23年高考数学20题
- 格式:docx
- 大小:37.94 KB
- 文档页数:5
2023年全国统一高考数学试卷(新高考Ⅱ)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共计40分。
每小题给出的四个选项中,只有一个选项是正确的。
请把正确的选项填涂在答题卡相应的位置上。
1.(5分)在复平面内,(1+3i)(3﹣i)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解答】解:(1+3i)(3﹣i)=3﹣i+9i+3=6+8i,则在复平面内,(1+3i)(3﹣i)对应的点的坐标为(6,8),位于第一象限.故选:A.2.(5分)设集合A={0,﹣a},B={1,a﹣2,2a﹣2},若A⊆B,则a=( )A.2B.1C.D.﹣1【答案】B【解答】解:依题意,a﹣2=0或2a﹣2=0,当a﹣2=0时,解得a=2,此时A={0,﹣2},B={1,0,2},不符合题意;当2a﹣2=0时,解得a=1,此时A={0,﹣1},B={1,﹣1,0},符合题意.故选:B.3.(5分)某学校为了了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( )A.种B.种C.种D.种【答案】D【解答】解:∵初中部和高中部分别有400和200名学生,∴人数比例为400:200=2:1,则需要从初中部抽取40人,高中部取20人即可,则有种.故选:D.4.(5分)若f(x)=(x+a)为偶函数,则a=( )A.﹣1B.0C.D.1【答案】B【解答】解:由>0,得x>或x<﹣,由f(x)是偶函数,∴f(﹣x)=f(x),得(﹣x+a)ln=(x+a),即(﹣x+a)ln=(﹣x+a)ln()﹣1=(x﹣a)ln=(x+a),∴x﹣a=x+a,得﹣a=a,得a=0.故选:B.5.(5分)已知椭圆C:的左焦点和右焦点分别为F1和F2,直线y=x+m与C交于点A,B两点,若△F1AB面积是△F2AB面积的两倍,则m=( )A.B.C.D.【答案】C【解答】解:记直线y=x+m与x轴交于M(﹣m,0),椭圆C:的左,右焦点分别为F1(﹣,0),F2(,0),由△F1AB面积是△F2AB的2倍,可得|F1M|=2|F2M|,∴|﹣﹣x M|=2|﹣x M|,解得x M=或x M=3,∴﹣m=或﹣m=3,∴m=﹣或m=﹣3,联立可得,4x2+6mx+3m2﹣3=0,∵直线y=x+m与C相交,所以Δ>0,解得m2<4,∴m=﹣3不符合题意,故m=.故选:C.6.(5分)已知函数f(x)=ae x﹣lnx在区间(1,2)上单调递增,则a的最小值为( )A.e2B.e C.e﹣1D.e﹣2【答案】C【解答】解:对函数f(x)求导可得,,依题意,在(1,2)上恒成立,即在(1,2)上恒成立,设,则,易知当x∈(1,2)时,g′(x)<0,则函数g(x)在(1,2)上单调递减,则.故选:C.7.(5分)已知α为锐角,cosα=,则sin=( )A.B.C.D.【答案】D【解答】解:cosα=,则cosα=,故=1﹣cosα=,即==,∵α为锐角,∴,∴sin=.故选:D.8.(5分)记S n为等比数列{a n}的前n项和,若S4=﹣5,S6=21S2,则S8=( )A.120B.85C.﹣85D.﹣120【答案】C【解答】解:等比数列{a n}中,S4=﹣5,S6=21S2,显然公比q≠1,设首项为a1,则=﹣5①,=②,化简②得q4+q2﹣20=0,解得q2=4或q2=﹣5(不合题意,舍去),代入①得=,所以S8==(1﹣q4)(1+q4)=×(﹣15)×(1+16)=﹣85.故选:C.二、选择题:本大题共小4题,每小题5分,共计20分。
23年高考数学试卷理科数学一、选择题1.设252i1i iz +=++,则z =()A.12i- B.12i+ C.2i- D.2i+2.设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=()A.()U M N ðB.U NMðC .()U MN ð D.U M N⋃ð3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.304.已知e ()e 1xaxx f x =-是偶函数,则=a ()A.2- B.1- C.1 D.25.设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.126.已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A. B.12-C.12D.27.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种8.已知圆锥PO的底面半径为,O 为底面圆心,PA ,PB 为圆锥的母线,120AOB ∠=︒,若PAB)A.πB.C.3πD.9.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C ABD --为150︒,则直线CD 与平面ABC 所成角的正切值为()A.15B.5C.5D.2510.已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A.-1B.12-C.0D.1211.设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1 B.()1,2- C.()1,3 D.()1,4--12.已知O 的半径为1,直线PA 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D为BC的中点,若PO =PA PD ⋅的最大值为()A.12B.12+C.1+D.2二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______.14.若x ,y 满足约束条件312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为______.15.已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =______.16.设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是______.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,i y (1,2,10i =⋅⋅⋅),试验结果如下试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记(1,2,,10)i i i z x y i =-=,记1z ,2z ,…,10z 的样本平均数为z ,样本方差为2s ,(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).18.在ABC 中,已知120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.19.如图,在三棱锥-P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==BP ,AP ,BC 的中点分别为D ,E ,O ,AD =,点F 在AC 上,BF AO ⊥.(1)证明://EF 平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角D AO C --的正弦值.20.已知椭圆C :()222210y x a b a b +=>>的离心率为53,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.21.已知函数1()ln(1)f x a x x ⎛⎫=++⎪⎝⎭.(1)当1a =-时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)是否存在a ,b ,使得曲线1y f x ⎛⎫= ⎪⎝⎭关于直线x b =对称,若存在,求a ,b 的值,若不存在,说明理由.(3)若()f x 在()0,∞+存在极值,求a 的取值范围.四、选做题【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为ππ2sin 42⎛⎫=≤≤⎪⎝⎭ρθθ,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23.已知()22f x x x =+-.(1)求不等式()6f x x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ≤⎧⎨+-≤⎩所确定的平面区域的面积.。
2023年全国统一高考数学试卷(理科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},U为整数集,则∁U(A⋃B)=( )A.{x|x=3k,k∈Z}B.{x|x=3k﹣1,k∈Z}C.{x|x=3k﹣2,k∈Z}D.∅【答案】A【解答】解:∵A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},∴A∪B={x|x=3k+1或x=3k+2,k∈Z},又U为整数集,∴∁U(A⋃B)={x|x=3k,k∈Z}.故选:A.2.(5分)若复数(a+i)(1﹣ai)=2,a∈R,则a=( )A.﹣1B.0C.1D.2【答案】C【解答】解:因为复数(a+i)(1﹣ai)=2,所以2a+(1﹣a2)i=2,即,解得a=1.故选:C.3.(5分)执行下面的程序框图,输出的B=( )A.21B.34C.55D.89【答案】B【解答】解:根据程序框图列表如下:A13821B251334n1234故输出的B=34.故选:B.4.(5分)向量||=||=1,||=,且+=,则cos〈﹣,﹣〉=( )【答案】D【解答】解:因为向量||=||=1,||=,且+=,所以﹣=+,即2=1+1+2×1×1×cos<,>,解得cos<,>=0,所以⊥,又﹣=2+,﹣=+2,所以(﹣)•(﹣)=(2+)•(+2)=2+2+5•=2+2+0=4,|﹣|=|﹣|===,所以cos〈﹣,﹣〉===.故选:D.5.(5分)已知正项等比数列{a n}中,a1=1,S n为{a n}前n项和,S5=5S3﹣4,则S4=( )A.7B.9C.15D.30【答案】C【解答】解:等比数列{a n}中,设公比为q,a1=1,S n为{a n}前n项和,S5=5S3﹣4,显然q≠1,(如果q=1,可得5=15﹣4矛盾),可得=5•﹣4,解得q2=4,即q=2,S4===15.故选:C.6.(5分)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.1【答案】A【解答】解:根据题意,在报名足球或乒乓球俱乐部的70人中,设某人报足球俱乐部为事件A,报乒乓球俱乐部为事件B,则P(A)==,由于有50人报名足球俱乐部,60人报名乒乓球俱乐部,则同时报名两个俱乐部的由50+60﹣70=40人,则P(AB)==,则P(B|A)===0.8.故选:A.7.(5分)“sin2α+sin2β=1”是“sinα+cosβ=0”的( )A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件【答案】B【解答】解:sin2α+sin2β=1,可知sinα=±cosβ,可得sinα±cosβ=0,所以“sin2α+sin2β=1”是“sinα+cosβ=0”的必要不充分条件,故选:B.8.(5分)已知双曲线的离心率为,其中一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.9.(5分)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为( )A.120B.60C.40D.30【答案】B【解答】解:先从5人中选1人连续两天参加服务,共有=5种选法,然后从剩下4人中选1人参加星期六服务,剩下3人中选取1人参加星期日服务,共有=12种选法,根据分步乘法计数原理可得共有5×12=60种选法.故选:B.10.(5分)已知f(x)为函数向左平移个单位所得函数,则y=f(x)与的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:把函数向左平移个单位可得函数f(x)=cos(2x+)=﹣sin2x的图象,而直线=(x﹣1)经过点(1,0),且斜率为,且直线还经过点(,)、(﹣,﹣),0<<1,﹣1<﹣<0,如图,故y=f(x)与的交点个数为3.故选:C.11.(5分)在四棱锥P﹣ABCD中,底面ABCD为正方形,AB=4,PC=PD=3,∠PCA=45°,则△PBC的面积为( )A.B.C.D.【答案】C【解答】解:解法一:∵四棱锥P﹣ABCD中,底面ABCD为正方形,又PC=PD=3,∠PCA=45°,∴根据对称性易知∠PDB=∠PCA=45°,又底面正方形ABCD得边长为4,∴BD=,∴在△PBD中,根据余弦定理可得:=,又BC=4,PC=3,∴在△PBC中,由余弦定理可得:cos∠PCB==,∴sin∠PCB=,∴△PBC的面积为==.解法二:如图,设P在底面的射影为H,连接HC,设∠PCH=θ,∠ACH=α,且α∈(0,),则∠HCD=45°﹣α,或∠HCD=45°+α,易知cos∠PCD=,又∠PCA=45°,则根据最小角定理(三余弦定理)可得:,∴或,∴或,∴或,∴tanα=或tanα=,又α∈(0,),∴tanα=,∴cosα=,sinα=,∴,∴cosθ=,再根据最小角定理可得:cos∠PCB=cosθcos(45°+α)==,∴sin∠PCB=,又BC=4,PC=3,∴△PBC的面积为==.故选:C.12.(5分)已知椭圆=1,F1,F2为两个焦点,O为原点,P为椭圆上一点,cos∠F1PF2=,则|PO|=( )A.B.C.D.【答案】B【解答】解:椭圆,F1,F2为两个焦点,c=,O为原点,P为椭圆上一点,,设|PF1|=m,|PF2|=n,不妨m>n,可得m+n=6,4c2=m2+n2﹣2mn cos∠F1PF2,即12=m2+n2﹣mn,可得mn=,m2+n2=21,=(),可得|PO|2==(m2+n2+2mn cos∠F1PF2)=(m2+n2+mn)=(21+)=.可得|PO|=.故选:B.二、填空题:本题共4小题,每小题5分,共20分。
