存储器知识点小结
- 格式:doc
- 大小:359.50 KB
- 文档页数:8
微机原理知识点归纳总结微机原理是计算机专业的基础课程之一,它是学习计算机硬件和软件原理的入门课程。
本文将对微机原理课程的主要知识点进行归纳总结,希望可以帮助读者更好地理解微机原理,并为日后的学习和工作提供帮助。
一、计算机系统计算机系统是由硬件和软件两部分组成的,硬件是计算机的物理构成,软件是控制硬件工作的程序。
计算机系统的主要组成部分包括中央处理器(CPU)、存储器、输入输出设备(I/O设备)和总线。
1. 中央处理器(CPU)中央处理器是计算机系统的核心部件,它负责执行计算机程序的指令和控制计算机的操作。
中央处理器由运算器和控制器两部分组成,运算器负责执行算术和逻辑运算,控制器负责控制指令的执行顺序和数据的流动。
2. 存储器存储器是计算机系统用来存储数据和程序的设备,它分为主存储器(RAM)和辅助存储器(ROM、硬盘等)。
主存储器用来临时存储程序和数据,辅助存储器用来长期存储程序和数据。
3. 输入输出设备(I/O设备)输入输出设备用来与外部环境进行交互,包括键盘、鼠标、显示器、打印机等。
它们负责将数据输入到计算机系统中或者将计算机系统的输出结果显示或打印出来。
4. 总线总线是计算机系统各个部件之间传输数据和控制信号的通道,它分为地址总线、数据总线和控制总线。
地址总线用来传输地址信息,数据总线用来传输数据,控制总线用来传输控制信号。
二、数据的表示和运算1. 二进制数计算机是以二进制形式进行运算的,因此需要了解二进制数的表示和运算规则。
二进制数由0和1组成,其表示方法和十进制数类似,但是各位上的权值是2的幂次方。
2. 字符编码计算机系统中的字符是使用字符编码进行表示的,常用的字符编码包括ASCII码和Unicode。
ASCII码是美国标准信息交换码,每个字符用一个字节表示;而Unicode是一种全球字符集,包括了几乎所有国家的字符,每个字符用两个字节表示。
3. 整数表示和运算计算机系统中的整数是通过二进制补码形式进行表示和运算的。
(完整版)单⽚机知识点总结单⽚机考点总结1.单⽚机由CPU、存储器及各种I/O接⼝三部分组成。
2.单⽚机即单⽚微型计算机,⼜可称为微控制器和嵌⼊式控制器。
3.MCS-51系列单⽚机为8位单⽚机,共40个引脚,MCS-51基本类型有8031、8051和8751.(1)I/O引脚(2)8031、8051和8751的区别: 8031⽚内⽆程序存储器、8051⽚内有4KB程序存储器ROM、8751⽚内有4KB程序存储器EPROM。
(3)4.MCS-51单⽚机共有16位地址总线,P2⼝作为⾼8位地址输出⼝,P0⼝可分时复⽤为低8位地址输出⼝和数据⼝。
MCS-51单⽚机⽚外可扩展存储最⼤容量为216=64KB,地址范围为0000H—FFFFH。
(1.以P0⼝作为低8位地址/数据总线;2.以P2⼝作为⾼8位地址线)5.MCS-51⽚内有128字节数据存储器(RAM),21个特殊功能寄存器(SFR)。
(1)MCS-51⽚内有128字节数据存储器(RAM),字节地址为00H—7FH;00H—1FH: ⼯作寄存器区;00H—1FH: 可位寻址区;00H—1FH: ⽤户RAM区。
(2)21个特殊功能寄存器(SFR)(21页—23页);(3)当MCS-51上电复位后,⽚内各寄存器的状态,见34页表2-6。
PC=0000H, DPTR=0000H, Acc=00H, PSW=00H, B=00H, SP=07H,TMOD=00H, TCON=00H, TH0=00H, TL0=00H, TH1=00H,TL1=00H, SCON=00H, P0~P3=FFH6. 程序计数器PC:存放着下⼀条要执⾏指令在程序存储器中的地址,即当前PC值或现⾏值。
程序计数器PC是16位寄存器,没有地址,不是SFR.7. PC与DPTR的区别:PC和DPTR都⽤于提供地址,其中PC为访问程序存储器提供地址,⽽DPTR为访问数据存储器提供地址。
51单片机知识点总结51单片机是一种广泛应用于嵌入式系统开发的微处理器。
它具备低功耗、易编程、高集成度等优势,被广泛应用于各种领域,如电子产品、通信、汽车等。
本文将对51单片机的相关知识点进行总结,供读者参考。
1. 51单片机概述51单片机是由Intel公司于1980年推出的,它的名称来源于其内部的8位数据总线宽度,即51(5位地址总线和8位数据总线)。
它具备一定的计算能力和I/O接口,可通过编程实现各种功能。
2. 51单片机基本结构51单片机的基本结构包括CPU核心、内存、I/O接口、定时器/计数器、串口等。
CPU核心负责指令执行和数据处理,内存用于存储程序和数据,I/O接口用于与外部设备进行数据交互,定时器/计数器用于产生精确的时间延迟,串口用于与其他设备进行通信。
3. 51单片机的存储器51单片机的存储器包括ROM、RAM和特殊功能寄存器。
ROM用于存储程序代码,RAM用于存储数据。
特殊功能寄存器是一种特殊用途的寄存器,用于访问和控制单片机的各种功能。
4. 51单片机的指令系统51单片机的指令由操作码和操作数组成。
操作码表示要执行的操作类型,操作数表示操作的目标。
常见的指令包括数据传输指令、算术运算指令、逻辑运算指令、控制转移指令等。
5. 51单片机的I/O编程51单片机通过I/O接口与外部设备进行数据交互。
I/O编程涉及到输入输出口的初始化、数据传输、中断处理等。
通过编程控制I/O口状态,可以实现数据的输入和输出。
6. 51单片机的定时器/计数器51单片机内置了多个定时器/计数器,用于产生精确的时间延迟和计数功能。
定时器/计数器可以用于产生定时中断、测量外部信号的频率和脉宽等。
7. 51单片机的串口通信51单片机通过串口与其他设备进行通信。
串口通信涉及到波特率设置、数据传输、中断处理等。
通过串口通信,可以实现单片机与计算机、传感器等设备的数据交互。
8. 51单片机的中断系统51单片机内置了中断系统,用于处理外部事件和优先级。
单片机基本知识点总结
单片机是一种微处理器,通常被用于控制电子设备和系统中的逻辑操作。
单片机具有计算和控制功能,并能够以无需外部其他器件而单独运行。
以下是单片机的基本知识点:
1. 单片机的结构:由中央处理器(CPU)、存储器、外设和输入/输出(I/O)口组成。
2. 单片机的分类:根据CPU内核类型可分为8051系列、AVR系列、PIC系列等。
3. 单片机的指令系统:单片机指令分为操作指令和数据传输指令。
4. 单片机的存储器:包括ROM(只读存储器)和RAM(随机存储器),ROM用于储存程序,RAM用于储存变量和临时数据。
5. 外设:可连接到单片机的设备,如LED灯、LCD显示器、电机等。
6. I/O口:单片机用于与外部设备通信的接口,包括输入口和输出口。
7. 中断系统:单片机可快速响应外部事件的能力,通过设置中断自动运行中断服务子程序。
8. 特殊功能寄存器(SFR):用于控制单片机内部外设的寄存器。
9. 微控制器编程:可用汇编语言或高级语言如C语言来编写单片机程序。
10. 调试工具:用于调试和测试单片机程序的工具,如仿真器、调试器等。
以上是单片机的基本知识点,了解这些内容可以帮助初学者更好地理解和掌握单片机编程技术。
