三跨连续梁 均布荷载 最大弯矩 计算公式
- 格式:docx
- 大小:12.91 KB
- 文档页数:6
钢结构连接、钢结构强度稳定性、钢筋支架、格构柱计算◆钢结构连接计算一、连接件类别不焊透的对接焊缝二、计算公式1.在通过焊缝形心的拉力,压力或剪力作用下的焊缝强度按下式计算:2.在其它力或各种综合力作用下,σf,τf共同作用处。
式中N──-构件轴心拉力或轴心压力,取 N=100N;lw──对接焊缝或角焊缝的计算长度,取lw=50mm;γ─-作用力与焊缝方向的角度γ=45度;σf──按焊缝有效截面(helw)计算,垂直于焊缝长度方向的应力;hf──较小焊脚尺寸,取 hf=30mm;βt──正面角焊缝的强度设计值增大系数;取1;τf──按焊缝有效截面计算,沿焊缝长度方向的剪应力;Ffw──角焊缝的强度设计值。
α──斜角角焊缝两焊脚边的夹角或V形坡口角度;取α=100度。
s ──坡口根部至焊缝表面的最短距离,取 s=12mm;he──角焊缝的有效厚度,由于坡口类型为V形坡口,所以取he=s=12.000mm.三、计算结果1. 正应力:σf=N×sin(γ)/(lw×he)=100×sin(45)/(50×12.000)=0.118N/mm2;2. 剪应力:τf=N×cos(γ)/(lw×he)=100×cos(45)/(50×12.000)=0.118N/mm2;3. 综合应力:[(σf/βt)2+τf2]1/2=0.167N/mm2;结论:计算得出的综合应力0.167N/mm2≤对接焊缝的强度设计值ftw=10.000N/mm2,满足要求!◆钢结构强度稳定性计算一、构件受力类别:轴心受弯构件。
二、强度验算:1、受弯的实腹构件,其抗弯强度可按下式计算:Mx/γxWnx + My/γyWny ≤ f式中 Mx,My──绕x轴和y轴的弯矩,分别取100.800×106 N·mm,10.000×106 N·mm;γx, γy──对x轴和y轴的截面塑性发展系数,分别取 1.2,1.3;Wnx,Wny──对x轴和y轴的净截面抵抗矩,分别取 947000 mm3,85900 mm3;计算得:Mx/(γxWnx)+My/(γyWny)=100.800×106/(1.2×947000)+10.000×106/(1.3×85900)=178.251 N/mm2受弯的实腹构件抗弯强度=178.251 N/mm2 ≤抗弯强度设计值f=215N/mm2,满足要求!2、受弯的实腹构件,其抗剪强度可按下式计算:τmax = VS/Itw ≤ fv式中V──计算截面沿腹板平面作用的剪力,取V=10.300×103 N;S──计算剪力处以上毛截面对中和轴的面积矩,取 S= 947000mm3;I──毛截面惯性矩,取 I=189300000 mm4;tw──腹板厚度,取 tw=8 mm;计算得:τmax = VS/Itw=10.300×103×947000/(189300000×8)=6.441N/mm2受弯的实腹构件抗剪强度τmax =6.441N/mm2≤抗剪强度设计值fv = 175 N/mm2,满足要求!3、局部承压强度计算τc = φF/twlz ≤ f式中φ──集中荷载增大系数,取φ=3;F──集中荷载,对动力荷载应考虑的动力系数,取 F=0kN;tw──腹板厚度,取 tw=8 mm;lz──集中荷载在腹板计算高度上边缘的假定分布长度,取lz=100(mm);计算得:τc = φF/twlz =3×0×103/(8×100)=0.000N/mm2局部承压强度τc =0.000N/mm2≤承载力设计值f = 215 N/mm2,满足要求!4、在最大刚度主平面内受弯的构件,其整体稳定性按下式计算:Mx/φbWx ≤ f式中Mx──绕x轴的弯矩,取100.8×106 N·mm;φb──受弯构件的整体稳定性系数,取φb= 0.9;Wx──对x轴的毛截面抵抗矩Wx,取 947000 mm3;计算得:Mx/φbwx = 100.8×106/(0.9×947000)=118.268 N/mm2≤抗弯强度设计值f= 215 N/mm2,满足要求!5、在两个主平面受弯的工字形截面构件,其整体稳定性按下式计算:Mx/φbWx + My/γyWny ≤ f式中 Mx,My──绕x轴和y轴的弯矩,分别取100.8×106 N·mm,10×106 N·mm;φb──受弯构件的整体稳定性系数,取φb= 0.9;γy──对y轴的截面塑性发展系数,取 1.3;Wx,Wy──对x轴和y轴的毛截面抵抗矩,分别取 947000 mm3, 85900 mm3;Wny──对y轴的净截面抵抗矩,取 85900 mm3计算得:Mx/φbwx +My/ γyWny =100.8×106/(0.9×947000)+10×106/(1.3×85900)=207.818 N/mm2≤抗弯强度设计值f=215 N/mm2,满足要求!◆钢筋支架计算公式一、参数信息钢筋支架(马凳)应用于高层建筑中的大体积混凝土基础底板或者一些大型设备基础和高厚混凝土板等的上下层钢筋之间。
双排扣件钢管脚手架计算书依据规范:《建筑施工脚手架安全技术统一标准》GB51210-2016《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011《建筑结构荷载规范》GB50009-2012《钢结构设计标准》GB50017-2017《建筑地基基础设计规范》GB50007-2011计算参数:钢管强度为205.0 N/mm2,钢管强度折减系数取1.00。
双排脚手架,搭设高度42.0米,12.0米以下采用双管立杆,12.0米以上采用单管立杆。
立杆的纵距1.20米,立杆的横距1.05米,内排架距离结构2.00米,立杆的步距1.80米。
钢管类型为φ48×3.0,连墙件采用2步2跨,竖向间距3.60米,水平间距2.40米。
施工活荷载为2.0kN/m2,同时考虑2层施工。
脚手板采用竹串片,荷载为0.35kN/m2,按照铺设4层计算。
栏杆采用竹串片,荷载为0.17kN/m,安全网荷载取0.0100kN/m2。