2023年全国高考数学新课标1卷第20题解答2023年全国高考数学新课标1卷第20题要求解决一个与函数有关的问题。
下面将逐步解答这道题目,希望能帮助大家更好地理解题目要求和解题方法。
题目描述:已知函数$f(x)=x^3-3x^2-9x+5$,则曲线$y=f(x)$在点$(1,2)$处的切线方程是________。
解题步骤:1. 首先,根据题目给出的函数$f(x)$,我们需要求出曲线$y=f(x)$在点$(1,2)$处的切线方程。
要求切线方程,我们需要先求出曲线的斜率。
2. 曲线的斜率可以通过求函数$f(x)$的导数来得到。
导数的定义是函数在某一点的切线的斜率。
我们可以利用导数的定义求出函数$f(x)$的导数。
3. 对于函数$f(x)=x^3-3x^2-9x+5$,我们需要对每一项分别求导数。
根据求导法则,我们可以得到:$f'(x)=3x^2-6x-9$。
4. 然后,我们将点$(1,2)$的横坐标代入函数$f'(x)$,得到切线的斜率。
代入得到:$f'(1)=3(1)^2-6(1)-9=-12$。
5. 知道了切线的斜率,我们可以利用点斜式来求切线方程。
点斜式的一般形式为:$y-y_1=m(x-x_1)$,其中$m$为斜率,$(x_1,y_1)$为直线上一点的坐标。
6. 我们已经求得切线的斜率为$-12$,且已知点$(1,2)$在切线上。
将斜率和点的坐标代入点斜式,得到切线方程:$y-2=-12(x-1)$。
7. 现在,我们可以对切线方程进行化简,得到标准形式。
首先,将方程展开,得到:$y-2=-12x+12$。
8. 然后,将方程移项,得到:$y=-12x+14$。
9. 最后,我们得到曲线$y=f(x)$在点$(1,2)$处的切线方程为$y=-12x+14$。
总结:通过以上步骤,我们成功解答了2023年全国高考数学新课标1卷第20题。
题目要求我们求解曲线$y=f(x)$在点$(1,2)$处的切线方程。
2023年高考数学全国一卷试卷及解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集{}54321,,,,=U ,集合{}41,=M ,{}52,=N ,则=⋃M C N U ()A .{}5,3,2B .{}431,,C .{}5,4,2,1D .{}5,4,3,22.()()()=-++i i i 22153()A .1-B .1C .i -1D .i+13.已知向量()1,3=a ,()2,2=b ,则=-+b a b a ,cos ()A .171B .1717C .55D .5524.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A .61B .31C .21D .325.记n S 为等差数列{}n a 的前n 项和.若1062=+a a ,4584=a a ,则=5S ()A .25B .22C .20D .156.执行右边的程序框图,则输出的=B ()A .21B .34C .55D .897.设21,F F 为椭圆1522=+y x C :的两个焦点,点P 在C 上,若021=⋅PF PF ,则=⋅21PF PF ()A .1B .2C .4D .58.曲线1+=x e y x 在点⎪⎭⎫⎝⎛21e ,处的切线方程为()A .x e y 4=B .x ey 2=C .44ex e y +=D .432ex e y +=9.已知双曲线()0,012222>>=-b a by a x C :的离心率为5,C 的一条渐近线与圆()()13222=-+-y x 交于B A ,两点,则=AB ()A .55B .552C .553D .55410.在三棱锥ABC P -中,ABC ∆是边长为2的等边三角形,2==PB P A ,6=PC ,则该棱锥的体积为()A .1B .3C .2D .311.已知函数()()21--=x ex f .记⎪⎪⎭⎫⎝⎛=22f a ,⎪⎪⎭⎫⎝⎛=23f b ,⎪⎪⎭⎫⎝⎛=26f c ,则()A .a c b >>B .c a b >>C .ab c >>D .b a c >>12.函数()x f y =的图象由⎪⎭⎫ ⎝⎛+=62cos πx y 的图象向左平移6π个单位长度,则()x f y =的图象与直线2121-=x y 的交点个数为()A .1B .2C .3D .4二、填空题:本大题动4小题,每小题5分,共20分.13.记n S 为等比数列{}n a 的前n 项和.若3678S S =,则{}n a 的公比为.14.若()()⎪⎭⎫⎝⎛+++-=2sin 12πx ax x x f 为偶函数,则=a .15.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-1332323y x y x y x ,则y x z 23+=的最大值为.16.在正方体1111D C B A ABCD -中,4=AB ,O 为1AC 的中点,若该正方体的棱与球O 的球面有公共点,则球O 的半径的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
绝密★启用前2023年全国统一高考数学试卷(新高考Ⅰ)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合M={−2,−1,0,1,2},N={x|x2−x−6≥0},则M∩N=( )A. {−2,−1,0,1}B. {0,1,2}C. {−2}D. {2}2.已知z=1−i2+2i,则z−z−=( )A. −iB. iC. 0D. 13.已知向量a⃗=(1,1),b⃗⃗=(1,−1).若(a⃗⃗+λb⃗⃗)⊥(a⃗⃗+μb⃗⃗),则( )A. λ+μ=1B. λ+μ=−1C. λμ=1D. λμ=−14.设函数f(x)=2x(x−a)在区间(0,1)单调递减,则a的取值范围是( )A. (−∞,−2]B. [−2,0)C. (0,2]D. [2,+∞)5.设椭圆C1:x2a2+y2=1(a>1),C2:x24+y2=1的离心率分别为e1,e2.若e2=√ 3e1,则a=( )A. 2√ 33B. √ 2C. √ 3D. √ 66.过点(0,−2)与圆x2+y2−4x−1=0相切的两条直线的夹角为α,则sinα=( )A. 1B. √ 154C. √ 104D. √ 647.记S n为数列{a n}的前n项和,设甲:{a n}为等差数列;乙:{S nn}为等差数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件8.已知sin(α−β)=13,cosαsinβ=16,则cos(2α+2β)=( )A. 79B. 19C. −19D. −79二、多选题:本题共4小题,共20分。
2023年全国统一高考数学试卷(理科)(乙卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则=( )A.1﹣2i B.1+2i C.2﹣i D.2+i【答案】B【解答】解:∵i2=﹣1,i5=i,∴z===1﹣2i,∴=1+2i.故选:B.2.(5分)设集合U=R,集合M={x|x<1},N={x|﹣1<x<2},则{x|x≥2}=( )A.∁U(M∪N)B.N∪∁U M C.∁U(M∩N)D.M∪∁U N【答案】A【解答】解:由题意:M∪N={x|x<2},又U=R,∴∁U(M∪N)={x|x≥2}.故选:A.3.(5分)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30【答案】D【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.4.(5分)已知f(x)=是偶函数,则a=( )A.﹣2B.﹣1C.1D.2【答案】D【解答】解:∵f(x)=的定义域为{x|x≠0},又f(x)为偶函数,∴f(﹣x)=f(x),∴,∴,∴ax﹣x=x,∴a=2.故选:D.5.(5分)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A.B.C.D.【答案】C【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于的点A构成的区域为图中阴影部分,∴所求概率为=.故选:C.6.(5分)已知函数f(x)=sin(ωx+φ)在区间(,)单调递增,直线x=和x=为函数y=f(x)的图像的两条对称轴,则f(﹣)=( )A.﹣B.﹣C.D.【答案】D【解答】解:根据题意可知=,∴T=π,取ω>0,∴ω==2,又根据“五点法“可得,k∈Z,∴φ=,k∈Z,∴f(x)=sin(2x)=sin(2x﹣),∴f(﹣)=sin(﹣)=sin(﹣)=sin=.故选:D.7.(5分)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A.30种B.60种C.120种D.240种【答案】C【解答】解:根据题意可得满足题意的选法种数为:=120.故选:C.8.(5分)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,∠AOB =120°,若△PAB的面积等于,则该圆锥的体积为( )A.πB.πC.3πD.3π【答案】B【解答】解:根据题意,设该圆锥的高为h,即PO=h,取AB的中点E,连接PE、OE,由于圆锥PO的底面半径为,即OA=OB=,而∠AOB=120°,故AB===3,同时OE=OA×sin30°=,△PAB中,PA=PB,E为AB的中点,则有PE⊥AB,又由△PAB的面积等于,即PE•AB=,变形可得PE=,而PE=,则有h2+=,解可得h=,故该圆锥的体积V=π×()2h=π.故选:B.9.(5分)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C﹣AB﹣D为150°,则直线CD与平面ABC所成角的正切值为( )A.B.C.D.【答案】C【解答】解:如图,取AB的中点E,连接CE,DE,则根据题意易得AB⊥CE,AB⊥DE,∴二面角C﹣AB﹣D的平面角为∠CED=150°,∵AB⊥CE,AB⊥DE,且CE∩DE=E,∴AB⊥平面CED,又AB⊂平面ABC,∴平面CED⊥平面ABC,∴CD在平面ABC内的射影为CE,∴直线CD与平面ABC所成角为∠DCE,过D作DH垂直CE所在直线,垂足点为H,设等腰直角三角形ABC的斜边长为2,则可易得CE=1,DE=,又∠DEH=30°,∴DH=,EH=,∴CH=1+=,∴tan∠DCE===.故选:C.10.(5分)已知等差数列{a n}的公差为,集合S={cos a n|n∈N*},若S={a,b},则ab=( )A.﹣1B.﹣C.0D.【答案】B【解答】解:设等差数列{a n}的首项为a1,又公差为,∴,∴,其周期为=3,又根据题意可知S集合中仅有两个元素,∴可利用对称性,对a n取特值,如a1=0,,,•,或,,a3=π,•,代入集合S中计算易得:ab=.故选:B.11.(5分)设A,B为双曲线x2﹣=1上两点,下列四个点中,可为线段AB中点的是( )A.(1,1)B.(﹣1,2)C.(1,3)D.(﹣1,﹣4)【答案】D【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),,①﹣②得k AB==9×=9×,即﹣3<9×<3⇒,即或,故A、B、C错误,D正确.故选:D.12.(5分)已知⊙O的半径为1,直线PA与⊙O相切于点A,直线PB与⊙O交于B,C两点,D为BC的中点,若|PO|=,则•的最大值为( )A.B.C.1+D.2+【答案】A【解答】解:如图,设∠OPC=α,则,根据题意可得:∠APO=45°,∴==cos2α﹣sinαcosα==,又,∴当,α=,cos()=1时,取得最大值.故选:A.二、填空题:本题共4小题,每小题5分,共20分。