微机原理知识点一、微机原理概述微机原理是指解析和理解微型计算机的基本组成部分和工作机理的学科。
微型计算机是一种体积小、功能强大的计算机,它能够进行数据处理、运算、存储和控制等操作。
微机原理研究的重点主要包括微处理器、存储器、输入输出设备、总线系统以及计算机的工作原理等内容。
二、微处理器微处理器是微型计算机的核心部件,负责执行指令、进行数据处理和运算等任务。
它由控制单元和算术逻辑单元组成。
控制单元负责指令的解码和执行,而算术逻辑单元则负责进行算术和逻辑运算。
微处理器的性能主要由时钟频率、位数、指令集和内部缓存等因素决定。
三、存储器存储器是用于存储和读取数据的设备。
微型计算机中常见的存储器包括随机存取存储器(RAM)和只读存储器(ROM)。
RAM用于存储临时数据,而ROM则用于存储不可修改的程序和数据。
存储器的访问速度和容量是衡量其性能的重要指标。
四、输入输出设备输入输出设备用于将用户输入的信息传递给计算机,以及将计算机处理后的结果输出给用户。
常见的输入设备包括键盘、鼠标和扫描仪等,而输出设备则包括显示器、打印机和音频设备等。
输入输出设备的种类繁多,适应了不同用户的需求。
五、总线系统总线系统是微型计算机内部各个组件之间进行数据传输和通信的路径。
它由地址总线、数据总线和控制总线组成。
地址总线用于指定内存中数据的位置,数据总线负责传送数据,而控制总线用于指示数据的读取和写入操作。
总线系统的带宽和速度直接影响计算机的数据传输效率。
六、计算机的工作原理微型计算机的工作原理一般遵循“取指令-执行指令”的基本模式。
首先,微处理器从存储器中取出一条指令,然后将其解码并执行相应的操作。
在执行过程中,微处理器可能需要从存储器或外部设备中读取数据,并将运算结果存储回存储器中。
计算机的工作原理是理解微机原理的基础,对于优化计算机的性能和应用开发非常重要。
七、总结微机原理作为计算机科学的基础学科,涵盖了微型计算机的核心组成部分和工作原理等重要内容。
数电知识点总结数字电子技术(简称数电)是电子信息类专业的一门重要基础课程,它主要研究数字信号的传输、处理和存储。
下面为大家总结一些关键的数电知识点。
一、数制与码制数制是指用一组固定的数字和一套统一的规则来表示数的方法。
常见的数制有十进制、二进制、八进制和十六进制。
十进制是我们日常生活中最常用的数制,它由 0、1、2、3、4、5、6、7、8、9 这十个数字组成,遵循“逢十进一”的原则。
二进制则只有 0 和 1 两个数字,其运算规则简单,是数字电路中最常用的数制,遵循“逢二进一”。
八进制由0、1、2、3、4、5、6、7 这八个数字组成,“逢八进一”。
十六进制由 0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F 这十六个数字和字母组成,“逢十六进一”。
码制是指用不同的代码来表示不同的信息。
常见的码制有BCD 码、格雷码等。
BCD 码用四位二进制数来表示一位十进制数,有 8421 BCD 码、5421 BCD 码等。
格雷码的特点是相邻两个编码之间只有一位发生变化,这在数字电路中可以减少错误的产生。
二、逻辑代数基础逻辑代数是数字电路分析和设计的数学工具。
基本逻辑运算包括与、或、非三种。
与运算表示只有当所有输入都为 1 时,输出才为 1;或运算表示只要有一个输入为 1,输出就为 1;非运算则是输入为 1 时输出为 0,输入为 0 时输出为 1。
逻辑代数的基本定律有交换律、结合律、分配律、反演律和吸收律等。
这些定律在逻辑函数的化简和变换中经常用到。
逻辑函数的表示方法有真值表、逻辑表达式、逻辑图、卡诺图等。
真值表是将输入变量的所有可能取值组合及其对应的输出值列成的表格;逻辑表达式是用逻辑运算符将输入变量连接起来表示输出的式子;逻辑图是用逻辑门符号表示逻辑函数的电路图;卡诺图则是用于化简逻辑函数的一种图形工具。
三、门电路门电路是实现基本逻辑运算的电子电路。
常见的门电路有与门、或门、非门、与非门、或非门、异或门和同或门等。
计算机组成原理知识点总结计算机组成原理是计算机科学与技术的基础课程之一,涉及到计算机系统的硬件和软件组成,以及它们之间的交互关系。
以下是一些计算机组成原理的重要知识点总结:1. 计算机的分类:计算机可以根据规模、用途和结构等方面进行分类。
常见的分类有超级计算机、服务器、工作站、个人电脑、嵌入式系统等。
2. 计算机的基本组成:计算机由硬件和软件两部分组成。
硬件包括中央处理器(CPU)、内存、输入输出设备和存储设备等。
软件包括系统软件和应用软件。
3. 冯·诺依曼体系结构:冯·诺依曼体系结构是现代计算机体系结构的基础,它包含了存储器、算术逻辑单元(ALU)、控制单元和输入输出单元。
4. 存储器层次结构:计算机的存储器层次结构从高速缓存到主存再到辅助存储器,层层递进,速度和容量逐渐增大,成本逐渐减小。
5. 数据表示和运算:计算机使用二进制表示数据,并且可以进行不同进制间的转换。
在计算过程中,计算机使用算术逻辑运算对数据进行操作。
6. 指令集体系结构:指令集体系结构是计算机硬件和软件的接口,定义了计算机的指令集和指令执行方式。
常见的指令集体系结构有精简指令集(RISC)和复杂指令集(CISC)。
7. CPU的工作原理:CPU执行计算机指令的过程包括取指令、译码指令、执行指令和写回结果等步骤。
这些步骤是由控制单元和算术逻辑单元(ALU)完成的。
8. 输入输出系统:计算机通过输入输出设备与外部环境进行交互。
输入输出系统包括输入输出控制器、输入输出接口和输入输出设备等。
9. 总线:计算机内部各个硬件部件之间通过总线进行通信和数据传输。
总线包括数据总线、地址总线和控制总线。
10. 中断和异常:中断是计算机在执行过程中响应外部事件的一种机制,可以中断当前的执行流程。
异常是由于程序错误或硬件错误而引起的计算机响应机制。
以上是计算机组成原理的一些重要知识点总结,它们构成了计算机系统的基础,对于理解计算机的工作原理和设计原则非常重要。
八年级电子计算机知识点在现代社会,电子计算机已经成为了我们生活中必不可少的一部分。
电子计算机起源于20世纪40年代,经过七十年的发展,已经成为了我们生活必不可或缺的一部分。
在这篇文章中,我们将探讨八年级电子计算机知识点,帮助大家更好地了解电子计算机的基础知识和工作原理。
一、计算机硬件1. 中央处理器(CPU):计算机的主要部件之一,主要负责运行和控制计算机的所有运算和操作。
CPU的速度通常被称为“时钟速度”。
2. 存储器(Memory):计算机内部的存储器,被用来保存数据、程序、系统和用户配置信息等。
存储器包括RAM和ROM两种形式。
3. 硬盘:计算机的主要存储部件之一,用来存储大量数据并保存在长期存储器中。
4. 显卡(Video Card):用来将计算机中的计算结果转化为图像输出到显示器上。
5. 鼠标、键盘、显示器等:作为计算机外围设备之一,用来输入和输出数据。
二、计算机系统软件1. 操作系统(OS):计算机硬件和应用程序之间的桥梁,是计算机系统中最重要的一部分。
操作系统的主要功能包括资源管理、任务管理、用户管理等。
2. 应用软件(Application):与操作系统相对的一类软件,适用于特定的任务,例如文字处理、电子表格、数据库软件等。