脚手板下大横杆在小横杆上面,且主结点间增加一根大横杆。
基本风压0.30kN/m2,高度变化系数1.2800,体型系数1.2000。
地基承载力标准值170kN/m2,基础底面扩展面积0.250m2,地基承载力调整系数0.40。
钢管惯性矩计算采用 I=π(D4-d4)/64,抵抗距计算采用 W=π(D4-d4)/32D。
一、大横杆的计算:大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。
按照大横杆上面的脚手板和活荷载作为均布荷载计算大横杆的最大弯矩和变形。
1.均布荷载值计算大横杆的自重标准值 P1=0.038kN/m脚手板的荷载标准值 P2=0.350×1.050/2=0.184kN/m活荷载标准值 Q=2.000×1.050/2=1.050kN/m静荷载的计算值 q1=1.20×0.038+1.20×0.184=0.267kN/m活荷载的计算值 q2=1.40×1.050=1.470kN/m大横杆计算荷载组合简图(跨中最大弯矩和跨中最大挠度)大横杆计算荷载组合简图(支座最大弯矩)2.抗弯强度计算最大弯矩考虑为三跨连续梁均布荷载作用下的弯矩跨中最大弯矩计算公式如下:跨中最大弯矩为M1=(0.08×0.267+0.10×1.470)×1.2002=0.242kN.m支座最大弯矩计算公式如下:支座最大弯矩为M2=-(0.10×0.267+0.117×1.470)×1.2002=-0.286kN.m我们选择支座弯矩和跨中弯矩的最大值进行强度验算:σ=γ0M/W = 1.000×0.286×106/4493.0=63.667N/mm2大横杆的计算强度小于205.0N/mm2,满足要求!3.挠度计算最大挠度考虑为三跨连续梁均布荷载作用下的挠度计算公式如下:静荷载标准值 q1=0.038+0.184=0.222kN/m活荷载标准值 q2=1.050kN/m三跨连续梁均布荷载作用下的最大挠度V=(0.677×0.222+0.990×1.050)×1200.04/(100×2.06×105×107831.2)=1.111mm 大横杆的最大挠度小于1200.0/150与10mm,满足要求!二、小横杆的计算:小横杆按照简支梁进行强度和挠度计算,大横杆在小横杆的上面。
双排扣件落地式脚手架计算书编制日前2022-04-27一、编制说明钢管扣件脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规程》(JGJ130-2001)。
计算的脚手架为双排扣件式脚手架,立杆采用单立杆,搭设高度为20m。
具体搭设尺寸为:立杆的纵距为1.2m,立杆的横距为1.05m,立杆的步距为1.8m。
连墙件采用三步三跨,竖向间距5.4m,水平间距3.6m。
横杆与立杆连接采用单扣件方式连接方式,小横杆在下(南方搭设法),大小横杆搭设方法见图。
采用的钢管类型为Φ48×3.5自重标准值按0.0384 kN/m考虑,脚手板自重标准值按0.35kN/m2考虑,栏杆挡脚手板自重标准值按0.11kN/m2考虑,安全设施与安全网自重标准值按0.005kN/m2考虑。
施工均布荷载为3.0kN/m2,同时2层施工,脚手架上共铺设脚手片4层。
二、大横杆的计算大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。
按照大横杆上面的脚手片和活荷载作为均布荷载计算大横杆的最大弯矩和变形。
设大横杆数量为:2 根。
㈠均布荷载的计算大横杆的自重标准值:0.0384 kN/m;脚手板的荷载标准值:0.35×1.05/3=.1225 kN/m;活荷载标准值:3.0×1.05/3=1.05 kN/m;静荷载的计算值:q1=1.2×.0384+1.2×.1225=.1931 kN/m;活荷载的计算值:q2=1.4×1.05=1.47 kN/m。
㈡强度计算最大弯矩考虑三跨连续梁均布荷载作用下的弯矩跨中最大弯矩计算公式如下:M1max=0.08q1l2+0.101q2l2跨中最大弯矩为M1max=0.08×.1931×1.22+0.101×1.47×1.22=.236 kN.m 支座最大弯矩计算公式如下:M2max=-0.10q1l2-0.117q2l2支座最大弯矩为M2max=-0.10×.1931×1.22-0.117×1.47×1.22=-.2755 kM.m选择支座弯矩和跨中弯矩的最大值进行强度验算:σ=M max/W=.2755×1000000/5080=54.2323 N/mm2;因为σ=54.2323 N/mm2≤205 N/mm2符合要求。
1表1 简单载荷下基本梁的剪力图与弯矩图梁的简图剪力Fs 图弯矩M 图1laFsF F l a F l al -+-F la l a )(-+M2l eMsF lM e +MeM +3laeMsF lM e +Me M lal -e M la +-4lqsF +-2ql 2qlM82ql +2l5lq asF +-la l qa 2)2(-lqa 22M2228)2(l a l qa -+la l qa 2)(2-la l a 2)2(-6lqsF +-30l q 60l qM3920l q +3)33(l-7aFlsF F+Fa-M8aleMsF+eM M9lqs F ql+M22ql -10lqsF 2l q +M620l q -注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁表2 各种载荷下剪力图与弯矩图的特征某一段梁上的外力情况 剪力图的特征弯矩图的特征无载荷水平直线斜直线或集中力 F突变 F 转折或或集中力偶eM 无变化 突变e M均布载荷q斜直线抛物线 或零点极值表3 各种约束类型对应的边界条件约束类型 位移边界条件力边界条件(约束端无集中载荷)固定端0=w ,0=θ —简支端0=w0=M 自由端—0=M ,0=S F注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰∙=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
