计算流体力学的研究进展
- 格式:pptx
- 大小:28.07 MB
- 文档页数:12
计算流体力学的发展过程计算流体力学是一种利用计算机解决流体力学问题的方法,可以模拟各种流体动力学现象,如流体的流动、湍流等。
它在现代工业、航空航天、环境保护等领域有着广泛的应用,是现代科技取得的重要成果之一。
本文将从历史和技术两个方面,探讨计算流体力学的发展过程。
一、历史1.早期研究计算流体力学的起源可以追溯到20世纪40年代,当时美国哈佛大学的约翰·冯·诺伊曼等人开始使用电子计算机来解决气体动力学问题。
他们开发出了一种名为“脉动方程”的方法,可以解决流体运动的基本方程。
这标志着计算流体力学的诞生。
2.有限差分方法20世纪50年代至60年代,人们开始使用有限差分方法来解决流体力学问题。
有限差分方法将连续的时间和空间离散化,将偏微分方程转化为代数方程,然后使用计算机求解。
有限差分方法的优点是简单易懂,计算速度快,但它也存在精度较低、稳定性差等问题。
3.有限体积方法20世纪70年代后期至80年代初,有限体积方法逐渐成为主流。
有限体积方法使用小区域的平均值代替整个区域的实际值,从而保证了守恒定律的严格符合。
此外,有限体积方法还能很好地处理边界条件和复杂流动情况,因此得到了广泛应用。
4.计算能力的提高20世纪90年代至今,随着计算机计算能力的提高,计算流体力学的应用范围越来越广泛。
基于计算流体力学的仿真技术已经应用于汽车、航空航天、电子、环保等行业和领域。
人们正在不断发掘计算流体力学在这些领域的潜力。
二、技术1.数值格式计算流体力学的数值格式是计算流体力学算法的核心。
主要分为欧拉方程和纳维-斯托克斯方程两种类型。
欧拉方程适用于高速稀薄气体流动,而纳维-斯托克斯方程适用于低速流动和液体流动。
在实际运用中,人们还可以根据具体需求制定相应的数值格式。
2.求解器计算流体力学的求解器是模拟流体力学问题并求解数学模型的软件程序。
求解器的性能直接影响到计算的精度和速度。
目前求解器的种类已经非常丰富,包括商业求解器和开源求解器,如ANSYS、FLUENT、OpenFOAM等。
计算流体力学(cfd)发展简述1 发展历程计算流体力学(CFD)是指利用计算机来模拟流体的运动以及流体和固体之间相互作用的一种数值分析方法。
CFD的发展始于20世纪50年代,随着计算机技术的发展,CFD得到了快速的发展。
2 发展阶段CFD的发展可以分为以下几个阶段:2.1 基础阶段基础阶段主要是1960年代,当时计算机刚刚起步,计算能力很弱,CFD的应用范围十分有限。
研究重点主要是二维流动、气体动力学和边界层理论。
2.2 成长阶段成长阶段是1970年代到1980年代,这一时期计算机性能提高很快,CFD的应用范围逐渐扩大,开始涉及三维流动和非定常流动。
研究重点主要是湍流模拟和自适应网格技术。
2.3 成熟阶段成熟阶段是1990年代到今天,这一时期计算机硬件和软件技术不断发展,CFD的应用范围更加广泛,涉及多物理场耦合、多相流、化学反应等新领域。
研究重点主要是基于高性能计算和云计算的CFD技术研发。
3 技术进展CFD的进展主要体现在以下几个方面:3.1 模拟精度提高随着计算能力的提高和数值算法的改进,CFD模拟精度不断提高。
现在CFD能够预测流场的细节特征,如湍流结构、尾迹等。
3.2 多物理场耦合现代CFD技术已经可以模拟多物理场问题,如流动和传热、流动和组分分离、流动和化学反应等。
这使得CFD能够解决更多的实际工程问题。
3.3 多相流模拟多相流是指由两个或两个以上物质组成的流体,如气固、气液、液固等。
CFD技术已经可以模拟多种多相流,如液滴的运动、气固两相流的流动特性等。
3.4 并行计算随着计算机硬件和软件技术的不断发展,CFD已经可以实现大规模并行计算,大大提高了计算效率和模拟精度。
4 应用领域CFD已经成为现代工程设计的必备工具之一,主要应用于以下几个领域:4.1 航空航天工程CFD技术已经成为航空航天工程的重要设计工具,可以用于飞行器外形优化、发动机设计、气动加热等。
4.2 汽车工程CFD技术在汽车工程中的应用十分广泛,可以用于车身外观优化、发动机设计、制动系统设计等。
收稿日期: 20050125作者简介: 林永明,浙江大学热能工程研究所博士研究生,浙江大学蓝天环保设备有限公司总工程师。
计算流体力学(CFD )在大型湿法烟气脱硫系统中的研究与应用进展林永明1,高 翔1,俞保云3,施平平2,钟 毅1,骆仲泱1,岑可法1(1.浙江大学,浙江杭州 310027;2.浙江大学蓝天环保设备工程有限公司,浙江杭州 310012;3.嘉爱斯热电有限公司,浙江嘉兴 314003)[摘 要] 介绍了近年来国内外计算流体力学(CFD )技术在湿法烟气脱硫(WFGD )中的研究与应用进展。