三、网络基础知识1. 计算机网络:将多台计算机连接在一起,使它们能够高效地共享资源和信息,形成了一个计算机网络。
2. 网络协议:网络之间的通信需要遵守一定的规则,这些规则被称为网络协议。
例如,TCP/IP协议是互联网上最常用的网络协议。
3. 网络拓扑:描述了计算机网络中,计算机与设备的布局方式。
4. 网络安全:网络攻击、滥发送电子邮件等行为会对网络和个人造成威胁。
因此,网络安全已经变得至关重要。
四、编程基础1. 编程语言:计算机程序员使用的一种语言,用于编写计算机程序。
2. 常见的编程语言:包括C/C++、Python、Java等。
3. 数据类型:计算机程序中,数据的类型通常包括整数、浮点数、字符、字符串等。
数字电路总结知识点一、基本原理数字电路是以二进制形式表示信息的电路,它由数字信号和逻辑元件组成。
数字信号是由禄电平、高电平表示的信号,逻辑元件是由逻辑门组成的。
数字电路的设计和分析都是以逻辑门为基础的。
逻辑门是用来执行逻辑函数的元件,比如“与”门、“或”门、“非”门等。
数字电路的基本原理主要包括二进制数制、布尔代数、卡诺图、逻辑函数和逻辑运算等内容。
二进制数制是数字电路中最常用的数制形式,它使用0和1表示数字。
布尔代数是描述逻辑运算的理论基础,它包括基本逻辑运算、逻辑运算规则、逻辑函数、逻辑表达式等内容。
卡诺图是用于简化逻辑函数的图形化方法,它可以简化逻辑函数的表达式,以便进一步分析和设计数字电路。
二、逻辑门逻辑门是数字电路的基本元件,它用来执行逻辑函数。
常见的逻辑门包括与门、或门、非门、异或门、与非门、或非门等。
这些逻辑门都有特定的逻辑功能和真值表,它们可以用于组合成复杂的逻辑电路。
逻辑门的特点有两个,一个是具有特定的逻辑功能,另一个是可以实现逻辑函数。
逻辑门的逻辑功能对应着二进制操作的逻辑运算,它可以实现逻辑的“与”、“或”、“非”、“异或”等功能。
逻辑门的实现是通过逻辑元件的布局和连接来完成的,比如用传输门和与门实现一个或门。
三、组合逻辑电路组合逻辑电路是由逻辑门组成的电路,它执行逻辑函数,但没有存储元件。
组合逻辑电路的特点是对输入信号的变化立即做出响应,并且输出信号仅依赖于当前的输入信号。
常见的组合逻辑电路包括加法器、减法器、多路选择器、译码器等。
加法器是一个重要的组合逻辑电路,它用来执行加法运算。
有半加器、全加器和多位加法器等不同类型的加法器,它们可以实现不同精度的加法运算。
减法器是用来执行减法运算的组合逻辑电路,它可以实现数的减法运算。
多路选择器是一个多输入、单输出的组合逻辑电路,它根据控制信号选择其中的一个输入信号输出到输出端。
译码器是用来将二进制码转换成其它码制的组合逻辑电路,它可以将二进制数码转换成BCD码、七段码等。
一、系统概述(一)计算机发展历程(二)计算机系统层次结构1.计算机硬件的基本组成2.计算机软件的分类3.计算机的工作过程(三)性能指标1.吞吐量对网络、设备、端口、虚电路或其他设施,单位时间内成功地传送数据的数量(以比特、字节、分组等测量)。
2.响应时间3.CPU时钟周期(Clock Cycle):又称节拍没冲或T周期,是处理操作的最基本单位,是计算机中最基本的、最小的时间单位。
主频的倒数4.主频: 即CPU内核工作的时钟频率(CPU ClockSpeed)。
CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力并没有直接关系。
5.CPI (Clock cycle Per Instruction)表示每条计算机指令执行所需的时钟周期。
6.CPU执行时间7.MIPS(Million Instruction per second)每秒执行百万条指令某机器每秒执行300万条指令,则记作3 MIPS8.MFLOPS (Million Floationg-point Operations perSecond,每秒百万个浮点操作)衡量计算机系统的主要技术指标之一。
对于一给定的程序,MFLOPS的定义为:MFLOPS=操作浮点数/(执行时间*10E6)(10E6位10的6次方)。
1.指令周期:执行一条指令所需要的时间,一般由若干个机器周期组成,是从取指令、分析指令到执行完所需的全部时间。
2.机器周期:(又称cpu周期)在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。
例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。
完成一个基本操作所需要的时间称为机器周期。
通常用内存中读取一个指令字的最短时间来规定因而又称总线周期3.在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。
脉冲信号之间的时间间隔称为周期;而将在单位时间(如1秒)内所产生的脉冲个数称为频率。
微计算机包括微处理器、存储器、I/O接口电路及系统总线。 8086CPU由总线接口部件BIU和执行部件EU组成 BIU和EU操作是并行的 寄存器结构:通用寄存器(AX,BX,CX,DX) 段寄存器(CS,DS,SS,ES) 指针和变址寄存器(SP,BP,SI,DI) 指令指针(IP) 逻辑地址:存储器的任意一个逻辑地址由段基址和偏移地址组成,都是无符号位的16位二进制数,程序设计师采用逻辑地址。 物理地址:存储器的绝对地址,从00000~FFFFFH,是CPU访问存储器的实际寻址地址,它由逻辑地址转换而来。 物理地址=段地址×16+偏移地址 堆栈是存储器中的一块存储区,以先进后出的方式用来存放暂时保存的数据 指令周期:执行一条指令所需时间 时钟周期:CPU的时钟频率的倒数又叫T状态 总线周期:BIU完成一次访问存储器或I|O端口所需要的时间。一个总线周期有几个T状态组成 内部存储器由随机存取存储器(RAM)和只读存储器(ROM)组成 微机动态RAM的刷新:把写入到存储单元的数据进行独处,经过读放大器放大之后再写入以保存电荷上信息 IO接口的功能:匹配速度,匹配信号电平,匹配信号电平,匹配时序电路,匹配地址译码电路 Cpu与外设传送方式:程序控制方式 中断方式 和DMA方式 当CPU 正常运行程序时,由于微处理器内部事件或外设请求,引起CPU 中断正在运行 的程序,转去执行请求中断的外设(或内部事件)的中断服务子程序,中断服务程序执行完毕, 再返回被中止的程序,这一过程称为中断。 中断源:引起程序中断的事件 CPU响应中断条件:外设提出中断申请..本中断位未被屏蔽..本中断优先级最高...CPU允许中断 过程:⑴从数据总线上读取中断类型号,将其存入内部暂存器。 ⑵将标志寄存器flags的值入钱。 ⑶将flags中的中断允许标志IF和单步标志TF清0,以屏蔽外部其它中断请求,避免CPU 以单步方式执行中断处理子程字。 ⑷保护断点,将当前指令下面一条指令的段地址CS和指令指针IP的值入栈,中断处理完毕后,能正确返回到主程序继续执行。 ⑸根据中断类型号到中断向量表中找到中断向量,转入相应中断服务子程序。 8086/8088CPU如何获得中断类型号 对于除法出错,单步中断,不可屏蔽中断NMI,断点中断和溢出中断,CPU分别自动提供中断类型号0~4;②对于用户自己确定的软件中断INT n,类型号由n决定;对于外部可屏蔽中断INTR,由硬件电路及可编程中断控制器获取中断类型号 普通EIO功能:在全嵌套工作方式下,任何一级中断,处理结束返回上一级程序前,CPU向8259A传送EOI结束命令字,8259A收到EOI结束命令后,自动将ISR寄存器中级别最高的置1位清0。 8259A两类命令字:初始化命令字ICW和操作命令字OCW 8253初始化编程步骤:1.写入控制字2.写入计数初值