现浇模板支架设计计算顶板模板设计楼板现浇厚度为10cm-18cm,模板支架搭设高度为5.4m,4m,2.8m,搭设尺寸为:立杆的纵距 b=1.00米,立杆的横距 l=1.00米,横杆的步距 h=1.80米。
模板面板采用胶合面板,厚度为15mm,板底木楞截面宽度:50mm;高度:100mm;间距:300mm;采用的钢管类型为48×3.5,采用扣件连接方式。
立杆上端伸出至模板支撑点长度:0.30米。
图1 楼板支撑架立面简图图2 楼板支撑架荷载计算单元一、模板面板计算依据《建筑施工模板安全技术规范》JGJ162-2008,5.2面板为受弯结构,需要验算其抗弯强度和刚度。
模板面板按照三跨连续梁计算。
使用模板类型为:胶合板。
(1)钢筋混凝土板自重(kN/m):q11 = 25.100×0.180×1.000=4.518kN/m(2)模板的自重线荷载(kN/m):q12 = 0.750×1.000=0.750kN/m(3)活荷载为施工荷载标准值(kN/m):q13 = 2.500×1.000=2.500kN/m均布线荷载标准值为:q = 25.100×0.180×1.000+0.750×1.000=5.268kN/m均布线荷载设计值为:按可变荷载效应控制的组合方式:q1 = 0.9×[1.2×(4.518+0.750)+1.4×2.500]=8.839kN/m 按永久荷载效应控制的组合方式:q1 = 0.9×[1.35×(4.518+0.750)+1.4×0.7×2.500]=8.606kN/m 根据以上两者比较应取q1 = 8.839kN/m作为设计依据。
集中荷载设计值:模板自重线荷载设计值 q2 = 0.9×1.2×0.750×1.000=0.810kN/m 跨中集中荷载设计值 P = 0.9×1.4×2.500=3.150kN面板的截面惯性矩I和截面抵抗矩W分别为:2本算例中,截面抵抗矩W和截面惯性矩I分别为:W = 100.00×1.80×1.80/6 = 54.00cm3;I = 100.00×1.80×1.80×1.80/12 = 48.60cm4;(1)抗弯强度计算施工荷载为均布线荷载:M1 = 0.1q1l2 = 0.1×8.839×0.3002=0.080kN.m施工荷载为集中荷载:M2 = 0.1q2l2 + 0.175Pl = 0.1×0.810×0.3002+0.175×3.150×0.300=0.173kN.mM2> M1,故应采用M2验算抗弯强度。
梁250x600模板设计计算书无支顶立杆,梁侧立杆排距900模板支架搭设高度为9.94米,基本尺寸为:梁截面 B×D=250mm×600mm,梁两侧楼板厚度200mm,梁支撑立杆的横距(跨度方向) l=0.90米,立杆的步距 h=1.50米,梁底增加0道承重立杆。
采用的钢管类型为48×3.5,采用扣件连接方式。
一、模板面板计算使用模板类型为:胶合板。
面板为受弯结构,需要验算其抗弯强度和刚度。
模板面板的按照多跨连续梁计算。
作用荷载包括梁与模板自重荷载,施工活荷载等。
1.荷载的计算:(1)钢筋混凝土板自重(kN/m):q11 = 25.500×0.600×0.300=4.590kN/m(2)模板的自重线荷载(kN/m):q12 = 0.350×0.300×(2×0.600+0.250)/0.250=0.609kN/m(3)活荷载为施工荷载标准值(kN/m):q13 = 2.500×0.300=0.750kN/m均布线荷载标准值为:q = 25.500×0.600×0.300+0.350×0.300×(2×0.600+0.250)/0.250=5.199kN/m 均布线荷载设计值为:q1 = 1.0×[1.35×(4.590+0.609)+1.4×0.9×0.750]=7.964kN/m 面板的截面惯性矩I和截面抵抗矩W分别为:本算例中,截面抵抗矩W和截面惯性矩I分别为:W = 30.00×1.80×1.80/6 = 16.20cm3;I = 30.00×1.80×1.80×1.80/12 = 14.58cm4;施工荷载为均布线荷载:计算简图剪力图(kN)弯矩图(kN.m)经过计算得到从左到右各支座力分别为N1=0.995kNN2=0.995kN最大弯矩 M1 = 0.062kN.m(1)抗弯强度计算经计算得到面板抗弯强度计算值 f = 0.062×1000×1000/16200=3.840N/mm2面板的抗弯强度设计值 [f],取15.00N/mm2;面板的抗弯强度验算 f < [f],满足要求!(2)挠度计算验算挠度时不考虑可变荷载值,仅考虑永久荷载标准值,故采用均布线荷载标准值q = 5.20kN/m为设计值。
脚手架计算方式脚手架的上下通道:脚手架体要设置安全马道:①马道宽度不小于1米,坡度以1:3(高:长)为宜。
②马道的立杆、横杆间距应与脚手架相适应,基础按脚手架要求处理,立面设剪刀撑。
③人行斜道小横杆间距不超过1.5米。
④马道上满铺脚手板,板上钉防滑条,防滑条不大于300mm。
⑤设置护栏杆,上部护身栏杆1.2米,下部护身栏杆距脚手板0.6米,同时设180mm宽档脚板。
脚手架的卸料平台:卸料平台上面要挂牌标明控制荷载;要严格按照搭设方案施工。
卸料平台设计计算立杆横距b=1米,立杆纵距L=1.5m,步距h=1.5m剪刀撑连续设置,卸料平台宽度C=2m。
(1)强度计算Mmax=q12/8q=1.2(GK.C+gk)+1.4KQQK.CGK──脚手板重量GK=0.3KN/M2C ──卸料平台宽度C=2Mgk──钢管单位长度gk=38N/MKQ──施工活荷载KQ=1.2N/M2QK──施工荷载标准值QK=2000N/M2q=1.2*(300*1.0+38)+1.4*1.2*2000*1=405.6+3360=3765.6N/MMmax=(3765.6*12)/8=470.7N.M验算抗弯强度S=Mmax/W=470.7/5078=92.7N/MM2<205N/MM2所以安全满足设计要求(2)计算变形查表φ48*3.5的钢管参数E=2.06*105N/MM2 (钢管的弹性模量)I=12190mm(钢管的截面惯性矩) W/b=5ql3/384EI=(5*3765.6*10003)/(384*2.06*105•*•12190)=•0.•19%=1/526<1/150 满足要求经结构计算均符合强度、刚度、稳定性的要求落地式扣件钢管脚手架计算书钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)。