2023年上海高考数学真题及参考答案一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置填写结果.1.不等式12<-x 的解集为.2.已知()3,2-=a ,()2,1=b ,求=⋅b a .3.已知{}n a 为等比数列,且31=a ,2=q ,求=6S .4.已知3tan =α,求=α2tan .5.已知()⎩⎨⎧≤>=0,10,2x x x f x ,则()x f 的值域是.6.已知当i z +=1,则=⋅-z i 1.7.已知0422=--+m y y x 的面积为π,求=m .8.在ABC ∆中,6,5,4===c b a ,求=A sin .9.国内生产总值(GDP )是衡量地区经济状况的最佳指标,根据统计数据显示,某市在2020年间经济高质量增长,GDP 稳步增长,第一季度和第四季度的GDP 分别为231和242,且四个季度GDP 的中位数与平均数相等,则2020年GDP 总额为.10.已知()()1001002210100100202320231x a x a x a a x x ++++=-++ ,其中R a a a ∈10021, ,若1000≤≤k 且N k ∈,当0<k a 时,k 的最大值时.11.公园修建斜坡,假设斜坡起点在水平面上,斜坡与水平面的夹角为θ,斜坡终点距离水平水平面的垂直高度为4米,游客每走一米消耗的体能为()θcos 025.1-,要使游客从斜坡底走到斜坡顶端所消耗的总体能最少,则=θ.12.空间内存在三点C B A 、、,满足1===BC AC AB ,在空间内取不同两点(不计顺序),使得这两点与C B A 、、可以组成正四棱锥,求方案数为.二、选择题(本题共4题,满分18分,13、14每题4分,15、16每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.已知{}{}32,21,,==Q P ,若{}Q x P x x M ∉∈=且,则=M ()A .{}1B .{}2C .{}21,D .{}321,,14.根据身高和体重散点图,下列说法正确的是()A .身高越高,体重越重B .身高越高,体重越轻C .身高与体重成正相关D .身高与体重成负相关15.设0>a ,函数x y sin =在区间[]a a 2,上的最小值为s ,在[]a a 3,2上的最小值为t ,当a 变化时,下列不可能的是()A .0>s 且0>tB .0>s 且0<tC .0<s 且0<t D .0<s 且0>t 16.在平面上,若曲线Γ具有下列性质:存在点M ,使得对于任意点Γ∈P ,都有Γ∈Q 使得1=⋅QM PM .则称曲线Γ为“自相关曲线”.现有如下两个命题:(1)任意椭圆都是“自相关曲线”.(2)存在双曲线是“自相关曲线”.则下列正确的是()A .(1)成立,(2)成立B .(1)成立,(2)不成立C .(1)不成立,(2)成立D .(1)不成立,(2)不成立三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.直四棱柱1111D C B A ABCD -,CD AB ∥,AD AB ⊥,2=AB ,3=AD ,4=DC .(1)求证:111D DCC B A 面⊥(2)若四棱柱1111D C B A ABCD -体积为36,求二面角A BD A --1的大小.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.函数()()()R c a ax cx a x x f ∈++++=,132.(1)当0=a 时,是否存在实数c ,使得()x f 为奇函数(2)函数()x f 的图象过点()3,1,且()x f 的图象与x 轴负半轴有两个不同交点,求实数c 的值及实数a 的取值范围.19.(本题满分14分)本题共有3个小题,第1小题满分2分,第2小题满分6分,第3小题满分8分.21世纪汽车博览会在上海2023年6月7日在上海举行,下表为某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:(1)若小明从这些模型中随机拿一个模型,记事件A 为小明取到的模型为红色外观,事件B 取到模型有棕色内饰.求:()B P 、()A B P /,并据此判断事件A 和事件B 是否独立(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:假设1:拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观内饰都异色、以及外观或内饰同色;假设2:按结果的可能性大小,概率越小奖项越高;假设3:奖金额为一等奖600元,二等奖300元,三等奖150元;请你分析奖项对应的结果,设X 为奖金额,写出X 的分布列并求出X 的数学期望.红色外观蓝色外观棕色内饰128米色内饰2320.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知抛物线x y 42=Γ:,A 为第一象限内Γ上的一点,设A 的纵坐为a (0>a ).(1)若A 到Γ的准线距离为3,求a 的值;(2)若4=a ,B 为x 轴上的一点,且线段AB 的中点在Γ上,求点B 坐标和坐标原点O到AB 的距离;(3)直线3-=x l :,P 是第一象限Γ上异于A 的动点,直线P A 交l 于Q ,点H 为点P 在l 上的投影,若点A 满足性质“当点P 变化时,4>HQ 恒成立”,求a 的取值范围.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知函数()x x f ln =,过函数上的点()()11,a f a 作()x f y =的切线交y 轴于()20a ,,02>a ,过函数上的点()()22,a f a 作()x f y =的切线交y 轴于()30a ,,以此类推,直至0≤m a 时则停止操作,得到数列{}n a ,*∈N n m ,,m n ≤<1.(1)证明:1ln 1-=+n n a a ;(2)试比较1+n a 与2-n a 的大小;(3)若正整数3≥k ,是否存在k 使得k a a a ,,21依次成等差数列?若存在,求出k 的所有取值;若不存在,试说明理由.参考答案一、填空题1.()3,1;解析:3112112<<-⇒<-<-⇒<-x x x2.4;解析:已知42312=⨯+⨯-=⋅b a 3.189;解析:18996482412636=+++++=S 4.43-;解析:43916tan 1tan 22tan 2-=-=-=ααα5.[)∞+,1;解析:当0>x 时,12>=xy ,当0≤x 时,1=y ,故值域为[)∞+,16.5;解析:()i i i z i -=+⨯-=⋅-2111,521=-=⋅-i z i 7.3-;解析:()4222+=-+m y x ,由题意14=+m ,解得3-=m 8.47;解析:436521636252cos 222=⨯⨯-+=-+=bc a c b A ,∴47sin =A 9.946;解析:d c b a <<<,232=a ,241=d ,473=+=+c b d a ,∴946=+++d c b a 10.49;解析:()0202312023100100100<-+=-kkkkkk C C a ,依题意k 为奇数,∴kk -<10020232023,k k -<100,解得50<k ,∴49max =k 11.4140arccos;解析:所消耗的总体力()θθθθsin cos 41.4sin cos 025.14-=-=y ,()0sin cos 1.44sin cos cos 41.4sin 4222=-=--='θθθθθθy ,解得4140cos =θ,∴4140arccos=θ12.9;解析:以A 为尖,若ABC 为正四棱锥的侧面,有两种情况,若ABC 为正四棱锥的对角面,有一种情况,共三种情况;同理,以C B ,为尖,也各有三种情况,∴共9种二、选择题15.解析:1=a 时,A 可能;5.1=a 时,B 可能;2=a 时,C 可能;D 选项,若0<S ,则π>a 2,若0>t ,则[]a a 3,2的区间长度π<a ,同时02sin >a 且03sin >a ,所以()π,02∈a 且()π,03∈a ,与前面的π>a 2矛盾,故D 不可能.16.解析:(1)∵椭圆是封闭的,∴总可以找到满足题意的M 点;(2)∵点P 的任意性,∴+∞→maxPM,∵minQM是固定的,∴无法对任意的Γ∈P ,都存在Γ∈Q 使得1=⋅QM PM .三、解答题17.解:(1)取CD 中点E ,连接E D 1,E D B A 11∥,∴111D DCC B A 平面∥;(2)由题意可得,底面积为9,∴1341==BD AA ,,A 到BD 的距离1361332=⨯=d ,3132tan 1==d AA θ,∴3132arctan =θ,即二面角C BD A --1的大小为3132arctan.18.解:(1)当0=a 时,()12++=++=x cx x c x x x f ,∵x c x y +=为奇函数,∴()1++=xcx x f 不为奇函数,故不存在实数c ,使得()x f 为奇函数(2)()31231=+++=aca f ,∴1=c ,则()()01132=++++=ax x a x x f 即()01132=+++x a x ,∴()04132>-+=∆a 且两根之和()013<+-a ,∴31>a ,若0=+a x 即a x -=是方程()01132=+++x a x 的解,得21=a 或1-=a ,故实数a 的取值范围为31>a 且21≠a .13141516ACDB19.解:(1)()512532=+=B P ,()()()51282=+=⋂=A P B A P A B P ,()522528=+=A P ,()()()B P A P B A P ⋅==⋂252,∴事件A 和事件B 独立.(2)外观和内饰均为同色的概率15049225232221228=+++C C C C C ,外观和内饰都异色的概率25415024225121121318==+C C C C C ,仅外观或仅内饰同色的概率15077225131211218131121218=+++C C C C C C C C C .∴X 的分布列为⎪⎪⎪⎭⎫⎝⎛1507715049254150300600,期望为2711507715015049300254600=⨯+⨯+⨯(元)20.解:(1)准线为1-=x ,∴2=A x ,∴22==A y a ;(2)()4,4A ,设()0,b B ,线段AB 的中点为⎪⎭⎫⎝⎛+2,24b ,∴()b +=424,解得2-=b ,即()0,2-B ,∴直线AB 为0432=+-y x ,原点O 到AB 的距离13134134==d .(3)设⎪⎪⎭⎫ ⎝⎛p p P ,42,∵⎪⎪⎭⎫⎝⎛a a A ,42,∴直线()04=++-ap y p a x AP :∴()p H p a ap Q ,3,123-⎪⎪⎭⎫ ⎝⎛+--,,∴412122>++=-+-=p a p p p a ap HQ ,即()()2422->-a p 对()()+∞⋃∈,,0a a p 恒成立,当2=a 时,2≠p ,()()2422->-a p 成立;当02<-a 即2<a 时,()()2422->-a p 此时20<<a ∴a 的取值范围是(]2,0.21.解:(1)()xx f 1=',在()()n n a f a ,处的切线方程为,当0=x 时,1ln -=n a y ,即1ln 1-=+n n a a ;()n nn a x a a y -=-1ln (2)作差法:()1ln 21+-=--+n n n n a a a a ,设()1ln +-=x x x g ,则()11-='xx g 令()011=-='xx g ,解得1=x ;()100<<⇒>'x x g ;()10>⇒<'x x g ,∴()()01max ==g x g ,∴()0≤x g ,即21-≤+n n a a 当1=n a 时等号成立;(3)公差1ln 111--=-=---k k k k a a a a d ,设()1ln --=x x x h ,则()11-='xx h 令()011=-='xx h ,解得1=x ;()100<<⇒>'x x h ,此时()x h 单调递增;()10>⇒<'x x h ,此时()x h 单调递减,∴()()21max -==h x h ,即()2-≤x h ,∴2-≤d ,数列递减,∵0→x 时,()-∞→x h ,+∞→x 时,()-∞→x h ,∴1ln 11--=--k k a a d 最多两解,此时2-<d ,即最多三项成等差数列,3=k .。
2023年新高考数学一卷第20题题目:已知函数$f(x) = \frac{1}{3}x^{3} - x^{2} + a$,其中$a \in\mathbf{R}$.(1)若$f(x)$在区间$( - 1,3)$上有且仅有一个零点,求实数$a$的取值范围;(2)若$\exists x_{0} \in ( - 1,3),f(x_{0}) > 0$,求实数$a$的取值范围.【分析】(1)求出函数的导数,通过讨论$a$的范围,求出函数的单调区间,从而求出函数的极值,利用函数在区间$( - 1,3)$上有且仅有一个零点,列出不等式,求出$a$的范围即可;(2)利用特称命题转化为存在性问题,利用导数求出函数的极值,求出函数的最大值,得到关于$a$的不等式,求出$a$的范围即可.【解答】(1)由题意得:$f^{\prime}(x) = x^{2} - 2x = x(x - 2)$,由$f^{\prime}(x) > 0$得:$x < 0$或$x > 2$,由$f^{\prime}(x) < 0$得:$0 < x < 2$,故函数$f(x)$在$( - 1,0)$上单调递增,在$(0,2)$上单调递减,在$(2,3)$上单调递增,故函数在区间$( - 1,3)$上的极大值为:$f(0) = a$,极小值为:$f(2)= \frac{4}{3} - 4 + a = \frac{4}{3} - 4 + a = a - \frac{8}{3}$,若函数在区间$( - 1,3)$上有且仅有一个零点,则满足:$\left\{ \begin{matrix} a > 0 \\a \leqslant 0或a - \frac{8}{3} \geqslant 0 \\\end{matrix} \right$.,解得:$0 < a \leqslant \frac{8}{3}$或$a\leqslant 0$;(2)由$(1)$知:函数在区间$( - 1,3)$上的极大值为:$f(0) = a$,极小值为:$f(2) = a - \frac{8}{3}$,若$\exists x_{0} \in ( - 1,3),f(x_{0}) > 0$,则满足:$\left\{ \begin{matrix} a > 0 \\a \geqslant f(2) \\\end{matrix} \right$.,即满足:$\left\{ \begin{matrix} a > 0 \\a \geqslant a - \frac{8}{3} \\\end{matrix} \right$.,解得:$a > 0$.。
2023年高考-数学(理科)考试备考题库附带答案第1卷一.全考点押密题库(共50题)1.(单项选择题)(每题 5.00 分) 已知A,B 是球 O 的球面上两点,∠AOB = 90° ,C为该球面上的动点。