指出该项研究目前需要考虑的问题并提出了展望。
[关键词] CFD 技术;湿法烟气脱硫(WFGD );数值模拟;燃煤电厂[中图分类号]X701 [文献标识码]A [文章编号]10023364(2005)12003404 湿法烟气脱硫(WFGD )是当前大型燃煤电厂烟气脱硫的主导技术。
吸收塔为WFGD 系统的核心设备。
对吸收塔传统的研究和设计方法是先基于模化法建立试验台进行试验,得到一些参量之间经验或半经验的宏观关联式后再放大到实际工程中[1]。
然而,此法所需试验量大、费用高、周期长,且获得的数据较有限,一些宏观特征量在设备和工程中的分布和放大效应[2]会被忽略,因此难以满足对工程的进一步优化。
随着计算流体力学(CFD )的发展,研究人员将CFD 技术引入WFGD 工程的设计及优化当中。
采用该技术可以弥补和克服传统方法的缺陷,减少物理模型试验,缩短研发周期,节约研究经费,还可获取大量局部、瞬时数据,从而可指导工程的设计和优化[3]。
1 CFD 技术概述CFD 技术是20世纪60年代伴随计算机技术而发展起来的,是集流体力学、数值计算方法以及计算机图形学于一体,利用相应的数值计算方法求解数学方程和预测动量传递、热量传递、质量传递、化学反应以及相应的物理现象的一门科学[4]。
其基本原理是基于数学方法建立单相或多相流动基本控制方程[5~8],利用数值方法对其进行求解。
计算流体力学在农业工程中的应用现状与发展趋势近年来,随着计算流体力学(CFD)技术的不断发展和应用,其在农业工程领域的应用也日益广泛。
计算流体力学是一种通过数值方法解决流体流动和传热问题的工程技术,它的应用不仅可以帮助农业工程领域解决实际问题,还能够提高生产效率和资源利用率。
本文将以此为主题,结合当前的实际情况和未来的发展趋势,全面评估计算流体力学在农业工程中的应用现状,并探讨其发展趋势。
1. 计算流体力学在农业灌溉系统中的应用在农业生产中,灌溉是至关重要的一环。
利用计算流体力学技术,可以对灌溉系统进行模拟和优化,从而提高灌溉效率和节约水资源。
通过仿真计算,可以确定最佳的灌溉方案、管道布局和水流速度,从而降低灌溉系统的能耗和成本,提高土地的利用率和作物的产量。
2. 农业设施的空气流动模拟与优化除了灌溉系统,计算流体力学还广泛应用于农业设施的空气流动模拟与优化。
温室内的空气流动对作物的生长和产量有着直接影响。
通过CFD技术,可以对温室内的气流模式进行模拟,从而优化通风系统和空气循环,提高作物的生长环境和质量。
3. 农田水土流失和污染物运移模拟农田水土流失和污染物运移是当前农业生产中面临的重要问题之一。
利用计算流体力学技术,可以对降雨过程中的水土流动、土壤侵蚀和污染物传输进行精确模拟,为保护农田水土资源和环境提供科学依据和技术支持。
在未来,随着农业工程技术的不断革新和CFD技术的深入应用,计算流体力学在农业工程中的发展趋势也将更加多元化和立体化。
随着智能农业和数字农业的兴起,计算流体力学技术将与遥感技术、物联网技术等相结合,为农业生产提供更精准和可持续的解决方案。
CFD技术在智能农业设备的设计与优化、精准农业管理和智能农田环境监测等方面也将发挥更加重要的作用。
结语计算流体力学在农业工程中的应用现状已经非常广泛,并且在未来具有巨大的发展潜力。
通过对CFD技术的深入研究和应用,我们可以不断提高农业生产的效率和可持续发展能力,为农业产业的升级和转型提供技术支持和保障。
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 8 期脉动热管计算流体力学模型与研究进展卜治丞,焦波,林海花,孙洪源(山东交通学院船舶与港口工程学院,山东 威海 264200)摘要:脉动热管利用工质的潜热和显热实现高效的热传递,过程中伴随气液塞强烈的往复振荡,流动与传热现象极其复杂。
利用计算流体力学模拟可以获得管内气液界面形态、流型转换及振荡压降等重要信息。
本文对公开发表的相关研究进行了综述,介绍各个模型的主要公式、数值模拟的求解方法、优势和现有的局限性,总结现有模拟研究开展的主要工作和结论。
通过分析发现了目前存在的问题:相变模型中蒸发、冷凝系数的确定仍未有明确的理论依据;二维模型中管径的确定方法还未形成共识;将气-液-固三相流动的颗粒流体简化为均质流体。
基于上述问题,本文提出了利用计算流体力学模拟脉动热管后续的研究方向。