微机课知识点总结微机课是计算机类专业必修课程之一,主要介绍计算机硬件和软件相关知识。
学习微机课不仅有助于提高学生的计算机应用技能,还能够为日后从事计算机相关工作打下坚实的基础。
本文将从计算机的基本原理、计算机系统结构、计算机网络、操作系统、办公自动化等方面对微机课的知识点进行总结。
一、计算机的基本原理1.1 计算机的定义和分类计算机是一种用于自动完成数据处理任务的设备,可以分为超级计算机、大型计算机、小型计算机、微型计算机等多种类型。
根据功能可分为通用计算机和专用计算机。
1.2 计算机的运行原理计算机的运行原理主要包括数据的输入与输出、数据的存储和加工处理,其中CPU是计算机的核心部件,负责执行程序和处理数据。
1.3 计算机的数据表示计算机使用二进制来表示数据,二进制是由0和1组成的数制系统,计算机利用二进制来表示不同的数据类型。
1.4 计算机的运算计算机可以进行多种运算,包括算术运算、逻辑运算和位操作运算等。
1.5 计算机的程序设计程序设计是计算机科学的核心内容,包括算法设计、程序编写、程序调试等。
二、计算机系统结构2.1 计算机硬件组成计算机硬件主要包括中央处理器、存储器、输入设备、输出设备和通信设备等。
2.2 计算机软件结构计算机软件包括系统软件和应用软件,系统软件包括操作系统、编程语言、数据库系统等。
2.3 计算机存储器层次结构计算机存储器层次结构包括寄存器、高速缓存、主存储器和辅助存储器等,不同层次的存储器在速度和容量上有所差异。
2.4 输入输出系统输入输出系统是计算机与外部设备之间进行数据交换的接口,主要包括输入设备驱动程序和输出设备驱动程序。
2.5 中央处理器中央处理器是计算机的核心部件,包括运算器和控制器,运算器负责对数据进行处理,控制器负责对指令进行解码和执行。
三、计算机网络3.1 计算机网络的概念计算机网络是将多台计算机和网络设备通过通信线路连接起来,实现数据和资源共享的系统。
数电知识点总结(整理版).doc数电知识点总结(整理版)一、引言数字电子技术是电子工程领域的一个重要分支,它涉及使用数字信号处理电子设备中的信息。
本文档旨在总结数字电子学的核心知识点,以帮助学生和专业人士复习和掌握这一领域的基础。
二、数字逻辑基础数字信号数字信号是离散的,可以是二进制(0和1)或多电平信号。
逻辑门基本的逻辑门包括与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)和同或门(NAND)。
逻辑运算逻辑运算是数字电路中的基本操作,包括布尔代数和逻辑表达式的简化。
三、组合逻辑电路多输入逻辑门如四输入与门、或门,以及更复杂的逻辑功能。
编码器和解码器编码器将输入信号转换为二进制代码,解码器则相反。
加法器用于执行二进制加法运算的电路。
比较器比较两个二进制数的大小。
四、时序逻辑电路触发器基本的存储单元,可以存储一位二进制信息。
寄存器由多个触发器组成的电路,用于存储多位二进制信息。
计数器用于计数事件的时序电路。
移位寄存器可以按顺序移动存储的数据。
五、存储器RAM(随机存取存储器)可以读写的数据存储器。
ROM(只读存储器)存储固定数据的存储器,内容在制造时写入。
PROM(可编程ROM)用户可以编程的只读存储器。
EEPROM(电可擦可编程ROM)可以通过电信号擦除和重新编程的存储器。
六、数字系统设计设计流程包括需求分析、逻辑设计、电路设计、仿真、实现和测试。
硬件描述语言如VHDL和Verilog,用于设计和模拟数字电路。
仿真工具用于在实际硬件实现之前测试电路设计的工具。
七、数字信号处理采样将模拟信号转换为数字信号的过程。
量化将连续的信号值转换为有限数量的离散值。
编码将采样和量化后的信号转换为数字代码。
八、数模转换和模数转换数模转换器(DAC)将数字信号转换为模拟信号的设备。
模数转换器(ADC)将模拟信号转换为数字信号的设备。
九、数字通信基础调制在发送端,将数字信号转换为适合传输的形式。
解调在接收端,将接收到的信号转换回原始的数字信号。
一、概念1.CMDR:控存数据寄存器,存放从控存读出的微指令2.CMAR:控存地址寄存器,用于存放微指令的地址,当采用增量计数器法形成后续微指令地址时,CMAR有计数功能3.系统并行性:并行包括同时性和并发性两个方面。
前者是指两个或多个事件在同一时刻发生,后者是指两个或多个事件在同一时间段发生。
也就是说,在同一时刻或者同一时间段内完成两种或两种以上性质相同或者不同的功能,只要在时间上互相重叠,就存在并行性。
4.进位链:传递进位的逻辑电路5.间接寻址:通过访存(若是多次间址还需多次访存)得到有效地址6.微程序控制:采用与存储程序类似的方法来解决微操作命令序列的形成,将一条机器指令编写成一个微程序,每一个微程序包含若干条微指令,每一条微指令包含一个或多个微操作命令7.RISC:精简指令系统计算机,通过有限的指令条数简化处理器设计,以达到提高系统执行速度的目的8.中断隐指令:在机器指令系统中没有的指令,是CPU在中断周期内由硬件自动完成的一条指令,功能包括保护断点,寻找中断服务程序入口地址,关中断9.周期挪用/周期窃取:DMA方式中由DMA接口向CPU申请占用总线,占用一个存取周期10.单重分组跳跃进位:n位全加器分成若干小组,小组内进位同时产生,小组与小组间采用串行进位11.双重分组跳跃进位:n位全加器分为若干大组,大组内又分成若干小组,大组中小组的最高进位同时产生,大组与大组间的进位串行传送12.超标量:在每个时钟周期内同时并发多条独立指令,即以并行操作方式将两条或两条以上指令编译执行,在一个时钟周期内需要多个功能部件13超流水线:将一些流水线寄存器插入到流水线段中,好比将流水线再分道,提高了原来流水线的速度,在一个时钟周期内一个功能部件被使用多次14.水平型微指令:一次能定义并执行多个并行操作的微命令。
从编码方式上来看,直接编码、字段直接编码、字段间接编码、直接编码和字段直接和间接混合编码都属于水平型微指令。
高一计算机必考知识点总结计算机科学作为一门综合性学科,已经渗透到了我们生活的方方面面。
而作为学生,掌握计算机的基本知识,对于今后的学习和工作都具有重要意义。
在高一阶段,学生需要学习和掌握一些必考的计算机知识点,为了帮助高一学习者更好地总结这些知识点,以下是高一计算机必考知识点的总结。
一、计算机硬件知识点1. 计算机基本组成计算机主要由中央处理器、存储器、输入设备和输出设备四个部分组成。
中央处理器是计算机的核心部件,负责执行程序和处理数据;存储器用于存储数据和程序;输入设备用于将外部信息输入到计算机中;输出设备用于将计算机处理后的结果输出给用户。
2. 计算机的运算方式计算机可以进行数据的存储、传输和处理。
计算机的运算方式包括算术运算和逻辑运算。