计算的脚手架为双排脚手架,搭设高度为18.6米,立杆采用单立管。
搭设尺寸为:立杆的纵距1.2米,立杆的横距1.05米,立杆的步距1.20米。
一、工程概况本工程为二类小高层商住混合楼,主体11层,局部12层,设封闭楼梯间及消防电梯,建筑等级二级,主体结构合理使用年限50年,耐火等级二级,屋面防水等级二级。
本工程为非抗震设防工程,总建筑面积为4343.35㎡(含阳台半面积),其中商铺建筑面积1097.15㎡,屋顶机房及管理用房建筑面积116.6㎡,住宅建筑面积3129.6㎡(含阳台半面积)。
室内±0.00标高由现场定。
一、二层为商店,三层为会所,四~十一层为住宅。
平面尺寸为25900×11960㎜2、9960×8540㎜2的L形。
一层层高为4.5m,二层层高为3.6m,三层层高为3.9m。
四~十二层层高为2.8m。
建筑高度为+37.2m,最高点标高为+44.6m。
脚手架搭设方案编制依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)、《建筑施工安全检查标准》(JGJ59-99)及图纸等。
二、脚手架搭设材料要求1)脚手架各种杆件采用外径48mm、壁厚3.5mm的3号钢焊接钢管,使用生产厂家合格的产品并持有合格证,其力学性能应符合国家现行标准《碳素结构钢》GBT700中Q235A钢的规定,用于立杆、大横杆、斜杆的钢管长度为4-6米,小横杆、拉结杆2.1-2.3米,使用的钢管不得弯曲、变形、开焊、裂纹等缺陷,并涂防锈漆作防腐处理,不合格的钢管决不允许使用。
2)扣件使用生产厂家合格的产品,并持有产品合格证,扣件锻铸铁的技术性能符合《钢管脚手架》GB15831-1995规定的要求,对使用的扣件要全数进行检查,不得有气孔、砂眼、裂纹、滑丝等缺陷。
扣件与钢管的贴合面要严格整形,保证与钢管扣紧的接触良好,扣件夹紧钢管时,开口处的最小距离不小于5mm,扣件的活动部位转动灵活,旋转扣件的两旋转面间隙要小于1mm,扣件螺栓的拧紧力距达60N*M时扣件不得破坏。
3)脚手板采用竹串板,宽度为250~300mm,凡是腐朽、扭曲、破裂者不得使用。
梁的弯矩设计值梁的弯矩设计值是指在设计过程中,根据梁的受力情况和所选用材料的强度参数,计算得出的梁在承受荷载时所能承受的最大弯矩值。
它是结构设计中非常重要的一个参数,决定了梁的安全性和可靠性。
一、梁的弯矩计算方法在计算梁的弯矩时,需要先确定荷载类型、支座类型、截面形状和尺寸、材料弹性模量等参数。
然后根据静力平衡原理和材料力学基本公式,应用梁的基本方程式进行计算。
对于简单支座梁,其最大正弯矩出现在跨中位置,可以通过以下公式进行计算:Mmax = WL^2/8其中W为荷载总值,L为跨度长度。
对于集中荷载作用下的简支梁,则可采用以下公式进行计算:Mmax = PL/4其中P为集中荷载大小。
对于连续梁,则需要采用更加复杂的数学方法进行计算。
一般情况下,可以采用数值解法或有限元分析方法进行求解。
二、影响梁弯矩设计值的因素梁的弯矩设计值受到多种因素的影响,其中主要包括以下几个方面:1.荷载类型和大小:荷载大小是直接影响梁弯矩的重要因素。
不同类型的荷载对梁弯矩的影响也有所不同。
例如,集中荷载作用下的梁弯矩主要集中在跨中位置,而均布荷载则会导致整个梁产生一定程度的弯曲。
2.支座类型和位置:支座类型和位置也会对梁弯矩产生影响。
不同支座类型对应着不同的约束条件,从而影响了梁在跨度方向上的受力情况。
支座位置也会直接影响到梁受力情况,例如将支座移动到跨中位置可以有效减小梁受力。
3.截面形状和尺寸:截面形状和尺寸是决定梁抗弯刚度和承载能力的关键因素。
通常情况下,截面越大、形状越规则、材料越均匀,则梁抗弯能力越大。
4.材料性质:材料的弹性模量和屈服强度是影响梁弯矩设计值的重要参数。
不同材料具有不同的力学性质,从而会对梁的承载能力产生影响。
三、如何确定梁的弯矩设计值在进行梁的设计时,需要根据实际情况确定梁的弯矩设计值。
通常情况下,可以采用以下方法进行确定:1.按规范计算:国家和行业规范中一般都会给出相应的梁弯矩设计值。
在进行结构设计时,可以直接按规范中给出的数值进行计算。
电梯井脚手架搭设施工方案优质文档电梯井脚手架搭设施工方案一、工程概况:大型居住社区南桥新城动迁安置基地J3-标段工程,位于南桥新城东部区域,东至大寨河、西至金钱路、南至规划红星一路、北至红星港以南。
二、搭建依据:本工程采纳槽钢悬挑脚手架搭设,其设计参照现行标准《建筑施工平安检查标准》59-99;《建筑施工扣件式钢管脚手架平安技术标准》130-2001、J84-2001标准执行。
三、所用材料:本工程电梯脚手架所用材料有钢管、扣件、竹笆,钢管采纳外径48mm,壁厚 3.5mm,钢管规格长:4m、3.6m、2.4m、2.1m、1.9m、1.8m、1.2m几种,材质符合《碳素钢构造》GB700-79号中Q235A钢的规定,无锈、无弯曲、无压扁、无裂纹的材料,扣件为铸铁扣件,扣件质量符合国家建立部专业标准《钢管脚手架扣件》JG22-85规定;竹笆采纳有必须厚度,规格1×1.8m,材质不腐朽,无虫蛀制品。
四、搭建方式:1.井道脚手架高度超过24M,故采纳16#槽钢隔段,槽钢悬挑高度不超过18米,即每六层一隔断。
井道内脚手架拉接采纳钢管顶撑,保证牢靠有效,每层设置。
2.加固排架必需从上到下对准设置,保证荷载匀称传递到根底底板。
3.脚手架步高 1.8m,每二层或不超过10m铺设竹笆片隔离,电梯井在楼层面处设置防护栏杆。
优质文档4.电梯井内的隔离、防护栏杆不得擅自撤除,影响施工。