若三棱锥 O - ABC 体积的最大值为36,则球 O 的表面积为A. 36πB. 64πC. 144πD. 256π正确答案:C,2.(填空题)(每题 5.00 分) 已知圆锥的顶点为S,母线SA,SB所成角的余弦值为7/8,SA与圆锥底面所成角为45°.若△SAB的面积为5√15,则该圆锥的侧面积为.正确答案:40√2π,3.(单项选择题)(每题 5.00 分) 记SN.为等差数列αN}的前n项和.若3S3=S2+S4,α=2,则α5= {A. -12B. -10C. 10D. 12正确答案:B,4.(填空题)(每题5.00 分) 已知函数f(x)=2sinx+sin2x,则f(x)的最小值是_______?正确答案:-3√3/2,5.(单项选择题)(每题 5.00 分) 双曲线x2/α2-y2/b2=1(α>0,b>0)的离心率为√3,则其渐近线方程为A. y=±√2xB. y=±√3xC. y=±√2/2xD. y=±√3/2x正确答案:A,6.(单项选择题)(每题 5.00 分) 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A. 3√3/4B. 2√3/3C. 3√2/4D. √3/2正确答案:A,7.(单项选择题)(每题 5.00 分) 已知集合A=x∣x2-x-2>0},则CRA={A. x∣-12}{D. {x∣x≦-1}∪{x∣x≧2}正确答案:B,8.(单项选择题)(每题 5.00 分) 在△ABC中,cos C/2=√5/5,BC=1,AC=5,则AB=A. 4√2B. √30C. √29D. 2√5正确答案:A,9.(填空题)(每题 5.00 分) 某髙科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料。
2023年普通高等学校招生全国统一考试数学(新高考全国Ⅰ卷)试卷类型:A一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=()A.{}2,1,0,1-- B.{}0,1,2 C.{}2- D.2【答案】C【解析】因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-.故选:C .2.已知1i22iz -=+,则z z -=()A.i -B.iC.0D.1【答案】A【解析】根据复数除法运算求出z ,再由共轭复数的概念得到z ,从而解出.因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.故选:A .3.已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+ ,则()A.1λμ+=B.1λμ+=-C.1λμ=D.1λμ=-【答案】D【解析】根据向量的坐标运算求出a b λ+ ,a b μ+,再根据向量垂直的坐标表示即可求出.因为()()1,1,1,1a b ==- ,所以()1,1a b λλλ+=+- ,()1,1a b μμμ+=+-,由()()a b a b λμ+⊥+ 可得,()()0a b a b λμ+⋅+=,即()()()()11110λμλμ+++--=,整理得:1λμ=-.故选:D .4.设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是()A.(],2-∞-B.[)2,0-C.(]0,2 D.[)2,+∞【答案】D【解析】利用指数型复合函数单调性,判断列式计算作答.函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞.故选:D5.设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若21e =,则=a ()A.233B.C.D.【答案】A【解析】根据给定的椭圆方程,结合离心率的意义列式计算作答.由21e =,得22213e e =,因此2241134a a --=⨯,而1a >,所以3a =,故选:A 6.过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A.1B.4C.4D.4【答案】B【解析】因为22410x y x +--=,即()2225x y -+=,可得圆心()2,0C ,半径r =,过点()0,2P -作圆C 的切线,切点为,A B ,因为PC ==,则PA ==,可得106sin ,cos44APC APC ∠==∠=,则sin sin 22sin cos 2444APB APC APC APC ∠=∠=∠∠=⨯⨯=,22221cos cos 2cos sin 0444APB APC APC APC ⎛⎫⎛⎫∠=∠=∠-∠=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即APB ∠为钝角,所以()sin sin πsin 4APB APB =-∠=∠=α;故选:B.7.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C【解析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,甲:{}n a 为等差数列,设其首项为1a ,公差为d ,则1111(1)1,222212n n n n S S S n n n d d dS na d a n a n n n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件;反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立,因此{}n a 为等差数列,则甲是乙的必要条件,所以甲是乙的充要条件,C 正确.故选:C8.已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=().A.79 B.19C.19-D.79-【答案】B【解析】根据给定条件,利用和角、差角的正弦公式求出sin()αβ+,再利用二倍角的余弦公式计算作答.因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=,则2sin()sin cos cos sin 3αβαβαβ+=+=,所以2221cos(22)cos 2()12sin ()12()39αβαβαβ+=+=-+=-⨯=.故选:B【点睛】方法点睛:三角函数求值的类型及方法(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但非特殊角与特殊角总有一定关系.解题时,要利用观察得到的关系,结合三角函数公式转化为特殊角的三角函数.(2)“给值求值”:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角,有时要压缩角的取值范围.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则()A.2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数B.2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数C.2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差D.2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差【答案】BD【解析】根据题意结合平均数、中位数、标准差以及极差的概念逐项分析判断.对于选项A :设2345,,,x x x x 的平均数为m ,126,,,x x x ⋅⋅⋅的平均数为n ,则()()165234123456234526412x x x x x x x x x x x x x x x x n m +-+++++++++++-=-=,因为没有确定()1652342,x x x x x x ++++的大小关系,所以无法判断,m n 的大小,例如:1,2,3,4,5,6,可得 3.5m n ==;例如1,1,1,1,1,7,可得1,2m n ==;例如1,2,2,2,2,2,可得112,6m n ==;故A 错误;对于选项B :不妨设123456x x x x x x ≤≤≤≤≤,可知2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数均为342x x +,故B 正确;对于选项C :因为1x 是最小值,6x 是最大值,则2345,,,x x x x 的波动性不大于126,,,x x x ⋅⋅⋅的波动性,即2345,,,x x x x 的标准差不大于126,,,x x x ⋅⋅⋅的标准差,例如:2,4,6,8,10,12,则平均数()12468101276n =+++++=,标准差11053s =,4,6,8,10,则平均数()14681074m =+++=,标准差2s ==显然53>,即12s s >;故C 错误;对于选项D :不妨设123456x x x x x x ≤≤≤≤≤,则6152x x x x -≥-,当且仅当1256,x x x x ==时,等号成立,故D 正确;故选:BD.10.噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级20lgp pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m声压级/dB燃油汽车106090混合动力汽车105060电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则().A.12p p ≥B.2310p p >C.30100p p =D.12100p p ≤【答案】ACD【解析】根据题意可知[][]12360,90,50,60,40p p p L L L ∈∈=,结合对数运算逐项分析判断.由题意可知:[][]12360,90,50,60,40p p p L L L ∈∈=,对于选项A :可得1212100220lg 20lg 20lg p p p p pL L p p p =-⨯=⨯-⨯,因为12p p L L ≥,则121220lg 0p p p L L p =-⨯≥,即12lg 0p p ≥,所以121pp ≥且12,0p p >,可得12p p ≥,故A 正确;对于选项B :可得2332200320lg20lg 20lg p p p p p L L p p p =-⨯=⨯-⨯,因为2324010p p p L L L -=-≥,则2320lg10p p ⨯≥,即231lg 2p p ≥,所以23pp ≥23,0p p >,可得23p ≥,当且仅当250p L =时,等号成立,故B 错误;对于选项C :因为33020lg 40p p L p =⨯=,即30lg 2p p =,可得30100pp =,即30100p p =,故C 正确;对于选项D :由选项A 可知:121220lgp p p L L p =-⨯,且12905040p p L L ≤-=-,则1220lg40p p ⨯≤,即12lg2p p ≤,可得12100pp ≤,且12,0p p >,所以12100p p ≤,故D 正确;故选:ACD.11.已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则().A.()00f =B.()10f =C.()f x 是偶函数 D.0x =为()f x 的极小值点【答案】ABC【解析】因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确.对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=,令21,()()(1)()y f x f x x f f x =--=+-=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,不妨令()0f x =,显然符合题设条件,此时()f x 无极值,故D 错误.故选:ABC .12.下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m 的球体B.所有棱长均为1.4m 的四面体C.底面直径为0.01m ,高为1.8m 的圆柱体D.底面直径为1.2m ,高为0.01m 的圆柱体【答案】ABD【解析】根据题意结合正方体的性质逐项分析判断.对于选项A :因为0.99m 1m <,即球体的直径小于正方体的棱长,所以能够被整体放入正方体内,故A 正确;对于选项B 1.4>,所以能够被整体放入正方体内,故B 正确;对于选项C 1.8<,所以不能够被整体放入正方体内,故C 正确;对于选项D :因为正方体的体对角线长为 1.2>,设正方体1111ABCD A B C D -的中心为O ,以1AC 为轴对称放置圆柱,设圆柱的底面圆心1O 到正方体的表面的最近的距离为m h ,如图,结合对称性可知:111111133,0.6222OC C A C O OC OO ===-=-,则1111C O h AA C A =,即30.6213h -=,解得10.60.340.0123h =->>,所以能够被整体放入正方体内,故D 正确;故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).【答案】64【解析】分类讨论选修2门或3门课,对选修3门,再讨论具体选修课的分配,结合组合数运算求解.(1)当从8门课中选修2门,则不同的选课方案共有144116C C =种;(2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有1244C C 24=种;②若体育类选修课2门,则不同的选课方案共有2144C C 24=种;综上所述:不同的选课方案共有16242464++=种.