算术运算主要是对数据进行加、减、乘、除等基本运算;逻辑运算主要是对数据进行与、或、非等逻辑运算。
3. 计算机的存储器层次结构计算机的存储器按照速度和容量可以划分为多级存储器,包括寄存器、高速缓存、主存储器和辅助存储器。
寄存器是CPU内部的高速缓冲存储器,容量最小但速度最快;高速缓存是CPU外部的存储器,容量稍大但速度较快;主存储器是计算机内部的主要存储器,容量较大但速度较慢;辅助存储器主要是指硬盘、光盘等外部存储设备,容量最大但速度最慢。
二、计算机网络知识点1. 计算机网络的基本概念计算机网络是将各个计算机通过通信线路互相连接在一起,实现信息交换和资源共享的系统。
计算机网络的主要功能包括传输数据、传输语音和视频、共享资源等。
2. 计算机网络的组成计算机网络主要由通信设备、通信线路和协议三个部分组成。
通信设备包括交换机、路由器等;通信线路主要用于传输数据;协议用于规定计算机之间的通信规则。
3. 计算机网络的分类根据规模的不同,计算机网络可以分为局域网、城域网、广域网和互联网等;根据拓扑结构的不同,计算机网络可以分为星型网络、总线网络、环形网络和网状网络等。
三、计算机软件知识点1. 操作系统操作系统是计算机系统的核心部分,它负责管理计算机的硬件和软件资源,提供用户与计算机之间的接口。
计算机组成原理白中英复习第一章计算机系统概论电子数字计算机的分类P1通用计算机超级计算机、大型机、服务器、工作站、微型机和单片机和专用计算机;计算机的性能指标P5数字计算机的五大部件及各自主要功能P6五大部件:存储器、运算器、控制器、输入设备、输出设备;存储器主要功能:保存原始数据和解题步骤;运算器主要功能:进行算术、逻辑运算;控制器主要功能:从内存中取出解题步骤程序分析,执行操作;输入设备主要功能:把人们所熟悉的某种信息形式变换为机器内部所能接收和识别的二进制信息形式;输出设备主要功能:把计算机处理的结果变换为人或其他机器所能接收和识别的信息形式;计算机软件P11系统程序——用来管理整个计算机系统应用程序——按任务需要编制成的各种程序第二章运算方法和运算器课件+作业第三章内部存储器存储器的分类P65按存储介质分类:易失性:半导体存储器非易失性:磁表面存储器、磁芯存储器、光盘存储器按存取方式分类:存取时间与物理地址无关随机访问:随机存储器RAM——在程序的执行过程中可读可写只读存储器ROM——在程序的执行过程中只读存取时间与物理地址有关串行访问:顺序存取存储器磁带直接存取存储器磁盘按在计算机中的作用分类:主存储器:随机存储器RAM——静态RAM、动态RAM只读存储器ROM——MROM、PROM、EPROM、EEPROMFlash Memory高速缓冲存储器Cache辅助存储器——磁盘、磁带、光盘存储器的分级P66存储器三个主要特性的关系:速度、容量、价格/位多级存储器体系结构:高速缓冲存储器cache、主存储器、外存储器;主存储器的技术指标P67存储容量:存储单元个数M×每单元位数N存取时间:从启动读写操作到操作完成的时间存取周期:两次独立的存储器操作所需间隔的最小时间 ,时间单位为ns;存储器带宽:单位时间里存储器所存取的信息量,位/秒、字节/每秒,是衡量数据传输速率的重要技术指标;SRAM存储器P67基本存储元:用一个锁存器触发器作为存储元;基本的静态存储元阵列P68双译码方式P68读周期、写周期、存取周期P70DRAM存储器P70基本存储元:由一个MOS晶体管和电容器组成的记忆电路;存储原理:所存储的信息1或0由电容器上的电荷量来体现充满电荷:1;没有电荷:0;一个DRAM存储元的写、读、刷新操作P71DRAM的刷新:集中式刷新和分散式刷新P73存储器容量的扩充P73位扩展——增加存储字长P73字扩展——增加存储字的数量P73字、位扩展P74例题P73只读存储器ROM P80掩模ROM、PROM、EPROM、EEPROM、Flash 存储器P80-86并行存储器P86双端口存储器:指同一个存储器具有两组相互独立的读写控制线路;多模块交叉存储器:连续地址分布在相邻的不同模块内,同一个模块内的地址都是不连续的;对连续字的成块传送可实现多模块流水式并行存取,大大提高存储器的带宽; cache基本原理P92避免 CPU“空等”现象CPU 和主存DRAM的速度差异程序访问的局部性原理cache由高速的SRAM组成cache的基本原理P93命中、未命中、命中率P93例题P94cache与主存的地址映射P94全相联映像:主存中的任一块可以映象到缓存中的任一块;直接映像:每个缓存块可以和若干个主存块对应;每个主存块只能和一个缓存块对应;组相联映像:某一主存块 j 按模 u 映射到缓存的第i 组中的任一块;替换算法P98先进先出算法FIFO:把一组中最先调入cache的块替换出去,不需要随时记录各个块的使用情况,所以实现容易,开销小;近期最少使用算法LRU:将近期内长久未被访问过的行块换出;每行设置一个计数器,cache每命中一次,命中行计数器清零,其它各行计数器增1;当需要替换时,比较各特定行的计数值,将计数值最大的行换出;最不经常使用LFU:被访问的行计数器增加1,换值小的行,不能反映近期cache的访问情况;随机替换:从特定的行位置中随机地选取一行换出; cache的写操作策略P99写回法、全写法、写一次法P99-100第四章指令系统指令系统P103程序、高级语言、机器语言、指令、指令系统、复杂指令系统计算机CISC、精简指令系统计算机RISCP103指令格式P105操作码:指令操作性质的二进制数代码地址码:指令中的地址码用来指出该指令的源操作数地址一个或两个、结果地址及下一条指令的地址;三地址指令、二地址指令、一地址指令、零地址指令;三种二地址指令SS、RR、RSP106指令字长度、机器字长P107例题P110操作数类型P110地址数据、数值数据、字符数据、逻辑数据寻址方式P112确定本条指令的操作数地址,下一条欲执行指令的指令地址指令寻址顺序寻址——PC+1跳跃寻址——转移类指令数据寻址P112-116立即寻址——形式地址就是操作数直接寻址——有效地址由形式地址直接给出隐含寻址——操作数地址隐含在操作码中间接寻址——有效地址由形式地址间接提供寄存器寻址——有效地址即为寄存器编号寄存器间接寻址——有效地址在寄存器中基址寻址——有效地址=形式地址+基地址变址寻址——有效地址=形式地址+变址寄存器的内容相对寻址——有效地址=PC的内容+形式地址堆栈寻址——栈顶指针段寻址例题P118指令的分类119数据处理、数据存储、数据传送、程序控制RISC技术P121RISC——精简指令系统计算机CISC——复杂指令系统计算机RISC指令系统的特点P121第五章中央处理器CPU的功能P127指令控制、操作控制、时间控制、数据加工CPU的基本组成P127控制器、运算器、cacheCPU中的主要寄存器P128数据缓冲寄存器DR、指令寄存器IR、程序计数器PC、数据地址寄存器AR、通用寄存器、状态字寄存器PSW操作控制器的分类P130时序逻辑型:硬布线控制器存储逻辑型:微程序控制器指令周期P131取出并执行一条指令所需的全部时间;指令周期、机器周期、时钟周期P131一个指令周期含若干个机器周期一个机器周期包含若干个时钟周期取指周期数据流P132执行周期数据流P133—138时序信号的作用和体制P141时序信号的基本体制是电位—脉冲制;数据加在触发器的电位输入端D ,打入数据的控制信号加在触发器的时钟脉冲输入端 CP;电位高低表示数据是1还是0,要求打入数据的控制信号来之前电位信号必须已稳定;节拍电位、节拍脉冲P142控制器的控制方式P144同步控制方式:即固定时序控制方式,各项操作都由统一的时序信号控制,在每个机器周期中产生统一数目的节拍电位和工作脉冲;异步控制方式:不受统一的时钟周期节拍的约束;各操作之间的衔接与各部件之间的信息交换采取应答方式;联合控制方式:同步控制和异步控制相结合的方式,大部分指令在固定的周期内完成,少数难以确定的操作采用异步方式;微程序控制原理P145微程序控制是指运行一个微程序来实现一条机器指令的功能;微程序控制的基本思想:仿照计算机的解题程序,把微操作控制信号编制成通常所说的“微指令”,再把这些微指令按时序先后排列成微程序,将其存放在一个只读存储器里,当计算机执行指令时,一条条地读出这些微指令,从而产生相应的操作控制信号,控制相应的部件执行规定的操作;微程序、微指令、微命令、微操作P145机器指令与微指令的关系P150微命令的编码方法P151直接表示法:微指令的每一位代表一个微命令,不需要译码;编码表示法:把一组相斥性的微命令信号组成一个小组即一个字段,然后通过小组字段译码器对每一个微命令信号进行译码,译码输出作为操作控制信号;混合表示法:把直接表示法与字段编码表示法混合使用,以便能综合考虑微指令字长、灵活性、速度等方面的要求;微指令格式P153水平型微指令:是指一次能定义并能并行执行多个微命令的微指令;垂直型微指令:微指令中设置微操作码字段,采用微操作码编译法,由微操作码规定微指令的功能,称为垂直型微指令;垂直型微指令的结构类似于机器指令的结构;硬连线控制器P155基本思想:通过逻辑电路直接连线而产生的,又称为组合逻辑控制方式;这种逻辑电路是一种由门电路和触发器构成的复杂树形逻辑网络;三个输入:来自指令操作码译码器的输出;来自执行部件的反馈信息;来自时序产生器的时序信号,包括节拍电位信号M和节拍脉冲信号T;一个输出:微操作控制信号硬布线控制器的基本原理:某一微操作控制信号C用一个逻辑函数来表达;并行处理技术P161并行性的概念:问题中具有可以同时进行运算或操作的特性;时间并行:让多个处理过程在时间上相互错开,轮流使用同一套硬件设备的各个部件,以加快硬件周转而赢得速度,实现方式就是采用流水处理部件;空间并行:以数量取胜;它能真正的体现同时性时间+空间并行:综合应用;Pentium中采用了超标量流水线技术;流水线的分类P163指令流水线:指指令步骤的并行;将指令流的处理过程划分为取指令、译码、取操作数、执行、写回等几个并行处理的过程段;算术流水线:指运算操作步骤的并行;如流水加法器、流水乘法器、流水除法器等;处理机流水线:是指程序步骤的并行;由一串级联的处理机构成流水线的各个过程段,每台处理机负责某一特定的任务;流水线中的主要问题P164资源相关:指多条指令进入流水线后在同一机器时钟周期内争用一个功能部件所发生的冲突;数据相关:在一个程序中,如果必须等前一条指令执行完毕后,才能执行后一条指令;解决数据相关冲突的办法:为了解决数据相关冲突,流水CPU的运算器中特意设置若干运算结果缓冲寄存器,暂时保留运算结果,以便于后继指令直接使用,称为“向前”或定向传送技术;控制相关:由转移指令引起的;解决控制相关冲突的办法:延迟转移法、转移预测法;例题P165第六章总线系统总线的概念P184总线是构成计算机系统的互联机构,是多个系统功能部件之间进行数据传送的公共通路;总线的分类P184内部总线——CPU内部连接各寄存器及运算部件之间的总线;系统总线——CPU和计算机系统中其他高速功能部件相互连接的总线;按系统传输信息的不同,又可分为三类:数据总线,地址总线和控制总线;I/O总线——中、低速I/O设备之间互相连接的总线;总线性能指标P185总线宽度:指数据总线的根数;寻址能力:取决于地址总线的根数;PCI总线的地址总线为32位,寻址能力达4GB;传输率:也称为总线带宽,是衡量总线性能的重要指标;例题P193总线上信息传送方式P190串行传送:使用一条传输线,采用脉冲传送有脉冲为1,无脉冲为0;连续几个无脉冲的处理方法:位时间;并行传送:每一数据位需要一条传输线,一般采用电位传送电位高为1,电位低为0;分时传送:总线复用、共享总线的部件分时使用总线;总线接口P192I/O接口,也叫适配器,和CPU数据的交换一定是并行的方式,和外设数据的交换可以是并行的,也可以是串行的;总线的仲裁P193集中式仲裁:有统一的总线仲裁器;链式查询方式、计数器定时查询方式、独立请求方式P193—195分布式仲裁:不需要中央仲裁器,每个潜在的主方功能模块都有自己的仲裁器和仲裁号;P195总线的定时P196同步定时:事件出现在总线上的时刻由总线时钟信号来确定;异步定时:后一事件出现在总线上的时刻取决于前一事件的出现,即建立在应答式或互锁机制基础上;PCI总线P200PCI:外围设备互连,PCI总线:连接各种高速的PCI设备;PCI是一个与处理器无关的高速外围总线,又是至关重要的层间总线;它采用同步时序协议和集中式仲裁策略,并具有自动配置能力;PCI总线支持无限的猝发式传送;即插即用;第七章外围设备外围设备的定义和分类P209除了CPU和主存外,计算机系统的每一部分都可作为一个外围设备来看待;外围设备可分为输入设备、输出设备、外存设备、数据通信设备和过程控制设备几大类;磁记录原理P210计算机的外存储器又称磁表面存储设备;所谓磁表面存储,是用某些磁性材料薄薄地涂在金属铝或塑料表面作载磁体来存储信息;磁盘存储器、磁带存储器均属于磁表面存储器;磁性材料上呈现剩磁状态的地方形成了一个磁化元或存储元,是记录一个二进制信息位的最小单位;磁表面存储器的读写原理P211在磁表面存储器中,利用一种称为磁头的装置来形成和判别磁层中的不同磁化状态;通过电-磁变换,利用磁头写线圈中的脉冲电流,可把一位二进制代码转换成载磁体存储元的不同剩磁状态;通过磁-电变换,利用磁头读出线圈,可将由存储元的不同剩磁状态表示的二进制代码转换成电信号输出;磁盘的组成和分类P213硬磁盘是指记录介质为硬质圆形盘片的磁表面存储设备; 它主要由磁记录介质、磁盘控制器、磁盘驱动器三大部分组成;温彻斯特磁盘简称温盘,是一种采用先进技术研制的可移动磁头固定盘片的磁盘机;它是一种密封组合式的硬磁盘,即磁头、盘片、电机等驱动部件乃至读写电路等组装成一个不可随意拆卸的整体;磁盘上信息的分布P215记录面、磁道、扇区P215磁道编号P215磁盘地址由记录面号也称磁头号、磁道号和扇区号三部分组成;磁盘存储器的技术指标P216存储密度:存储密度分道密度、位密度和面密度;道密度:沿磁盘半径方向单位长度上的磁道数,单位道/英寸;位密度:磁道单位长度上能记录的二进制代码位数,单位为位/英寸;面密度:位密度和道密度的乘积,单位为位/平方英寸;平均存储时间=寻道时间+等待时间+数据传送时间P216数据传输率P217例题P217磁盘cacheP218磁盘cache是为了弥补慢速磁盘和主存之间速度上的差异;磁盘阵列RAIDP218RAID:独立磁盘冗余阵列廉价冗余磁盘阵列,或简称磁盘阵列;简单的说, RAID 