关键词:脉动热管;计算流体力学;气液两相流;相变;传热中图分类号:TK172.4;TQ021 文献标志码:A 文章编号:1000-6613(2023)08-4167-15Review on computational fluid dynamics (CFD) simulation and advancesin pulsating heat pipesBU Zhicheng ,JIAO Bo ,LIN Haihua ,SUN Hongyuan(Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, Shandong, China)Abstract: The pulsating heat pipe (PHP) realizes efficient heat transfer through latent and sensible heat of the working fluid. Due to the strong reciprocating oscillation of the gas and liquid plug, the flow and heat transfer mechanisms are extremely complex. Computational fluid dynamics (CFD) simulation on PHPs can provide important information, such as gas-liquid interface shape, flow pattern transition, oscillating pressure drops, etc . Thus, the published CFD simulations on PHPs are reviewed in this paper. The main formulas, numerical simulation methods, advantages and limitations are introduced, and the available simulation research and conclusions are summarized. The analysis reveals some issues to be solved: there is no definite theoretical basis for the choosing of evaporation and condensation coefficients in phase change model; an agreement on the determination of pipe diameter in two-dimensional model has not been reached; the particle fluid of gas-liquid-solid three-phase flow is simplified into the homogeneous fluid. Based on the above problems, further research directions for using CFD to simulate PHPs are proposed.Keywords: pulstating heat pipe; computational fluid dynamics; gas-liquid flow; phase change; heat transfer综述与专论DOI :10.16085/j.issn.1000-6613.2022-1771收稿日期:2022-09-22;修改稿日期:2023-01-15。
计算流体力学在农业工程中的应用现状与发展趋势计算流体力学(Computational Fluid Dynamics,简称CFD)是一种模拟流体力学问题的数值计算方法,借助计算机技术,通过连续介质力学、运动学和热力学等原理,对涉及流体流动、传热、传质等问题进行数值模拟和计算。
计算流体力学在农业工程中的应用,可以有效地优化农业生产系统,提高农作物的产量和品质,降低农业生产过程中的能耗和环境污染。
一、计算流体力学在温室大棚设计中的应用温室大棚作为现代农业生产的重要手段之一,对温室内的气候环境进行合理调控,是提高农业产量和质量的关键。
使用计算流体力学模拟温室大棚内的空气流动、温度分布和湿度变化等参数,可以帮助农业工程师确定温室内的最佳气候控制策略,提高温室内作物的生长环境。