故答案为:64.14.在正四棱台1111ABCD A B C D -中,1112,1,2AB A B AA ===,则该棱台的体积为________.【答案】766【解析】结合图像,依次求得111,,AO AO A M ,从而利用棱台的体积公式即可得解.如图,过1A 作1A M AC ⊥,垂足为M ,易知1A M 为四棱台1111ABCD A B C D -的高,因为1112,1,2AB A B AA ===则11111111112,22222222AO AC B AO AC ======,故()111222AM AC AC =-=,则221116222A M A A AM =-=-=,所以所求体积为1676(4141)326V =⨯++⨯⨯=.故答案为:766.15.已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.【答案】[2,3)【解析】令()0f x =,得cos 1x ω=有3个根,从而结合余弦函数的图像性质即可得解.因为02x π≤≤,所以02x πωω≤≤,令()cos 10f x x ω=-=,则cos 1x ω=有3个根,令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈,结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<,故答案为:[2,3).16.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A F B ⊥=-,则C 的离心率为________.【答案】355【解析】依题意,设22AF m =,则2113,22BF m BF AF a m ===+,在1Rt ABF 中,2229(22)25m a m m ++=,则(3)()0a m a m +-=,故a m =或3a m =-(舍去),所以124,2AF a AF a ==,213BF BF a ==,则5AB a =,故11244cos 55AF a F AF ABa ∠===,所以在12AF F △中,2221216444cos 2425a a c F AF a a +-∠==⨯⨯,整理得2259c a =,故355c e a ==.故答案为:355.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.【答案】(1)31010;(2)6.【解析】(1)3A B C += ,π3C C ∴-=,即π4C =,又2sin()sin sin()A C B A C -==+,2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+,sin cos 3cos sin A C A C ∴=,sin 3cos A A ∴=,即tan 3A =,所以π02A <<,310sin10A ∴==.(2)由(1)知,10cos 10A ==,由sin sin()B A C =+23101025sin cos cos sin (210105A C A C =+=+=,由正弦定理,sin sin c bC B=,可得255522b ⨯==,11sin 22AB h AB AC A ∴⋅=⋅⋅,310sin 610h b A ∴=⋅==.18.如图,在正四棱柱1111ABCD A B C D -中,12,4AB AA ==.点2222,,,A B C D 分别在棱111,,AA BB CC ,1DD 上,22221,2,3AA BB DD CC ====.(1)证明:2222B C A D ∥;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P .【答案】(1)证明见解析;(2)1.【解析】(1)以C 为坐标原点,1,,CD CB CC 所在直线为,,x y z 轴建立空间直角坐标系,如图,则2222(0,0,0),(0,0,3),(0,2,2),(2,0,2),(2,2,1)C C B D A ,2222(0,2,1),(0,2,1)B C A D ∴=-=- ,2222B C A D ∴ ∥,又2222B C A D ,不在同一条直线上,2222B C A D ∴∥.【小问2详解】设(0,2,)(04)P λλ≤≤,则22222(2,2,2)(0,2,3),=(2,0,1),A C PC D C λ=--=---,设平面22PA C 的法向量(,,)n x y z = ,则22222202(3)0n A C x y z n PC y z λ⎧⋅=--+=⎪⎨⋅=-+-=⎪⎩,令2z =,得3,1y x λλ=-=-,(1,3,2)n λλ∴=--,设平面222A C D 的法向量(,,)m a b c = ,则2222222020m A C a b c m D C a c ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩,令1a =,得1,2==b c ,(1,1,2)m ∴=,3cos ,cos1502n m n m n m ⋅∴==︒= ,化简可得,2430λλ-+=,解得1λ=或3λ=,(0,2,1)P ∴或(0,2,3)P ,21B P ∴=.19.已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+.【答案】(1)答案详见解析;(2)证明详见解析【解析】(1)因为()()e xf x a a x =+-,定义域为R ,所以()e 1xf x a '=-,当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1xf x a -'=<恒成立,所以()f x 在R 上单调递减;当0a >时,令()e 10xf x a '=-=,解得ln x a =-,当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减;当ln x a >-时,()0f x ¢>,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增.(2)由(1)得,()()()ln min 2ln ln ln e 1af a a x a f a a a --+=++=+=,要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a在2⎛⎫⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min2212ln 02222g a g ⎛⎫⎛==--= ⎪ ⎪ ⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.20.设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .【答案】(1)3n a n =;(2)5150d =.【解析】(1)21333a a a =+ ,132d a d ∴=+,解得1a d =,32133()6d d S a a =+==∴,又31232612923T b b b d d d d =++=++=,339621S T d d∴+=+=,即22730d d -+=,解得3d =或12d =(舍去),1(1)3n a a n d n ∴=+-⋅=.(2){}n b 为等差数列,2132b b b ∴=+,即21312212a a a =+,2323111616()d a a a a a ∴-==,即2211320a a d d -+=,解得1a d =或12a d =,1d > ,0n a ∴>,又999999S T -=,由等差数列性质知,5050999999a b -=,即50501a b -=,505025501a a ∴-=,即2505025500a a --=,解得5051a =或5050a =-(舍去)当12a d =时,501495151a a d d =+==,解得1d =,与1d >矛盾,无解;当1a d =时,501495051a a d d =+==,解得5150d =.综上,5150d =.21.甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .【答案】(1)0.6;(2)1121653i -⎛⎫⨯+ ⎪⎝⎭;(3)52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【解析】(1)记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B ,所以()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6=⨯-+⨯=.(2)设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+,构造等比数列{}i p λ+,设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭,又11111,236p p =-=,所以13i p ⎧⎫-⎨⎬⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=+ ⎪ ⎪⎝⎭⎝⎭.(3)因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅,所以当*N n ∈时,()122115251263185315nnnn n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- ,故52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.22.在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫ ⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD的周长大于【答案】(1)214y x =+;(2)见解析.【解析】(1)设(,)P x y ,则y =,两边同平方化简得214y x =+,故21:4W y x =+.(2)设矩形的三个顶点222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在W 上,且a b c <<,易知矩形四条边所在直线的斜率均存在,且不为0,则1,AB BC k k a b b c =⋅-+<+,令2240114AB k b a b a b am ⎛⎫+-+ ⎪⎝=+⎭==<-,同理令0BC k b c n =+=>,且1mn =-,则1m n=-,设矩形周长为C ,由对称性不妨设||||m n ≥,1BC AB k k c a n m n n-=-=-=+,则11||||(((2C AB BC b a c b c a n n ⎛=+=-+-≥-=+ ⎝.0n >,易知10n n ⎛+> ⎝则令()222111()1,0,()22f x x x x f x x x x x x '⎛⎫⎛⎫⎛⎫=++>=+- ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()0f x '=,解得22x =,当20,2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '<,此时()f x 单调递减,当2,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭,()0f x '>,此时()f x 单调递增,则min 227()24f x f ⎛⎫== ⎪ ⎪⎝⎭,故13322C ≥=,即C ≥.当C =时,,2n m ==,且((b a b a -=-m n =时等号成立,矛盾,故C >得证.。