是一种把多块独立的硬盘物理硬盘按不同方式组合起来形成一个硬盘组逻辑硬盘,从而提供比单个硬盘更高的存储性能和提供数据冗余的技术;组成磁盘阵列的不同方式成为 RAID 级别;RAID 0 提高存储性能的原理是把连续的数据分散到多个磁盘上存取, 这样,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求;这种数据上的并行操作可以充分利用总线的带宽,显着提高磁盘整体存取性能;第八章输入输出系统外围设备的速度分级P236在CPU和外设之间数据传送时加以定时:速度极慢或简单的外设:CPU只需要接受或者发送数据即可;慢速或者中速的设备:可以采用异步定时的方式;高速外设:采用同步定时方式;I/O和主机信息交换方式P237程序查询方式、程序中断方式、直接内存访问DMA方式、通道方式程序查询方式P239数据在CPU和外围设备之间的传送完全靠计算机程序控制;当需要输入/输出时,CPU暂停执行主程序,转去执行设备输入/输出的服务程序,根据服务程序中的I/O指令进行数据传送;这是一种最简单、最经济的输入/输出方式,只需要很少的硬件;但由于外围设备动作很慢,程序进入查询循环时将浪费CPU时间;中断的概念P242中断是指CPU暂时中止现行程序,转去处理随机发生的紧急事件,处理完后自动返回原程序的功能和技术;程序中断方式的原理P242在程序中断方式中,某一外设的数据准备就绪后,它“主动”向CPU发出请求中断的信号,请求CPU暂时中断目前正在执行的程序而进行数据交换;当CPU响应这个中断时,便暂停运行主程序,并自动转移到该设备的中断服务程序;当中断服务程序结束以后,CPU又回到原来的主程序;中断处理过程中的几个问题P243CPU只有在当前一条指令执行完毕后,即转入公操作时才受理设备的中断请求;保存现场P243中断屏蔽P243中断处理过程P243单级中断和多级中断P245单级中断系统中,所有的中断源都属于同一级,所有中断源触发器排成一行,其优先次序是离CPU近的优先权高; 当响应某一中断请求时,执行该中断源的中断服务程序;在此过程中,不允许其他中断源再打断中断服务程序,既使优先权比它高的中断源也不能再打断;多级中断系统是指计算机系统中有相当多的中断源,根据各中断事件的轻重缓急程度不同而分成若干级别,每一中断级分配给一个优先权;优先权高的中断级可以打断优先权低的中断服务程序,以程序嵌套方式工作;一维多级中断是指每一级中断里只有一个中断源,二维多级中断是指每一级中断里又有多个中断源;DMA的基本概念P253直接内存访问DMA是一种完全由硬件执行I/O交换的工作方式;在这种方式中,DMA控制器从CPU完全接管对总线的控制,数据交换不经过CPU,而直接在内存和I/O设备之间进行;DMA方式一般用于高速传送成组数据;DMA方式的优点P253DMA能执行的一些操作P254从外围设备发出DMA请求;CPU响应请求,把CPU工作改成DMA操作方式,DMA控制器从CPU接管总线的控制;由DMA 控制器对内存寻址,即决定数据传送的内存单元地址及数据传送个数的计数,并执行数据传送的操作;发中断,向CPU报告DMA操作的结束;DMA传送方式P254停止CPU访问内存、周期挪用、DMA与CPU交替访内P254 DMA数据传送过程P257传送前预处理;正式传送;传送后处理;P257通道的基本概念P261通道是一个特殊功能的处理器,它有自己的指令和程序专门负责数据输入输出的传输控制,而CPU将“传输控制”的功能下放给通道后只负责“数据处理”功能;这样,通道与CPU 分时使用内存,实现了CPU内部运算与I/O设备的平行工作;通道的功能P253通道具有两种类型的总线:存储总线:承担通道与内存、CPU与内存之间的数据传输任务;通道总线即I/O总线,承担外围设备与通道间的数据传送任务;从逻辑结构上讲,I/O系统一般具有四级连接:CPU与内存通道设备控制器外围设备优先级别:由于大多数I/O设备的读写信号具有实时性,不及时处理会丢失数据;所以通道与CPU同时要求访内时,通道优先权高于CPU;CPU对通道的管理P262CPU是通过执行I/O指令以及处理来自通道的中断,实现对通道的管理;来自通道的中断有两种,一种是数据传送结束中断,另一种是故障中断;通道对I/O模块的管理P262通道通过使用通道指令控制I/O模块进行数据传送操作,并以通道状态字接收I/O模块反映的外围设备的状态;通道的类型P262选择通道、数组多路通道、字节多路通道P263第九章操作系统支持虚拟存储器的概念P282虚拟存储器是借助于磁盘等辅助存储器来扩大主存容量,使之为更大或更多的程序所使用;是一个容量非常大的存储器的逻辑模型,不是任何实际的物理存储器;它指的是主存-外存层次;以透明的方式给用户提供了一个比实际主存空间大得多的程序地址空间;实地址:或物理地址,计算机物理内存的访问地址,由CPU引脚送出,是用于访问主存的地址,对应的存储空间——物理存储空间或主存空间;虚地址:或逻辑地址,在编制程序时独立编址,使用的地址,对应的存储空间——虚存空间或逻辑地址空间;虚地址到实地址的转换过程——程序的再定位;虚存的访问过程P283虚拟存储器的用户程序以虚拟地址编址并存放在辅存中;程序运行时CPU以虚地址访问主存,由辅助硬件找出虚地址和物理地址的对应关系,判断这个虚地址指示的存储单元是否已装入主存:如果在主存,CPU就直接执行已在主存的程序;如果不在,要进行辅存向主存的调度;虚存与cache的异同P283几种虚拟存储器P284段式、页式、段页式页式虚拟存储器P284页、页表:页式虚拟存储系统中,虚地址空间被分成等长大小的页,称为逻辑页;主存空间也被分成同样大小的页,称为物理页;相应地,虚地址分为两个字段:高字段为逻辑页号,低字段为页内地址偏移量;实存地址也分两个字段:高字段为物理页号,低字段为页内地址;通过页表可以把虚地址逻辑地址转换成物理地址;页式虚存地址映射:地址变换时,用逻辑页号作为页表内的偏移地址索引页表,并找到相应物理页号,用物理页号作为实存地址的高字段,再与虚地址的页内偏移量拼接,就构成完整的物理地址;虚页内容若没有调入主存,则计算机启动输入输出系统,把虚地址指示的一页内容从辅存调入主存,再提供CPU访问;转换后援缓冲器P285段式虚拟存储器P286段式虚拟存储器,是以程序的逻辑结构所形成的段如主程序、子程序、过程、表格等作为主存分配单位的虚拟存储器管理方式的存储器;每个段的大小可以不相等;每个程序都有一个段表映象表,用于存放该道程序各程序段从辅存装入主存的状况信息;段表一般驻留在主存中;段式虚存地址映射P287段页式虚拟存储器P287把程序按逻辑单位分段以后,再把每段分成固定大小的页;程序对主存的调入调出是按页面进行的,但它又可以按段实现共享和保护,兼备页式和段式的优点;虚存的替换算法P289虚拟存储器中的替换策略一般采用LRU Least Recent1y Used算法、LFU算法、FIFO算法,或将两种算法结合起来使用;例题P289。
`
Word文档
CPU工作的实质即为不断从存中取指令并执行指令的过程。
一、8086CPU构成
CPU的工作:取指令和执行指令
1. CPU部两大功能部件:总线接口部件BIU和执行部件EU(2部件并行工作提高了
CPU的工作效率)
重点:理解2个独立功能部件的分工和协同配合关系。