假设要撤除,必需经现场平安技术负责人同意后,做好防范措施后再撤除。
施工完毕后必需立刻复原。
五、搭建依次:放线→立杆→横杆→小横杆→竹笆片→楼层井道口防护栏杆围护。
搭建完工后,检查验收合格,挂合格牌。
六、脚手架撤除:1、在脚手架撤除前应检查脚手架是否完整,是否被撤除过,如发觉有被撤除部位,应先复原。
脚手架、层门地面上是否有杂物和障碍物,应先去除后撤除。
2、撤除必需从上到下,从次到主,撤除时严禁上下施工。
3、做到文明施工,撤除过程中严禁向下抛掷钢管、扣件等。
简单载荷梁内力图(剪力图与弯矩图)表2 各种载荷下剪力图与弯矩图的特征表3 各种约束类型对应的边界条件注:力边界条件即剪力图、弯矩图在该约束处的特征。
常用截面几何与力学特征表表2-5标准标准标准标准标准标准标准注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
实用文档2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
施工电梯卸料平台及防护门搭设方案中联·天御一期12—13#、15-16#楼工程位于福州福清市福和大道以西,清宏路以北,交通便利。
工程用地基本呈长方形型,场地地势平坦,是集商业与住宅的群体建筑。
上部结构体系:框架结构,抗震设防烈度7度,建筑面积约两万m2项目工程由福清市中联置业有限公司投资兴建,北京东方华太建筑设计工程有限责任公司设计,福建华君建筑工程有限公司承建。
一、本方案依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130—2001),《建筑施工安全检查标准》(JGJ59-1999),并参考《建筑施工脚手架实用手册》。
二、技术要求1、本工程采用SC200/200施工电梯,故搭设方案采用双排钢管脚手架卸料平台架。
2、卸料平台基础浇注200mm厚的C15砼垫层。
3、卸料平台对应的每层楼面处必须设置连墙杆,连墙杆预埋插管埋深不得小于250mm。
4、卸料平台卸米层应满铺木脚手板,脚手板应与架体绑扎牢固,且靠近降机侧应高于靠近建筑物侧20~30mm。
5、卸料平台在架体两侧及正面外侧两立杆之间应按标准设置扶手、靠近栏杆及挡脚板。
三、搭设材料要求1、卸料平台架、连墙杆、卸荷拉杆及预埋插管均应采用φ48×3.5mm的钢管。
并应符合现行国家标准《直缝电焊钢管》(GB/T13793)或《低压流体输送用焊接钢管》(GB/T3092)中规定的3号普通钢管,其质量应符合国家标准《碳结构钢》(GB/T700)中Q235—A级钢的规定。
2、卸料平台架应采用可锻铸铁制作的扣件,其材质应符合国家标准《钢管脚手架扣件》(GB15831)的规定。
3、卸料平台架木脚手板应符合JGJ130中的材质要求。
四、施工要求1、搭设要求⑴相邻立杆的对接扣件不得在同一高度内,其在高度方向上错开的距离不得小于500mm,对接扣件开口应朝内.当平台架搭至连墙件的构造点时,应及时作连墙拉结.除立杆外,其余杆件应采用整根钢管搭设,严禁对接使用.⑵纵向水平杆应设置在立杆内侧,横向水平杆内端头距离墙面为50mm。
表格详表1 简单载荷下基本梁的剪力图与弯矩图梁的简图剪力Fs 图弯矩M 图1laFsF F l a F l al -+-F la l a )(-+M2l eMsF lM e +MeM +3laeMsF lM e +Me M lal -e M la +-4lqsF +-2ql 2qlM82ql +2l表格详5lqasF +-la l qa 2)2(-lqa 22M2228)2(l a l qa -+la l qa 2)(2-la l a 2)2(-6lqsF +-30l q 60l qM3920l q +3)33(l-7aFlsF F+Fa-M8aleMsF+eM M9lqs F ql+M22ql -表格详10lqsF 2l q +M620l q -2.单跨梁的内力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的内力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的内力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·mV B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
19.8m悬挑式扣件钢管脚手架计算书D脚手板的荷载标准值 P2=0.100×0.800/2=0.040kN/m活荷载标准值 Q=2.000×0.800/2=0.800kN/m静荷载的计算值 q1=1.2×0.038+1.2×0.040=0.094kN/m活荷载的计算值 q 2=1.4×0.800=1.120kN/m大横杆计算荷载组合简图(跨中最大弯矩和跨中最大挠度)大横杆计算荷载组合简图(支座最大弯矩)2.抗弯强度计算最大弯矩考虑为三跨连续梁均布荷载作用下的弯矩跨中最大弯矩计算公式如下:跨中最大弯矩为M1=(0.08×0.094+0.10×1.120)×1.5002=0.269kN.m支座最大弯矩计算公式如下:支座最大弯矩为M2=-(0.10×0.094+0.117×1.120)×1.5002=-0.316kN.m我们选择支座弯矩和跨中弯矩的最大值进行强度验算:σ=0.316×106/4491.0=70.365N/mm2大横杆的计算强度小于205.0N/mm2,满足要求!3.挠度计算最大挠度考虑为三跨连续梁均布荷载作用下的挠度计算公式如下:静荷载标准值 q1=0.038+0.040=0.078kN/m活荷载标准值 q2=0.800kN/m三跨连续梁均布荷载作用下的最大挠度V=(0.677×0.078+0.990×0.800)×1500.04/(100×2.06×105×107780.0)=1.927mm 大横杆的最大挠度小于1500.0/150与10mm,满足要求!二、小横杆的计算小横杆按照简支梁进行强度和挠度计算,大横杆在小横杆的上面。