㊀㊀㊀㊀㊀㊀2023年高考数学全国乙卷理科第20题的种证法及推广2023年高考数学全国乙卷理科第20题的6种证法及推广Һ贾方正㊀(安徽省颍上第一中学,安徽㊀阜阳㊀236200)㊀㊀ʌ摘要ɔ对高考试题的研究既有利于教师明确考试重点和命题方向,也有利于学生总结解题技巧与方法,对高考备考具有非常积极的影响.2023年高考数学全国乙卷理科第20题 解析几何综合题考查了直线与圆锥曲线的位置关系及其运算,具有很好的区分度.笔者对其进行了深入探究,给出该题的6种证明方法,并对试题进行推广,希望借此帮助相关教师总结教法,帮助学生提高解题效率.ʌ关键词ɔ2023年高考;全国乙卷;解析几何;推广试题承担着对较高水平考生的鉴别任务,通过增加思维强度来选拔拔尖创新人才.2023年高考试题对考生的能力要求较高,呈现出 反刷题 的现象,要求考生从 机械刷题 和 题海战术 中跳出来.其中的全国乙卷理科第20题,以高等几何中的极点与极线为命题背景,注重对数学本质及其应用性的考查,具有很好的选拔功能.一㊁真题再现2023年高考数学全国乙卷理科第20题如下:已知椭圆C:y2a2+x2b2=1(a>b>0)的离心率是53,点A(-2,0)在C上.(1)求C的方程;(2)过点(-2,3)的直线交C于P,Q两点,直线AP,AQ与y轴的交点分别为M,N,证明:MN的中点为定点.二㊁证法探究(1)由题意得b=2,a2-b2a=53,解得a2=9.所以C的方程为y29+x24=1.下面重点探究第(2)问.证法1㊀如图所示,设P(x1,y1),M(0,yM),则直线AP:y=y1x1+2(x+2),yM=2y1x1+2.设Q(x2,y2),N(0,yN),同理可得yN=2y2x2+2.设直线PQ:y=k(x+2)+3,MN的中点D(0,yD),则yD=yM+yN2=k(x1+2)+3x1+2+k(x2+2)+3x2+2=2k+3(x1+2+x2+2)(x1+2)(x2+2).由y=k(x+2)+3,y29+x24=1ìîíïïï得(4k2+9)㊃(x+2)2+12(2k-3)(x+2)+36=0,所以(x1+2)+(x2+2)=12(3-2k)4k2+9,(x1+2)(x2+2)=364k2+9,所以yD=2k+3(x1+2+x2+2)(x1+2)(x2+2)=3.因此线段MN的中点为定点(0,3).证法2㊀设P(x1,y1),Q(x2,y2),显然k存在,故设直线PQ:y=k(x+2)+3.由y=kx+2k+3,y29+x24=1ìîíïïï得(4k2+9)x2+(16k2+24k)x+16k2+48k=0.因为Δ=-1728k>0,所以k<0.不妨令x1>x2,故x1=-8k2-12k+12-3k4k2+9,x2=-8k2-12k-12-3k4k2+9.㊀㊀㊀㊀㊀所以y1=-8k3-12k2+12k-3k4k2+9+2k+3=18k+27+12k-3k4k2+9,同理y2=18k+27-12k-3k4k2+9.于是直线AP:y=18k+27+12k-3k4k2+9-8k2-12k+12-3k4k2+9+2(x+2),化简,得y=18k+27+12k-3k18-12k+12-3k(x+2).令x=0,则点M的纵坐标为36k+54+24k-3k18-12k+12-3k.同理得点N的纵坐标为36k+54-24k-3k18-12k-12-3k.所以36k+54+24k-3k18-12k+12-3k+36k+54-24k-3k18-12k-12-3k=2ˑ(36k+54)(18-12k)+6ˑ288k2(18-12k)2+432k=6(4k2+9)4k2+9=6.因此线段MN的中点为定点(0,3).证法3㊀设P(x1,y1),M(0,yM),Q(x2,y2),N(0,yN),直线AP:y=k1(x+2),直线AQ:y=k2(x+2),显然k1,k2存在且k1ʂk2,则yM=2k1,yN=2k2.由y=k1(x+2),y29+x24=1,ìîíïïï得(4k21+9)x2+16k21x+16k21-36=0.故-2x1=16k21-364k21+9,x1=18-8k214k21+9,y1=36k14k21+9.同理x2=18-8k224k22+9,y2=36k24k22+9.因为直线PQ过点(-2,3),所以(y1-3)(x2+2)=(y2-3)(x1+2).所以36k14k21+9-3æèçöø÷18-8k224k22+9+2æèçöø÷=36k24k22+9-3æèçöø÷18-8k214k21+9+2æèçöø÷,化简,得[3-(k1+k2)](k1-k2)=0,即k1+k2=3.故2k1+2k22=3.因此线段MN的中点为定点(0,3).证法4㊀(同构方法)设T(-2,3),lAM:y=m(x+2),lAN:y=n(x+2),则M(0,2m),N(0,2n),MN的中点为(0,m+n),问题等价于证明m+n为定值.联立y=m(x+2)与y29+x24=1,得P18-8m24m2+9,36m4m2+9æèçöø÷.同理得Q18-8n24n2+9,36n4n2+9æèçöø÷,ʑTPң=364m2+9,3(12m-4m2-9)4m2+9æèçöø÷.同理TQң=364n2+9,3(12n-4n2-9)4n2+9æèçöø÷.由T,P,Q三点共线,得到12m-4m2-9=12n-4n2-9,即(m-n)(m+n-3)=0,又mʂn,所以m+n=3.所以线段MN的中点是(0,3),即MN的中点为定点.点评:上述证法用了同构的思想,看起来过程比较多,实际上只算了点P和TPң,而点Q与TQң都是类比得到的.同时可知,MN的中点为定点等价于kAP+kAQ为定值.证法5㊀(曲线系方法)设lAP:y=m(x+2),lAQ:y=n(x+2),则M(0,2m),N(0,2n),MN的中点为(0,m+n),问题等价于证明m+n为定值.经过A,P,Q三点的二次曲线方程为[y-m(x+2)][y-n(x+2)]=0,即y2-(m+n)(x+2)y+mn(x+2)2=0.椭圆方程y29+x24=1可化为y2=94(2+x)(2-x),消去y2,得94(x+2)(2-x)-(m+n)(x+2)y+mn(x+2)2=0,再消去一个(x+2),得94(2-x)-(m+n)y+mn㊃(x+2)=0,这就是直线PQ的方程,又直线PQ经过(-2,3),所以9-3(m+n)=0,即m+n=3.所以线段MN的中点是(0,3),即MN的中点为定点.点评:该题的本质是证明直线AP,AQ的斜率之和为定值,而二次曲线系是证明两直线的斜率之和为定值的 利器 .证法6㊀(齐次化方法)易知直线AP,AQ的斜率存在,分别设为k1,k2,则lAP:y=k1(x+2),lAQ:y=k2(x+2),令y=0得M(0,2k1),N(0,2k2),所以线段MN的㊀㊀㊀㊀㊀㊀中点坐标为(0,k1+k2).下面证明k1+k2为定值.设P(x1,y1),Q(x2,y2),则lPQ:y=k(x+2)+3.y29+x24=1⇒9(x+2-2)2+4y2=36⇒9(x+2)2-36(x+2)+4y2=0.将其与y=k(x+2)+3联立,得9(x+2)2-12(x+2)[y-k(x+2)]+4y2=0,即(9+12k)(x+2)2-12(x+2)y+4y2=0,即4yx+2æèçöø÷2-12yx+2æèçöø÷+(9+12k)=0,由韦达定理得y1x1+2+y2x2+2=3.又因为k1+k2=y1x1+2+y2x2+2,所以k1+k2=3,即线段MN的中点为定点(0,3).点评:由于线段MN的中点坐标为(0,k1+k2),所以解题的关键是证明k1+k2是定值.而k1+k2=y1x1+2+y2x2+2,所以考虑将x+2作为整体,构造齐次方程,然后利用韦达定理求解,这样可以简化运算,提高解题效率.三㊁试题推广推广1㊀已知椭圆C的方程为x2a2+y2b2=1(a>0,b>0),A(-a,0),过点(-a,b)的直线交曲线C于P,Q两点,直线AP,AQ与y轴交于M,N两点,证明:MN的中点为(0,b).类似可得:推广2㊀已知椭圆C的方程为x2a2+y2b2=1(a>0,b>0),B(0,b),过点(-a,b)的直线交曲线C于P,Q两点,直线BP,BQ与x轴交于M,N两点,证明:MN的中点为(-a,0).设T(-a,b),A(-a,0),B(0,b),则TA,TB是椭圆的两条切线,即AB是切点弦.而MN的中点为定点(0,b)等价于kAP+kAQ=2kAB.于是可将问题再推广如下:推广3㊀已知椭圆C的方程为x2a2+y2b2=1(a>0,b>0),顶点A(-a,0).点T是直线x=-a上任意一点,过点T作椭圆的两条切线,切点分别为A,B,过点T作直线交C于P,Q两点.设直线AP,AQ,AB的斜率分别为k1,k2,k,证明:k1+k2=2k.证明㊀设T(-a,t),则AB是T的切点弦所在的直线,方程为-axa2+tyb2=1,故k=b2ta.设lAP:y=k1(x+a),联立x2a2+y2b2=1,y=k1(x+a),{可得(b2+a2k21)x2+2a3k21x+a4k21-a2b2=0.由xA㊃xP=a4k21-a2b2b2+a2k21及xA=-a,得xP=ab2-a3k21b2+a2k21,故Pab2-a3k21b2+a2k21,2ab2k1b2+a2k21æèçöø÷.设lPQ:y=m(x+a)+t,将点P代入,化简,得a2tk21-2ab2k1+2ab2m+b2t=0,同理得a2tk22-2ab2k2+2ab2m+b2t=0,所以k1和k2是方程a2tx2-2ab2x+2ab2m+b2t=0的两个根,所以k1+k2=2ab2a2t=2b2at.因此,k1+k2=2k.四㊁试题再推广把试题进行进一步推广可得到如下更一般的情形,其证明留给读者完成.设T是椭圆C:x2a2+y2b2=1(a>0,b>0)外一定点,TA,TB是椭圆的两条切线,其中A,B是切点.过T的直线与椭圆C交于P,Q两点.设直线AP,AQ,AB的斜率分别为k1,k2,k,证明:k1+k2=2k.结㊀语试题的解决过程也是考生经历猜想和假设㊁转化和化归㊁实验和论证等问题研究的过程.教师通过对高考试题进行深度研究,可促进自身的专业发展,从而更好地服务于教学.该题虽然证明的是线段的中点为定点,但实质是证明直线的斜率之和为定值.对于定值问题,解决的方法主要有常规方法㊁同构方法㊁曲线系方法㊁齐次化方法等.有兴趣的读者还可以对该题的高等数学背景进行深度探究,然后基于高等数学背景对该题进行推广,还可以对该题进行改编,甚至基于极点与极线命制出高质量的原创题.ʌ参考文献ɔ[1]罗文军.多视角切入,巧方法运用 2023年高考数学全国乙卷理科第20题的探究[J].广东教育(高中版),2023(9):20-23.[2]李歆.数学问题:因变化而精彩 对一道经典三角题的变式探究[J].中学数学,2013(11):21-23.[3]田甜,曹文栋,李誉.高考试题中数学表征转换水平比较研究 以新高考Ⅰ卷㊁全国乙卷及北京卷为例[J].内江师范学院学报,2023,38(8):6-12.[4]佟俊姬.夯实基础知识,落实立德树人2023年高考数学全国乙卷评析[J].数学之友,2023,37(13):89-91.。
2023年新高考全国Ⅱ卷数学试题一、单选题二、多选题9.已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒和2PA =,点C 在底面圆周上,且二面角.OMN 为等腰三角形既有极大值也有极小值,则(28b ac +>信号的传输相互独立.发送0时,的概率为1-三、填空题.已知向量a ,b 满足3a b -=和2a b a b +=-,则b =______与():1C x -“ABC 面积为)ϕ,如图A ,2的两个交点,若6四、解答题.记ABC 的内角,已知ABC 的面积为60,E为⊥;BC DA满足EF DA=,求二面角.已知双曲线C的中心为坐标原点,左焦点为的方程;(2)记C 的左、右顶点分别为1A 和2A ,过点()4,0-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P .证明:点P 在定直线上.22.(1)证明:当01x <<时sin x x x x 2-<<;(2)已知函数()()2cos ln 1f x ax x =--,若0x =是()f x 的极大值点,求a 的取值范围。
2023年新高考全国Ⅱ卷数学试题答案解析1.(2023·新高考Ⅱ卷·1·★)在复平面内,(13i)(3i)+-对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 答案:A解析:2(13i)(3i)3i 9i 3i 68i +-=-+-=+,所以该复数对应的点为(6,8),位于第一象限. 2.(2023·新高考Ⅱ卷·2·★)设集合{0,}A a =-和{1,2,22}B a a =--,若A B ⊆,则a =( )(A )2 (B )1 (C )23(D )1-答案:B解析:观察发现集合A 中有元素0,故只需考虑B 中的哪个元素是0。
2023年普通高等学校招生全国统一考试数 学一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目标要求的。
1. 在复平面内,()()133i i +−对应的点W 位于( )A.第一象限B.第二象限C.第三象限D.第四象限2. 设集合{}A0,a =−,{}B 1,2,22a a =−−,若A B ⊆,则a =( )A.2B.1C.23D.-13. 某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样法作抽样调查,拟从初中部和高中部共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ) A. 4515400200C C ⋅ B. 204040020C C ⋅C. 3030400200C C ⋅D. 4020400200C C ⋅4. 若函数()()21ln 21x f x x a x −=++为偶函数,则a =( ) A. -1B. 0C.12D. 15. 已知椭圆22C :13x y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A,B 两点,若△1F AB 的面积是△2F AB 的2倍,则m =( )A.23C. D.23−6. 已知函数()ln x f x ae x =−在区间(1,2)单调递增,则a 的最小值为( ) A.2eB.eC.1e −D.2e −7. 已知a 为锐角,cos a =sin 2a=( )A.8. 已S n 为等比数列{}n a 的前n 项和,若4S 5=−,62S 21S =,则8S =( )A.120B.85C.-85D.-120二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9. 已知圆锥的顶点为P ,底面圆心为O,AB 为底面直径,∠APB=120°,PA=2,点C 在底面圆周上,且二面角P-AC-O 为45°,则( )A.该圆锥体积为πB.该圆锥的面积为C.AC =D.△PAC10. 设O 为坐标原点,直线)y 1x −过抛线C :22 (p>0)y px =的焦点,且与C 交于M,N两点,L 为C 的准线,则( ) A.p 2=B.8MN 3=C.以MN 为直径的圆与L 相切D.△OMN 为等腰三角形11. 若函数()2ln x (0)b cf x a a x x=++≠既有极大值也有极小值,则( ) A.bc 0> B.ab 0> C.2b 80ac +>D.ac 0<12. 在信道内传输0,1信号,信号的传输相互独立,发送0时,收到1的概率为(01)a a <<,收到0的概率为1a −;发送1时,收到0的概率为()01ββ<<,收到1的概率为1β−。