二、计算流体力学在农田灌溉中的应用灌溉对于农田的水资源利用和农业生产起着至关重要的作用。
利用计算流体力学模拟地下水流动和土壤水分传输,可以评估灌溉系统的水分利用效率,优化灌溉方案,避免水资源的浪费和土壤的盐碱化。
此外,还可以通过计算流体力学模拟灌溉设施内的水流分布和压力变化,以评估系统的性能,并进行优化设计。
三、计算流体力学在精准农业中的应用精准农业是一种利用先进的信息技术和农业装备,对农田进行精细化管理的农业生产模式。
计算流体力学结合无人机、传感器等技术,可以模拟农田内的气候、土壤水分、养分分布等情况,并实时调整农机设备的操作参数,实现对不同农田区块的精细化管理。
通过精确控制农田内的水分、养分和农药的分布,可以提高农作物的产量和质量,减少化肥、农药的使用量,降低环境污染。
四、计算流体力学在农业机械设计中的应用合理的农业机械设计可以提高农业生产效率,降低劳动强度。
利用计算流体力学模拟农业机械与农田的相互作用,可以优化机械设备的结构和性能,改善农机在不同环境下的工作表现。
此外,计算流体力学还可以模拟农机在作业过程中的风阻、水阻等外力,对机械进行优化设计,减少能耗,提高机械的使用寿命。
计算流体力学的发展历程与未来前景计算流体力学(Computational Fluid Dynamics, CFD)是运用数值方法对流体力学问题进行模拟和分析的学科,它结合了流体力学、数值计算和计算机学科的知识。
在过去的几十年中,计算流体力学在科学研究、工程设计和工业应用中起到了重要的作用。
本文将介绍计算流体力学的发展历程,并展望其未来的前景。
计算流体力学的发展历程源远流长。
早在20世纪40年代,人们开始使用数值方法来解决流体力学问题,并发展了有限差分法等基本方法。
然而,当时的计算能力非常有限,只能处理简单的二维问题。
到了20世纪60年代,随着计算机的发展,计算流体力学的发展进入了快速发展期。
有限元法的引入使得计算流体力学能够处理复杂的流动问题,并为工业应用提供了新的解决方案。
此后,随着计算能力的不断提升和计算方法的改进,计算流体力学的应用范围和精度不断提高。
进入21世纪以来,计算流体力学的发展进入了一个全新的阶段。
首先,计算能力的大幅提升使得可以模拟和研究更加复杂的流动问题,如湍流、多相流和自由面问题等。
借助高性能计算技术和并行计算方法,计算流体力学已经成为一种强大的工具,可以模拟包括飞机、汽车、火箭等工程领域中的复杂流动。
其次,计算流体力学与其他学科的交叉应用也日益增多,如结构力学、热传导、化学反应等。
这种多学科的融合为解决复杂多物理场耦合问题提供了新的思路和方法。
未来,计算流体力学有着广阔的发展前景。
随着计算能力的继续提升和计算方法的不断改进,计算流体力学可以更加精确地预测流动的行为,并提供更准确的工程设计依据。
例如,在航空航天领域,计算流体力学可以用于优化飞机的气动外形和减少燃料消耗,提高飞行效率和降低排放。
在能源领域,计算流体力学可以用于优化燃烧过程和提高能源转化效率,减少环境污染。
在环境保护领域,计算流体力学可以用于模拟河流、海洋和大气中的环境问题,帮助解决河流污染、海洋污染和空气污染等问题。
计算流体力学在船舶设计中的应用研究随着科技的不断发展,计算流体力学(Computational Fluid Dynamics, CFD)在船舶设计中的应用越来越广泛。
CFD是研究流体运动过程的数值计算方法,可以通过计算模拟流体力学的各种过程,对船舶的设计和性能进行优化。
一、CFD在船舶设计中的应用1. 流场分析CFD可以模拟船舶在运动过程中的流场情况,包括水流、气流等。
根据模拟得到的流场分析结果,可以进一步了解船舶的流阻、流场分布等特性。
在设计船舶时,可以通过调整船体的形状和尺寸来减少流阻,提高船速和燃油经济性。
2. 吸力分析在船舶的设计过程中,吸力是一个重要的指标,它关系到船舶在运动中所产生的液体动力。
通过CFD模拟,可以对船舶在行驶过程中所产生的吸力进行分析和评估,及时发现和解决吸力问题,提高船舶的耐力和安全性。
3. 推进器设计CFD也可以应用于推进器的设计和优化。
针对不同类型、不同运动状态的船舶,通过CFD模拟,可以得到不同推进器下的流场分析结果,进而优化推进器的设计。
这对提高船速和减少燃油消耗等方面具有重要意义。
4. 海浪性能分析海浪对于船舶的性能有着重要的影响,在船舶设计时需要充分考虑海浪的影响。
通过CFD模拟,可以模拟不同海况下船舶的运动性能,包括船体姿态变化、载荷情况、速度变化等。
这对于船舶的安全性、稳定性和可靠性有着重要的意义。