用大横杆支座的最大反力计算值,在最不利荷载布置下计算小横杆的最大弯矩和变形。
1.荷载值计算大横杆的自重标准值 P1=0.038×1.500=0.058kN脚手板的荷载标准值 P2=0.100×0.800×1.500/2=0.060kN活荷载标准值 Q=2.000×0.800×1.500/2=1.200kN荷载的计算值 P=1.2×0.058+1.2×0.060+1.4×1.200=1.821kN小横杆计算简图2.抗弯强度计算最大弯矩考虑为小横杆自重均布荷载与荷载的计算值最不利分配的弯矩和均布荷载最大弯矩计算公式如下:集中荷载最大弯矩计算公式如下:M=(1.2×0.038)×0.8002/8+1.821×0.800/4=0.368kN.m σ=0.368×106/4491.0=81.922N/mm2小横杆的计算强度小于205.0N/mm2,满足要求!3.挠度计算最大挠度考虑为小横杆自重均布荷载与荷载的计算值最不利分配的挠度和均布荷载最大挠度计算公式如下:集中荷载最大挠度计算公式如下:小横杆自重均布荷载引起的最大挠度V1=5.0×0.038×800.004/(384×2.060×105×107780.000)=0.01mm集中荷载标准值 P=0.058+0.060+1.200=1.318kN集中荷载标准值最不利分配引起的最大挠度V2=1317.600×800.0×800.0×800.0/(48×2.06×105×107780.0)=0.633mm最大挠度和V=V1+V2=0.642mm小横杆的最大挠度小于800.0/150与10mm,满足要求!三、扣件抗滑力的计算纵向或横向水平杆与立杆连接时,扣件的抗滑承载力按照下式计算(规范5.2.5):R ≤ R c其中 R c——扣件抗滑承载力设计值,取8.0kN;R ——纵向或横向水平杆传给立杆的竖向作用力设计值;横杆的自重标准值 P1=0.038×0.800=0.031kN脚手板的荷载标准值 P2=0.100×0.800×1.500/2=0.060kN活荷载标准值 Q=2.000×0.800×1.500/2=1.200kN荷载的计算值 R=1.2×0.031+1.2×0.060+1.4×1.200=1.789kN单扣件抗滑承载力的设计计算满足要求!当直角扣件的拧紧力矩达40--65N.m时,试验表明:单扣件在12kN的荷载下会滑动,其抗滑承载力可取8.0kN;双扣件在20kN的荷载下会滑动,其抗滑承载力可取12.0kN;四、脚手架荷载标准值作用于脚手架的荷载包括静荷载、活荷载和风荷载。
各类梁支反力剪力弯矩挠度计算公式一览表一、简支梁1、支反力对于均布荷载 q 作用下的简支梁,两端支反力大小相等,均为 R = qL / 2 ,其中 L 为梁的跨度。
2、剪力距离左端为 x 处的剪力 V = qx qL / 2 (0 < x < L )3、弯矩距离左端为 x 处的弯矩 M = qx^2 / 2 qLx / 2 (0 < x < L )最大弯矩发生在跨中,Mmax = qL^2 / 84、挠度均布荷载下的挠度ω = 5qL^4 / 384EI ,其中 E 为材料的弹性模量,I 为梁截面的惯性矩。
二、悬臂梁1、支反力固定端支反力 R = qL ,支反力矩 M = qL^2 / 22、剪力距离固定端为 x 处的剪力 V = qL + qx (0 < x < L )3、弯矩距离固定端为 x 处的弯矩 M = qLx + qx^2 / 2 (0 < x < L )最大弯矩发生在固定端,Mmax = qL^2 / 24、挠度均布荷载下的挠度ω = qL^4 / 8EI三、外伸梁外伸梁的计算较为复杂,需要根据具体的荷载分布和外伸长度进行分析。
1、支反力一般通过对梁的整体受力平衡和力矩平衡方程求解得出。
2、剪力分别计算各段的剪力表达式。
3、弯矩同样分段计算弯矩表达式。
4、挠度利用叠加原理,将各段的挠度贡献相加。
四、连续梁连续梁由多个跨度组成,各跨之间通过中间支座相连。
1、支反力通过结构力学的方法,如力法、位移法等求解。
2、剪力和弯矩根据求得的支反力,计算各跨的剪力和弯矩。
3、挠度通常采用结构力学的方法或有限元分析软件进行计算。
五、变截面梁对于变截面梁,其截面特性(惯性矩I 等)沿梁长度方向发生变化。
1、支反力计算方法与等截面梁类似,但需考虑截面变化的影响。
2、剪力和弯矩采用积分的方法求解。
3、挠度计算过程较为复杂,可能需要借助数值方法或专业软件。
在实际工程中,梁的受力情况往往较为复杂,可能同时受到多种荷载的作用,如集中力、集中力偶、分布荷载等。
各类梁支反力剪力弯矩挠度计算公式一览表在工程结构中,梁是一种常见的受力构件,为了确保梁的设计安全和合理,需要准确计算其支反力、剪力、弯矩和挠度。
下面为大家详细介绍各类梁的相关计算公式。
一、简支梁1、支反力对于承受集中荷载 P 作用于跨中的简支梁,其两端的支反力均为P/2 。
若梁上作用有均布荷载q ,跨度为L ,则两端的支反力均为qL/2 。
2、剪力在集中荷载作用下,若荷载作用点距离梁左端为 a ,则在梁左端至荷载作用点之间,剪力为 P/2 ,在荷载作用点至梁右端之间,剪力为P/2 。
对于均布荷载 q ,从梁左端至任意位置 x 处的剪力为 qx/2 ,从梁右端至任意位置 x 处的剪力为 q(L x)/2 。
3、弯矩集中荷载作用在跨中时,梁跨中弯矩为 PL/4 。
均布荷载作用下,梁跨中弯矩为 qL²/8 。
在均布荷载作用下,简支梁的挠度计算公式为 5qL^4/(384EI) ,其中 E 为材料的弹性模量, I 为梁截面的惯性矩。
二、悬臂梁1、支反力悬臂梁固定端的支反力包括水平支反力和垂直支反力。
若梁端承受集中力 P ,水平支反力为 0 ,垂直支反力为 P ,弯矩为 PL 。
若梁端承受均布荷载 q ,垂直支反力为 qL ,弯矩为 qL²/2 。
2、剪力在集中荷载作用下,从固定端至自由端,剪力始终为 P 。
在均布荷载作用下,从固定端至自由端,剪力从qL 线性减小至0 。
3、弯矩集中荷载作用下,悬臂梁固定端弯矩为 PL 。
均布荷载作用下,悬臂梁固定端弯矩为 qL²/2 。