2023年四川省高考理科数学真题及参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}Z k k x x A ∈+==,13,{}Z k k x x B ∈+==,23,U 为整数集,()=⋃B A C U ()A .{}Z k k x x ∈=,3B .{}Z k k x x ∈-=,13C .{}Z k k x x ∈-=,23D .φ2.若复数()()21=-+ai i a ,则=a ()A .1-B .0C .1D .23.执行下面的程序框图,输出的=B ()A .21B .34C .55D .894.已知向量1==b a ,2=c 且0=++c b a ,则=--c b c a ,cos ()A .51-B .52-C .52D .545.已知等比数列{}n a 中,11=a ,n S 为{}n a 的前n 项和,4535-=S S ,则=4S ()A .7B .9C .15D .306.有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报名足球俱乐部,则其报名乒乓球俱乐部的概率为()A .8.0B .4.0C .2.0D .1.07.“1sin sin 22=+βα”是“0cos sin =+βα”的()A .充分条件但不是必要条件B .必要条件但不是充分条件C .充要条件D .既不是充分条件也不是必要条件8.已知双曲线()0,012222>>=-b a by a x C :的离心率为5,其中一条渐近线与圆()()13222=-+-y x 交于B A ,两点,则=AB ()A .51B .55C .552D .5549.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务的选择种数为()A .120B .60C .40D .3010.已知函数()x f 为函数⎪⎭⎫ ⎝⎛+=62cos πx y 向左平移6π个单位所得函数,则()x f y =与直线2121-=x y 的交点个数为()A .1B .2C .3D .411.在四棱锥ABCD P -中,底面ABCD 为正方形,4=AB ,3==PD PC ,︒=∠45PCA ,则PBC ∆的面积为()A .22B .23C .24D .2512.已知椭圆16922=+y x ,21F F ,为两个焦点,O 为坐标原点,P 为椭圆上一点,53cos 21=∠PF F ,则=OP ()A .52B .230C .53D .235二、填空题:本大题动4小题,每小题5分,共20分.13.若()⎪⎭⎫⎝⎛+++-=2sin 12πx ax x y 为偶函数,则=a .14.设y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-1332323y x y x y x ,设y x z 23+=,则z 的最大值为.15.在正方体1111D C B A ABCD -中,F E ,分别为CD ,11B A 的中点,则以EF 为直径的球面与正方体每条棱的交点总数为.16.在ABC ∆中,2=AB ,︒=∠60BAC ,6=BC ,D 为BC 上一点,AD 为BAC ∠的平分线,则=AD .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
专题20 用数形结合法求解零点问题【方法点拨】1.函数的零点的实质就是函数图象与x 轴交点的横坐标,解决实际问题时,往往需分离函数,将零点个数问题转化为两个函数图象交点个数问题,将零点所在区间问题,转化为交点的横坐标所在区间问题.2.分离函数的基本策略是:一静一动,一直一曲,动直线、静曲线,要把构造“好函数”作为第一要务.3.作图时要注意运用导数等相关知识分析函数的单调性、奇偶性、以及关键点线(如渐进线),以保证图像的准确.【典型题示例】例1 已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2g x f x kx x =-- (k R ∈)恰有4个零点,则k 的取值范围是( ) A. 1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B. 1,(0,22)2⎛⎫-∞- ⎪⎝⎭C. (,0)(0,22)-∞D. (,0)(22,)-∞+∞【答案】D【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案.【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得22k =(负值舍去),所以22k >. 综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.点评:本题是一道由函数零点个数求参数的取值范围的问题,其基本思路是运用图象,将零点个数问题转化为两函数图象交点个数,考查函数与方程的应用、数形结合思想、转化与化归思想、导数知识、一元二次方程、极值不等式、特值等进行分析求参数的范围.例2 已知函数()2e 143,13xx f x x x x ⎧≤⎪=⎨-+-<<⎪⎩,,若函数()()2g x f x k x =-+有三个零点,则实数k的取值范围是__________.【答案】151e 0,,15e 3⎛⎫⎛⎤⎪ ⎥ ⎪⎝⎦⎝⎭ 【解析】作()2e ,143,13xx f x x x x ⎧≤⎪=⎨-+-<<⎪⎩与2y k x =+图象,由243(2),0,2x x k x k x -+-=+>>-得2222(1)(44)430k x k x k ++-++=由2222(44)4(1)(43)0k k k ∆=--++=得2101515k k k =>∴=,对应图中分界线①; 由(2),0,2y k x k x =+>>-过点(1,)e 得3ek =,对应图中分界线②; 当(2),0,2y k x k x =+>>-与x y e =相切于00(,)x x e 时,因为e xy '=,所以0001(2)01,x k e k x k x k e==+>∴=-=,对应图中分界线③;因为函数()()2g x f x k x =-+有三个零点,所以实数k的取值范围是1e ,e 3⎛⎛⎤⎥ ⎝⎦⎝⎭ 故答案为:1e 0,,15e 3⎛⎛⎤⎥ ⎝⎦⎝⎭ 例3 已知函数与的零点分别为 和.若,则实数的取值范围是 .【答案】(),1-∞-【分析】将问题转化为函数y m =与函数1()1h x x x =--和1()ln 2e x x x =-交点的大小问题,作出函数图像,观察图像可得结果.【解析】由2()(1)10f x x m x =-+-=,得11m x x=--, 对于函数1()1h x x x=--,在()0,∞+上单调递增,在(),0-∞上单调递减, 由()ln 220g x x x m =--=,得1ln 2m x x =-,对于1()ln 2e x x x =-,'112122x y x x -=-=得1ln 2y x x =-在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,最大值为111ln 222-,其图像如图, 2()(1)1f x x m x =-+-()ln 22g x x x m =--12x x ,34x x ,1324x x x x <<<m令111ln 2x x x x --=-得(1,1)A -, 要1324x x x x <<<,则直线y m =要在A 点下方,1m ∴<-,∴实数的取值范围是(,1)-∞-.例4 已知函数22(1), 0()2, 0k x f x xx k x ⎧-<⎪=⎨⎪-≥⎩,若函数()()()g x f x f x =-+有且仅有四个不同的零点,则实数k 的取值范围是 . 【答案】(27,+∞)【分析】由()()()g x f x f x =-+知,()()()g x f x f x =-+是偶函数,研究“一半”,问题转化为22(), 0k g x x k x x =+->有且仅有两个不同的零点,分离函数得()21210x x k x=-+>,两边均为基本初等函数,当曲线在一点相切时,两曲线只有一个交点,利用导数知识求出切点坐标,当抛物线开口变大,即函数值小于切点的纵坐标即可. 【解析】易知()()()g x f x f x =-+是偶函数,问题可转化为22(), 0kg x x k x x=+->有且仅有两个不同的零点. 分离函数得()21210x x k x=-+>,由图形易知k >0, 问题进一步转化为()21210y x y x k x==-+>、有两个交点问题.先考察两曲线相切时的“临界状态”,此时,两曲线只有一个交点m所以当21133k ⨯<时,即k >27时,上述两个函数图象有两个交点 综上所述,实数k 的取值范围是(27,+∞). 点评:1.本题解法较多,但利用“形”最简单,只要函数分离的恰当,这种题实现“分分钟”解决也是可及的.2.有关函数零点的问题解法灵活,综合考察函数的图象与性质、导数的几何意义、分离函数的意识、分离参数的意识等,综合性强,较难把握.3.利用“数学结合法”求解零点问题的要点有二.一是分离函数,基本策略是“一静一动、一直一曲,动直线、定曲线”,函数最好是基本初等函数;二是求解过程中的“临界状态”的确定,若是一直一曲,一般相切是“临界状态”,若是两曲,一般公切是“临界状态”(曲线的凸凹性相反,即曲线在公切线的两侧)例5 已知函数2210()0xx mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,,若函数()f x 有四个不同的零点,则实数m 的取值范围是 .【答案】2(,)4e -∞-【解析】2210()0xx mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,是偶函数,问题转化为2=0x e mx +,即2=x e mx -(0x >)有两个零点易知0m <,两边均为曲线,较难求解.两边取自然对数,()=ln 2ln x m x -+,即()ln 2ln x m x --= 问题即为:()()ln g x x m =--与()2ln h x x =有两个交点先考察直线y x b =+与()2ln h x x =相切,即只有一点交点的“临界状态” 设切点为00(,2ln )x x ,则002()1h x x '==,解得02x =,此时切点为(2,2ln 2)代入2ln22b =-再求()()ln g x x m =--与()2ln h x x =有两个交点时,m 的取值范围 由图象知,当()()ln g x x m =--在直线y x b =+下方时,满足题意 故()ln 2ln 22m b --<=-,解之得24e m <-,此时也符合0m <所以实数m 的取值范围是2(,)4e -∞-.点评:取对数的目的在于“化双曲为一直一曲”,简化了运算、难度,取对数不影响零点的个数. 例6 若函数3||()2x f x kx x =-+有三个不同的零点,则实数k 的取值范围为 . 【答案】 27(,)32-∞-⋃+∞(0,) 【分析】本题的难点是“分离函数”,函数分离的是否恰当、易于进一步解题,是分离时应综合考虑的重要因素,也是学生数学素养、能力的综合体现.本例中,可将已知变形为下列多种形式:3||2x kx x =+2||(2)x kx x x =+、3||(2)x k x x=+,31(2)x x k x +=,···,但利用31(2)x x k x +=较简单. 【解析】易知0是函数3||()2x f x kx x =-+一个的零点, 当x ≠0时,3||()02x f x kx x =-=+可化为31(2)x x k x +=,考虑1y k=与3(2)()x x g x x +=有且只有两个非的取值范围是 .【答案】()4ln 2,ln(e 1)2+-【分析】从结构上看,首先考虑“对化指”,方程24242ln(e1)2e1e0x x x a x a --+-+=+-⇔+-=,属于复合函数的零点问题,内函数是指数型,外函数是二次函数.设242()e 1ex x a h x -+-=+-,x R ∈,则()h x 为偶函数,研究 “一半”, 令2ex t -=,x >0,则关于t 的方程2e 10at t -+=在(2e -,+∞)内有两个不相等的实根,分离参数,利用“形”立得. 【解析】方程24242()()ln(e 1)2e1e0x x x a f x g x x a --+-=⇔+=+-⇔+-=令242()e1ex x a h x -+-=+-,x R ∈,则显然()h x 为偶函数,所以方程()()f x g x =有四个实根⇔函数242()e 1e x x a h x -+-=+-,x >0有两个零点,令2ex t -=,x >0,则关于t 的方程2e 10at t -+=,即1e at t=+在(2e -,+∞)内有两个不相等的实根,结合函数1y t t=+,2e t ->的图像,得222e e e a -<<+,即4ln 2ln(e 1)2a <<+-,则实数a 的取值范围是()4ln 2,ln(e 1)2+-.【巩固训练】1.已知函数22()(21)(31)(2)(2)xx f x a a e a x e x =---+++有四个零点,则实数a 的取值范围是__________.A. 1,12⎛⎫⎪⎝⎭ B. 11,2e +⎛⎫ ⎪⎝⎭C. 11,22e +⎛⎫⎪⎝⎭ D. 11,11,22e +⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭2.已知函数21,0()1,02x xx x x f x e e x x ⎧++≥⎪=⎨+<⎪⎩,()xg x me =(其中m 是非零实数),若函数()y f x =与函数()y g x =的图象有且仅有两个交点,则m 的取值范围为 .3.已知函数32ln ,0(),0e x xf x x x x >⎧=⎨+≤⎩,若函数2()()g x f x ax =-有三个不同的零点,则实数a 的取值范围是_____.4.已知e 为自然对数的底数,若方程|xlnx —ex +e |=mx 在区间[e1,e 2]上有三个不同实数根,则实数m 的取值范围是________. 5.已知关于x 的方程2x kx x =-有三个不同的实数解,则实数k 的取值范围是______6.