二、CFD在船舶设计中的优势1. 节省时间和成本CFD可以在计算机上进行数值模拟,避免了传统的模型试验过程,不仅节省了时间和成本,而且能够快速有效地得到各种设计方案的流场分析结果。
2. 提高设计水平和质量通过CFD模拟,设计师能够更加准确有效地评估不同设计方案的流场特性和性能表现,从而有针对性地调整船体的形状和尺寸,提高整个设计的水平和质量。
同时,也能够规避一些不可预测的因素和意外情况,减少风险。
3. 精度高、模型复杂度高CFD模拟具有较高的精度和可靠性,在模拟复杂流场和流体运动过程时表现出良好的性能。
流体力学研究进展与应用前景分析流体力学是研究流体运动和相互作用的学科,广泛应用于工程、地球科学、生物医学等领域。
近年来,随着计算机技术和实验手段的不断发展,流体力学研究取得了显著进展,并在许多领域展现出广阔的应用前景。
一、数值模拟技术的发展数值模拟是流体力学研究的重要手段之一。
随着计算机性能的提升和计算方法的改进,数值模拟能够更准确地预测流体的运动和变形。
例如,通过计算流体力学(CFD)模拟,可以研究飞机、汽车等运动体在空气中的流动特性,优化设计,提高性能。
同时,数值模拟还可以模拟自然界中的复杂流动现象,如洪水、气象等,为人们提供更准确的预测和决策依据。
二、多尺度模拟技术的发展流体力学研究往往涉及到多个尺度的问题,从微观分子运动到宏观流体流动。
近年来,多尺度模拟技术的发展为解决这一难题提供了新的途径。
通过将不同尺度的模型和方法相结合,可以更全面地揭示流体运动的本质。
例如,通过分子动力学(MD)模拟可以研究纳米尺度下的流体行为,而通过连续介质力学(CMM)模拟可以研究宏观尺度下的流体流动。
多尺度模拟技术的发展将进一步推动流体力学研究的深入和应用的拓展。
三、生物流体力学的研究进展生物流体力学是将流体力学原理应用于生物系统的研究领域。
近年来,生物流体力学的研究进展迅速,为生物医学领域的治疗和诊断提供了新的思路和方法。
例如,通过模拟血液在血管中的流动,可以研究动脉粥样硬化等心血管疾病的发生机制,为疾病的预防和治疗提供指导。
此外,生物流体力学还可以用于研究呼吸系统、消化系统等生物器官的功能和疾病,为医学研究和临床实践提供重要支持。
四、流体力学在工程领域的应用前景流体力学在工程领域有着广泛的应用前景。
例如,在航空航天领域,流体力学可以用于研究飞行器的气动特性,优化设计,提高飞行性能。
在能源领域,流体力学可以用于研究风力发电机组的风场分布,优化布局,提高发电效率。
在交通运输领域,流体力学可以用于研究汽车、船舶等运动体在流体中的阻力和操控性能,优化设计,提高能源利用效率。
流体力学的发展现状引言概述:流体力学是研究流体力学性质和运动规律的学科,其发展对于工程、物理学和生物学等领域具有重要意义。
本文将从五个方面详细阐述流体力学的发展现状,包括实验技术的进展、数值模拟的应用、流体力学在能源领域的应用、生物流体力学的研究以及流体力学在环境保护中的应用。
一、实验技术的进展1.1 高速摄像技术的应用随着高速摄像技术的发展,研究者能够更加精确地观察流体运动的细节,从而深入研究流体力学的基本规律。
1.2 激光测量技术的提升激光测量技术的进步使得流体力学研究者能够准确测量流体的速度、压力和温度等参数,为流体力学的理论研究提供了可靠的实验数据。
1.3 微纳米尺度实验技术的发展微纳米尺度实验技术的突破,使得研究者能够研究微小尺度下流体力学的行为,为纳米技术的发展提供了基础。
二、数值模拟的应用2.1 计算流体力学的发展计算流体力学是流体力学研究中的重要工具,随着计算机性能的提升,数值模拟的精度和可靠性得到了大幅度提高。
2.2 多物理场耦合模拟多物理场耦合模拟的发展使得研究者能够更加准确地模拟流体力学与其他物理场的相互作用,拓宽了流体力学研究的领域。
2.3 大规模并行计算的应用大规模并行计算技术的应用使得研究者能够处理更加复杂的流体力学问题,提高了数值模拟的效率和精度。
三、流体力学在能源领域的应用3.1 水力发电技术的研究流体力学在水力发电技术中的应用,能够提高水轮机的效率和稳定性,促进清洁能源的发展。
3.2 燃烧流体力学的研究燃烧流体力学的研究能够优化燃烧过程,提高燃烧效率,减少能源的浪费和环境污染。
3.3 新能源储存与输送技术的研究流体力学在新能源储存与输送技术中的应用,能够提高能源的储存效率和输送安全性,推动新能源技术的发展。
四、生物流体力学的研究4.1 血液流体力学的研究生物流体力学在血液流体力学研究中的应用,能够帮助人们更好地理解血液循环系统的运动规律,为心血管疾病的预防和治疗提供理论依据。