4、挠度在集中荷载作用下,悬臂梁自由端的挠度为 PL³/(3EI) 。
在均布荷载作用下,悬臂梁自由端的挠度为 qL^4/(8EI) 。
三、外伸梁外伸梁的支反力计算较为复杂,需要根据具体的荷载情况,通过静力平衡方程求解。
2、剪力在计算外伸梁的剪力时,需要分别考虑梁的外伸部分和内部部分,根据荷载分布情况分段计算。
脚手架计算书钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130—2001)。
脚手架的验算项目:纵向、横向水平杆的强度及刚度;立杆稳定性验算;立杆的地基承载力计算。
1.脚手架参数双排脚手架搭设高度为 20。
0 米,立杆采用单立管;搭设尺寸为:立杆的纵距为 1。
40米,立杆的横距为1.80米,大小横杆的步距为1。
50 米;内排架距离墙长度为0。
60米;大横杆在上,搭接在小横杆上的大横杆根数为 2 根;脚手架沿墙纵向长度为 120 米;采用的钢管类型为Φ48×3.5;横杆与立杆连接方式为单扣件;取扣件抗滑承载力系数为 0。
80;连墙件采用三步三跨,竖向间距 4。
50 米,水平间距4.20 米,采用焊缝连接;2。
活荷载参数施工均布活荷载标准值:0.500 kN/m2;脚手架用途:结构脚手架;同时施工层数:1 层;3.风荷载参数本工程地处河南省焦作市,基本风压为0。
45 kN/m2;风荷载高度变化系数μz为0.84,风荷载体型系数μs为0.65;脚手架计算中考虑风荷载作用;4。
静荷载参数每米立杆承受的结构自重标准值(kN/m2):0。
1360;脚手板自重标准值(kN/m2):0。
350;栏杆挡脚板自重标准值(kN/m2):0.110;安全设施与安全网(kN/m2):0。
005;脚手板铺设层数:2;脚手板类别:竹串片脚手板;栏杆挡板类别:栏杆、冲压钢脚手板挡板;每米脚手架钢管自重标准值(kN/m2):0。
038;5.地基参数地基土类型:砂土;地基承载力标准值(kN/m2):500。
00;立杆基础底面面积(m2):0.09;地面广截力调整系数:0.40。
二、大横杆的计算:按照《扣件式钢管脚手架安全技术规范》(JGJ130-2001)第5.2.4条规定,大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面.将大横杆上面的脚手板自重和施工活荷载作为均布荷载计算大横杆的最大弯矩和变形。
梁模板(扣件钢管架)计算书高支撑架的计算依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)、《混凝土结构设计规范》GB50010-2002、《建筑结构荷载规范》(GB 50009-2001)、《钢结构设计规范》(GB 50017-2003)等规范编制。
因本工程梁支架高度大于4米,根据有关文献建议,如果仅按规范计算,架体安全性仍不能得到完全保证。
为此计算中还参考了《施工技术》2002(3):《扣件式钢管模板高支撑架设计和使用安全》中的部分内容。
梁段:L1。
一、参数信息1.模板支撑及构造参数梁截面宽度B(m):0.40;梁截面高度D(m):0.80;混凝土板厚度(mm):120.00;立杆沿梁跨度方向间距L a(m):0.90;立杆上端伸出至模板支撑点长度a(m):0.10;立杆步距h(m):1.20;板底承重立杆横向间距或排距L b(m):0.90;梁支撑架搭设高度H(m):8.80;梁两侧立杆间距(m):0.90;承重架支撑形式:梁底支撑小楞垂直梁截面方向;梁底增加承重立杆根数:2;采用的钢管类型为Φ48×3.25;立杆承重连接方式:可调托座;2.荷载参数新浇混凝土重力密度(kN/m3):24.00;模板自重(kN/m2):0.50;钢筋自重(kN/m3):1.50;施工均布荷载标准值(kN/m2):2.0;新浇混凝土侧压力标准值(kN/m2):26.4;振捣混凝土对梁底模板荷载(kN/m2):2.0;振捣混凝土对梁侧模板荷载(kN/m2):4.0;3.材料参数木材品种:柏木;木材弹性模量E(N/mm2):9000.0;木材抗压强度设计值fc(N/mm):16.0;木材抗弯强度设计值fm(N/mm2):18.7;木材抗剪强度设计值fv(N/mm2):1.7;面板材质:胶合面板;面板厚度(mm):12.00;面板弹性模量E(N/mm2):9858.0;面板抗弯强度设计值fm(N/mm2):17.0;4.梁底模板参数梁底方木截面宽度b(mm):50.0;梁底方木截面高度h(mm):100.0;梁底纵向支撑根数:4;5.梁侧模板参数主楞间距(mm):500;次楞根数:4;主楞竖向支撑点数量:3;固定支撑水平间距(mm):500;竖向支撑点到梁底距离依次是:200mm,400mm,550mm;主楞材料:木方;宽度(mm):100.00;高度(mm):100.00;主楞合并根数:2;次楞材料:木方;宽度(mm):50.00;高度(mm):100.00;二、梁侧模板荷载计算=26.400kN/m2;新浇混凝土侧压力标准值F1三、梁侧模板面板的计算面板为受弯结构,需要验算其抗弯强度和刚度。
三跨连续梁均布荷载最大弯矩计算公式
全文共四篇示例,供读者参考
第一篇示例:
三跨连续梁是一种常见的桥梁结构形式,通常用于跨越较长的跨度。
在设计这种类型的桥梁时,需要考虑到荷载的分布情况以及对结
构的影响。
均布荷载是设计中需要特别注意的一种荷载情况。
在设计
过程中,需要计算最大弯矩来确定梁的尺寸和钢筋的配筋情况。
本文
将介绍三跨连续梁中均布荷载下最大弯矩的计算方法,并给出相关的
计算公式。
我们需要了解均布荷载对梁的影响。
均布荷载是指在整个跨度上
均匀分布的荷载,通常表示为单位长度的均布荷载q。
在三跨连续梁中,均布荷载会产生一个最大弯矩,这个弯矩是跨度中最大的弯矩,用来
评估梁的受力情况。
通过计算最大弯矩,设计者可以确定梁的尺寸和
钢筋的配筋情况,以确保结构的安全性和稳定性。
在计算均布荷载下最大弯矩时,一般采用梁的受力原理和弯矩方
程来进行分析。
三跨连续梁一般可以看作是多段梁的组合,每一段梁