理解BIU地址加法器的作用,理解指令队列的作用。
2. 掌握CPU部寄存器的作用
包括:通用寄存器AX,BX,CX,DX,BP,SP,SI,DI
段寄存器CS,DS,SS,ES
指令指针寄存器IP
标志寄存器FLAG
二、存储器的基础知识
1.物理地址
8086的存储器是以字节(即每个单元存放8位二进制数)为单位组织的。8086CPU具
有20条地址总线,所以可访问的存储器地址空间容量为220即1M字节(表示为1MB)。
每个单元对应一个唯一的20位地址,对于1MB存储器,其地址围用16进制表示为00000H~
0FFFFFH,如图1所示。
`
Word文档
图1 1MB存储器地址表示
物理地址:存储器的每个单元都有一个唯一的20位地址,将其称为物理地址。
2.字节地址与字地址
存储器两个连续的字节,定义为一个字,一个字中的每个字节,都有一个字节地址,每
个字的低字节(低8位)存放在低地址中,高字节(高8位)存放在高地址中。字的地址指
低字节的地址。各位的编号方法是最低位为位0,一个字节中,最高位编号为位7;一个字
中最高位的编号为位15。
字数据在存储器中存放的格式如图2所示。
图2 字数据在存储器中的存放
地址低端
地址高端
地址低端
地址高端
`
Word文档
3.单元地址与容
图3
如图3,地址是00100H的字节单元的容为27H,表示为 (00100H)= 27H。
图3中字数据3427H存放在地址是00100H和00101H的两个字节单元中,其中低字
节27H在低地址的字节单元00100H中,高字节34H在高地址的字节单元00101H中,字
数据3427H的地址是低地址00100H。 地址是00100H的字单元的容为3427H,表示
为 (00100H)= 3427H
可见 一个地址既可作字节单元的地址,又可作字单元的地址,视使用情况而定。
总结:
字节单元:(00100H)=27H
字单元: (00100H)=3427H
设寄存器DS=0000H,
用MOV指令访问字节单元:MOV AL,[0100H]
用MOV指令访问字单元: MOV AX,[0100H]
三、存储器的分段
1. 为什么要分段
内容
单元地址
`
Word文档
8086CPU有20位地址总线,可寻址的最大存空间达1M字节,地址围为
00000H-0FFFFFH。存中每个字节单元有唯一的20位物理地址,CPU存取存中的程序和数
据必须使用20位物理地址。
问题:8086 CPU访问1MB空间的存必须有20位地址,而其部的寄存器均为16位的,
那么在传输地址时一次只能传输16位地址,即只能访问64K字节地址空间。
8086 CPU应如何提供20位地址,以寻址1MB存?
2.如何分段
为了使8086 CPU能访问到1MB存空间中任何一个单元,8086巧妙地采用了地址分
段方法(即将1MB空间分成若干个逻辑段),从而将寻址围扩大到了1MB。
分段的规则:
(1)为了能在1MB空间进行全围寻址,即可访问到1MB存储器的任何一个存储单元,
把lMB存储器分成若干段(segment),每一段最大为64KB。
(2)在分段时,要求段起始单元的20位物理地址的低4位全为0(即是16的整数倍),
写成十六进制,最后一位应是0,即XXXX0H(X为任一个十六进制数码)。
图4 分段示意图
`
Word文档
分析:既然段起始地址的低4位为零,则只需将段起始地址的高16位保存到CPU部的
寄存器中(保存段起始地址的寄存器称之为段寄存器)
3.有关存地址的概念
段基址:将段起始地址的高16位称为段基址。
偏移量:段各存储单元相对段的起始单元都有一个距离,称为段偏移量,又称偏移地址
或有效地址(EA)。
因段的大小不超过64KB,所以段任何一个单元距离段首的偏移量均在0000H-FFFFH
之间,即偏移量可以用一个16位二进制数表示。
总结:段基址决定了一个段在存的开始位置(即段首地址),偏移地址描述了该单元与
段首的距离。
可见,由段基址与偏移地址可描述出一个单元在存的空间位置。例如:一个单元所在段
的段基址为1234H,该单元与段首的距离为2,该单元在存的位置表示如图5。
12340H-----段首(物理地址表示)
地址低端
地址高端
该单元所在的段基址为1234H,
它距离段首偏移2个单元
逻辑地址表示:1234H:0000H
逻辑地址表示:1234H:0002H
`
Word文档
图5 存单元的物理地址与逻辑地址表示
把1MB的存贮空间分成若干个逻辑段以后,对一个段的任意存贮单元,都可以用两部
分地址来描述,一部分地址为段基址,另一部分为段偏移地址(有效地址EA),段基址和段偏
移地址都是16位二进制数,常用4位十六进制数表示。
逻辑地址:使用段基址:偏移地址表示存单元的地址形式称为逻辑地址。
上图中单元的地址用逻辑地址表示为:1234H:0002H
4.物理地址的形成
在整个1M地址空间中,存储单元的物理地址等于段起始地址加上段偏移。
已知某存储单元的逻辑地址,该单元的物理地址PA的计算方法为:物理地址=段基址
*10H+段偏移地址。
8086CPU 的总线接口部件BIU中设置了地址加法器Σ,它用来完成物理地址的计算。
图6 物理地址的形成
例1:某单元的逻辑地址为1234H:1000H,则该存储单元的物理地址为:
物理地址(PA)=段地址*10H+EA=1234H* 10H+1000H=12340H+1000H=13340H
例2:物理地址为00020H单元,其逻辑地址可以有:0000H:0020H和0001H:0010H
`
Word文档
可见,一个单元的物理地址是唯一的,逻辑地址确有多个。
5.信息的分段存储与段寄存器的关系
用8086汇编语言编写程序时,要把程序中的不同信息安排在不同的段。而程序中的信息
包括:程序(代码)信息;数据信息;堆栈信息。
其中,代码信息存放在代码段,其地址由CS:IP提供。
堆栈信息存放在堆栈段,其地址由SS:SP提供。
数据信息,通常情况下,存放在数据段(段基址由DS提供),当然也可以存放在附加数
据段(段地址由ES提供),其段偏移地址依据寻址方式的不同来求得。
图 7 信息的分段存储与段寄存器的关系
`
Word文档
其中段基址由段寄存器提供:
CS ——提供当前代码(程序)段的段基址;
DS ——提供当前数据段的段基址;
SS ——提供当前堆栈段的段基址;
ES ——提供当前附加数据段的段基址;
一个存储单元用逻辑地址表示后,CPU 访问该单元时应提供两部分地址:段基址和段
偏移地址。CPU访问存时,根据对应的操作,形成段基址和偏移地址,具体来说:
当CPU 从存取指令时,由寄存器CS提供代码段的段基址,由指令指针寄存器IP提供指令
所在单元的偏移地址。
在取指令时,CPU会自动引用代码段寄存器CS,再加上由IP所给出的16位段偏移,得
到要取指令的物理地址。
当进行堆栈操作时,由寄存器SS提供堆栈段的段基址,由寄存器SP提供堆栈段的段偏移地
址。
当涉及堆栈操作时,CPU会自动引用堆栈段寄存器SS,再加上由SP所给出的16位段偏
移,得到堆栈操作所需的物理地址。
当CPU 对存储器进行数据读/写操作时,可由寄存器BX,SI,DI,BP以某种寻址方式向存
储器提供段偏移地址。
当段偏移涉及BP寄存器时,缺省引用的段寄存器为堆栈段寄存器SS。