之间的概率; (2) 求这25个电阻总阻值不超过5100 欧姆的概率. 解:由抽样分布定理,知nX /σμ-近似服从标准正态分布N (0,1),因此(1) )25/10200199()25/10200202()202199(-Φ--Φ≈≤≤X P)5.0(1)1()5.0()1(Φ+-Φ=-Φ-Φ=5328.06915.018413.0=+-= (2) )204()255100()5100(≤=≤=≤X P X P X n P 9772.0)2()25/10200204(=Φ=-Φ≈6。
8 设总体X ~N (150,252), 现在从中抽取样本大小为25的样本, {140147.5}P X ≤≤。
解: 已知150=μ,25=σ,25=n ,)25/25150140()25/251505.147()5.147140(-Φ--Φ≈≤≤X P)5.0()2()2()5.0(Φ-Φ=-Φ--Φ= 2857.09615.09772.0=-=第六章《样本与统计量》定理、公式、公理小结及补充:。