都受到均布荷载的作用。
我们以三跨连续梁中的一段梁为例,介绍如
何计算均布荷载下最大弯矩。
我们需要确定梁的截面形状和尺寸。
在设计中,常常采用矩形、T 型或箱型截面形式的梁。
梁的截面形状和尺寸会直接影响到最大弯矩
的计算结果。
设计者需要根据具体情况选择合适的截面形状和尺寸。
我们需要建立梁的受力模型。
在计算均布荷载下最大弯矩时,可
以将梁看作是一个悬臂梁,在端点处受到弯矩和剪力的作用。
我们可
以根据梁的几何形状和荷载情况建立受力方程,得到梁在不同位置的
弯矩和剪力分布情况。
我们可以通过弯矩方程来计算均布荷载下最大弯矩。
弯矩方程通
常表示为M(x) = -q*x*(L-x)/2,其中M(x)表示梁在距端点x处的弯矩,q表示单位长度的均布荷载,L表示梁的跨度。
通过求解弯矩方程的最大值,可以得到最大弯矩的大小和作用位置。
在实际设计中,设计者需要考虑到梁的自重和其他荷载对最大弯
矩的影响。
通过综合考虑这些因素,设计者可以确定梁的尺寸和钢筋
的配筋情况,确保结构的安全性和稳定性。
三跨连续梁中均布荷载下最大弯矩的计算是设计中的重要环节。
设计者需要根据受力原理和弯矩方程来进行计算,并考虑到梁的截面
形状和尺寸,确保梁的合理设计。
通过合理计算和分析,设计者可以
确保梁结构的安全性和稳定性,从而实现桥梁的正常使用和运行。
第二篇示例:
三跨连续梁是一种常用的桥梁结构,其在横向荷载下产生的最大
弯矩是设计中一个重要的计算参数。
在三跨连续梁中,均布荷载是最
常见的荷载形式之一,因此计算最大弯矩时需要考虑均布荷载对结构产生的影响。
下面将详细介绍三跨连续梁均布荷载最大弯矩计算的相关公式及计算方法。
我们假设三跨连续梁的跨度分别为L1、L2、L3,支座到支座的全长为L=L1+L2+L3,梁的惯性矩为I,截面模量为E,假设均布荷载为q,那么在不同跨度上梁受到的弯矩分别为M1、M2、M3。
在跨度L1上,梁受到的最大弯矩为:
M1 = q * L1^2 / 8
整个三跨连续梁结构的最大弯矩为:
Mmax = max{M1, M2, M3}
根据以上公式,我们可以计算出三跨连续梁在均布荷载作用下产生的最大弯矩。
在实际工程中,为了确保结构的安全性和稳定性,设计者通常会考虑不同荷载组合下的最不利情况,即考虑活载、恒载等不同荷载组合下的最大弯矩。
除了考虑均布荷载外,设计者还需考虑其他因素对结构最大弯矩的影响,如温度荷载、横风荷载等。
在实际工程中,需要综合考虑这些因素,通过计算和分析,确定结构在各种荷载组合下产生的最大弯矩,以进行合理的设计和施工。
三跨连续梁的设计是工程中复杂而重要的一环,均布荷载最大弯矩的计算是设计中的一个关键步骤。
通过科学的计算和分析,可以确
保结构在使用过程中的安全可靠性,为实际工程的建设和运营提供保障。
希望以上内容能对您有所帮助,谢谢阅读!
第三篇示例:
三跨连续梁是一种常见的桥梁结构,在桥梁工程中起着重要的作用。
在设计过程中,需要考虑各种荷载情况下梁的受力情况,其中最
大弯矩是一个重要的设计参数。
在本文中,我们将探讨三跨连续梁均
布荷载下最大弯矩的计算公式。
让我们来了解一下什么是均布荷载。
均布荷载即梁上受到的荷载
在整个跨度上均匀分布,是一种常见的荷载形式。
在设计三跨连续梁时,我们需要考虑自重荷载、行车荷载、风荷载等各种荷载情况,并
对梁的受力情况进行分析。
对于三跨连续梁均布荷载下的最大弯矩计算公式,一般采用梁的
弹性理论进行分析。
在弹性理论中,我们可以通过梁的截面形心位置、截面惯性矩、跨中荷载大小等参数来计算梁的最大弯矩。
最常用的计
算公式是梁的弯曲弹性方程。
在三跨连续梁设计中,我们通常会先确定梁的跨度长度、截面形
状和尺寸,然后根据设计荷载、荷载组合等参数来计算梁的最大弯矩。
在计算过程中,我们需要考虑梁的受力情况,在保证结构安全的前提下,尽可能减小梁的材料消耗,实现经济合理的设计。
三跨连续梁均布荷载下最大弯矩的计算是一个复杂而重要的设计
问题。
设计工程师需要充分考虑各种荷载情况和梁结构特性,选择合
适的计算方法,确保结构的安全可靠。
通过科学有效的计算公式和方法,可以实现梁结构设计的优化,为工程建设提供技术支持和保障。
【改成2000字以上的继续添加内容】
第四篇示例:
三跨连续梁是桥梁结构中常见的形式之一,其设计中计算荷载是一个关键的问题。
在设计过程中,均布荷载是其中一个重要的荷载情况之一,其中最大弯矩的计算是设计工作中的一个重要环节。
本文将重点介绍三跨连续梁均布荷载下最大弯矩的计算公式。
三跨连续梁是由三个跨度较长的简支梁通过支座连续构成的一种桥梁结构形式。
在设计中,荷载是桥梁结构的设计基础之一,其作用是在桥梁结构中引起内力和变形。
在荷载计算中,均布荷载是一种常见的荷载情况,其作用是在桥梁结构上均匀分布的载荷,落在结构上会引起内力和变形。
在三跨连续梁设计中,需要计算最大弯矩来确定梁的截面尺寸和钢筋布置。
最大弯矩是在梁跨中某一截面上的最大正弯矩值,其计算是桥梁设计的一个重要环节。
在均布荷载作用下,最大弯矩的计算公式是由荷载大小和距离以及跨中支座反力大小等参数共同决定的。
具体而言,三跨连续梁均布荷载下最大弯矩的计算公式可以表达为:
M_{max} = M_{DL} + M_{LL}
M_{max}为跨中截面上的最大弯矩值,M_{DL}为均布荷载作用下的弯矩值,M_{LL}为跨中支座反力产生的弯矩值。
在实际计算中,均
布荷载的大小和距离、跨中支座反力的大小等参数需要根据实际情况
进行确定。
需要指出的是,在进行三跨连续梁均布荷载下最大弯矩的计算时,需要考虑结构的整体受力性能。
在设计过程中,需要保证结构的安全
性和稳定性,同时满足弯矩和剪力的要求。
在进行计算时,需要综合
考虑各种荷载情况下的受力情况,确保结构的设计符合规范要求。
三跨连续梁均布荷载下最大弯矩的计算涉及到结构力学、荷载计
算及钢筋设计等方面的知识,是桥梁设计中的重要环节。
设计师需要
根据实际情况,合理确定荷载与参数,按照规范要求进行计算,确保
结构设计的合理性和安全性。
希望本文的介绍能够对读者们在三跨连
续梁设计中的均布荷载最大弯矩计算有所帮助。