已知关于x 的方程33kx x x =+有三个不同的实数解,则实数k 的取值范围是 .7. 若函数32()21()f x x ax a R =-+∈在(0,)+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为____________.8. 若函数有两个零点,则实数的取值范围是 . 9.已知函数()2x f x e x a =-+有零点,则实数a 的取值范围是____________. 10. 已知函数()f x ax =,ln ()x g x x =,其中a 为实数.若关于x 的方程()()f x g x =在1,e e ⎡⎤⎢⎥⎣⎦上有两个实数解,则实数a 的取值范围为 .11. 已知函数32, 0(), 0ax x x f x x x ⎧++<⎪=⎨>⎪⎩,若函数()(1)(1)g x f x f x =-+-有且仅有四个不同的零点,则实数a 的取值范围是 . 12.已知函数3()f x x a a x=--+,,若关于的方程()2f x =有且仅有三个不同的实根,且它们成等差数列,则实数取值的集合为 .()(0a 1)xf x a x a a =--≠>),且a a R ∈x a【答案与提示】1.【答案】 D【提示】()(2)(21)(2)x xf x ae x a e x ⎡⎤⎡⎤=-+--+⎣⎦⎣⎦,根据对称性,只需考察1(2)x e x a=+有两个零点,得0a e <<,故有002121a e a e a a <<⎧⎪<-<⎨⎪≠-*⎩,前两者是保证两方程各自有两解,这里(*)易漏,它是保证两方程解不相同的.2.【答案】⎪⎭⎫⎢⎣⎡⋃⎪⎭⎫ ⎝⎛e 3,121,0【提示】转化为函数21,0()11,02xx x x e F x x x ⎧++≥⎪⎪=⎨⎪+<⎪⎩与函数()G x m =的图象有且仅有两个交点最简.3.【答案】(0,1){2}-【提示】易知0是其中一个零点,问题转化为y a =与函数22ln ,0()1,0e xx x k x x x⎧>⎪⎪=⎨⎪+<有两个不同的零点.4.【答案】1eln ex ex,问题转化为)yf 与m 的图象在区间[e1,e 2]上有三个交点.∵221(e x ef x xx x, ∴当1(,)xe e时,()0f x ,()f x 减;当2(,)x e e 时,()0f x ,()f x 增.故当x e 时,()f x 取得极小值,且20e .又(1)f 210e e ,21()20f e e e作出()y f x 的图象,由图象知实数m 的取值范围是:12,2ee e).5.【答案】102k <<【解析】1,021,02,0x x k x x R x ⎧>⎪-⎪⎪=-<⎨-⎪=⎪⎪⎩,画图得出k 的取值范围.6.【答案】0>k 或41-<k . 【提示】参见例6.思路二:(半分)32, 0t at t t -=-->12.【答案】95⎧⎪-⎨⎪⎪⎩⎭【提示】变形为3=+3x a a x -+转化为y x a a =-+与3=+3y x有且仅有三个不同的交点,而函数y x a a =-+的图象是定点在直线y x =上、开口向上的V 形折线.。
2023年福建省高考数学真题及参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21012,,,,--=M ,{}062>--=x x x N ,则M ∩=N ()A .{}1012,,,--B .{}2,1,0C .{}2-D .{}22.已知iiz 221+-=,则=-z z ()A .i -B .iC .0D .13.已知向量()1,1=a,()1,1-=b .若()()b a b a μλ+⊥+,则()A .1=+μλB .1-=+μλC .1=λμD .1-=λμ4.设函数()()a x x x f -=2在区间()1,0单调递减,则a 的取值范围是()A .(]2-∞-,B .[)0,2-C .(]2,0D .[)∞+,25.设椭圆12221=+y a x C :()1>a ,14222=+y x C :的离心率分别21,e e .若123e e =,则=a ()A .332B .2C .3D .66.过点()20-,与圆01422=--+x y x 相切的两条直线的夹角为α,则=αsin ()A .1B .415C .410D .467.记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:⎭⎫⎩⎨⎧n S n 为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.已知()31sin =-βα,61sin cos =βα,则()=+βα22cos ()A .97B .91C .91-D .97-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据621,,x x x ,其中1x 是最小值,6x 是最大值,则()A .5432,,,x x x x 的平均数等于621,,x x x 的平均数B .5432,,,x x x x 的中位数等于621,,x x x 的中位数C .5432,,,x x x x 的标准差不小于621,,x x x 的标准差D .5432,,,x x x x 的极差不大于621,,x x x 的极差10.噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级lg20p pL p ⨯=,其中常数()000>p p 是听觉下线的阈值,p 是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为321,,p p p ,则()A .21p p >B .3210p p >C .03100p p =D .21100p p <11.已知函数()x f 的定义域为R ,()()()y f x x f y xy f 22+=,则()A .()00=fB .()01=f C .()x f 是偶函数D .0=x 为()x f 的极小值点12.下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A .直径为m 99.0的球体B .所有棱长均为m 4.1的四面体C .底面直径为m 01.0,高为m 8.1的圆柱体D .底面直径为m 2.1,高为m 01.0的圆柱体声源与声源的距离/m 声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040三、填空题:本大题4小题,每小题5分,共20分.13.某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选修方案共有种(用数字作答).14.在正四棱台1111D C B A ABCD -中,2=AB ,111=B A ,21=AA ,则该棱台的体积为.15.已知函数()()01cos >-=ωωx x f 在区间[]π2,0有且仅有3个零点,则ω的取值范围是.16.已知双曲线()0012222>>=-b a by a x C ,:的左、右焦点分别为21F F ,,点A 在C 上.点B 在y 轴上,B F A F 11⊥,B F A F 2232-=,则C 的离心率为.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知在ABC ∆中,C B A 3=+,()B C A sin sin 2=-.(1)求A sin ;(2)设5=AB ,求AB 边上的高.18.如图,在正四棱柱1111D C B A ABCD -中,2=AB ,41=AA .点2222,,,D C B A 分别在棱1111,,,DD CC BB AA 上,12=AA ,222==DD BB ,32=CC .(1)证明:2222D A C B ∥;(2)点P 在棱1BB 上,当二面角222D C A P --为150°时,求P B 2.19.已知函数()()x a e a x f x-+=.(1)讨论()x f 的单调性;(2)证明:当0>a 时,()23ln 2+>a x f .20.设等差数列{}n a 的公差为d ,且1>d ,令nn a nn b +=2,记n n T S ,分别为数列{}n a ,{}n b 的前n 项和.(1)若31223a a a +=,2133=+T S ,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999=-T S ,求d .21.甲乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为6.0,乙每次投篮的命中率均为8.0,由抽签决定第一次投篮的任选,第一次投篮的人是甲、乙的概率各为5.0.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()i i i q X P X P ==-==011,n i ,,2,1 =,则()∑∑===ni i ni i q X E11,记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()Y E .22.在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于33.参考答案一、选择题12345678CADDABCB1.解:(][)∞+⋃-∞-∈,,32N ,∴{}2=⋂N M 2.解:i i i z 21221-=+-=,∴i z z -=-3.解:()()b a b aμλ+⊥+∵,∴()()()01222=+=+⋅++λμλμμλb b a a ,∴1-=λμ4.解:由复合函数的单调性可知()a x x y -=在区间()1,0单调递减,∴12≥a,∴a 的取值范围是[)∞+,2.5.解:由题意得:a a e 121-=,232=e ,得2112=-a a ,解得332=a .6.解:易得()5222=+-y x ,故圆心()0,2B ,5=R 记()20-,A ,设切点为N M ,,则22=AB ,5=BM ,可得3=AM 223sin 2sin==∠=AB AM MBA α,2252cos =α∴4152cos 2sin 2sin ααα=7.解:甲:∵{}n a 为等差数列,设其首项为1a ,公差为d ,则()d n n na S n 211++=,∴222111d a n d d n a n S n -+=-+=,211d n S n S n n =-++,故⎭⎬⎫⎩⎨⎧n S n 为等差数列,则甲是乙的充分条件;反之,⎭⎫⎩⎨⎧n S n 为等差数列,即()()()1111111+-=++-=-++++n n S na n n S n nS n S n S n n n n n n 为常数,设为t ,即()t n n S na nn =+-+11,故()11+⋅-=+n n t na S n n ,故()()111-⋅--=-n n t a n S n n ,2≥n ,两式相减有:()tn n a na a n n n 211---=+,即t a a n n 21=-+,对1=n 也成立,故{}n a 为等差数列,∴甲是乙的必要条件综上,甲是乙的充要条件.8.解:∵()31sin cos cos sin sin =-=-βαβαβα,61sin cos =βα,则21cos sin =βα,故()326131sin cos cos sin sin =+=+=+βαβαβα.()()913221sin 2122cos 22=⎪⎭⎫⎝⎛⨯-=+-=+βαβα.二、选择题9101112BDACDABCABD10.解:∵0lg 20lg 20lg2021020121≥⨯=⨯-⨯=-p p p p p p L L ,∴121≥p p,即21p p >∴A 正确;10lg 203232>⨯=-p p L L ,即21lg 32>p p ,∴213210>p p ,∴B 错误;∵40lg20033=⨯=p p L ,∴10010203==p p,∴C 正确;405090lg202121=-≤⨯=-p p L L ,∴2lg 21≤p p ,∴10021≤p p,∴D 正确.11.解:选项A ,令0==y x ,则()()()000000=⨯+⨯=f f f ,故A 正确;选项B ,令1==y x ,则()()()11111f f f ⨯+⨯=,则()01=f 故B 正确;选项C,令1-==y x ,则()()()()()1111122-⨯-+-⨯-=f f f ,则()01=f ,再令1-=y ,则()()()()1122-+⨯-=-f x x f x f ,即()()x f x f =-,故C 正确;选项D,对式子两边同时除以22yx ()022≠y x,得到:()()()2222xx f y y f y x xy f +=,故可设()()0ln 2≠=x x x x f ,故可以得到()⎩⎨⎧=≠=0,00,ln 2x x x x x f ,故D 错误.12.解:选项A,球直径为199.0<,故球体可以放入正方体容器内,故A 正确;选项B,连接正方体的面对角线,可以得到一个正四面体,其棱长为4.12>,故B 正确;选项C,底面直径m 01.0,可以忽略不计,但高为38.1>,3为正方体的体对角线的长,故C 不正确;选项D,底面直径为32.1<,高为m 01.0的圆柱体,其高度可以忽略不计,故D 正确.三、填空题13.64;14.667;15.32<≤ω;16.55313.解:当从这8门课中选修2门课时,共有161414=C C ;当从这8门课中选修3门课时,共有4814242414=+C C C C ;综上共有64种.14.解:如图,将正四棱台1111D C B A ABCD -补成正四棱锥,则2=AO ,22=SA ,261=OO ,故()()667261212313122222121=⋅⋅++=++=h S S S S V .15.解:令()01cos =-=x x f ω得1cos =x ω,又[]π2,0∈x ,则[]ωπω2,0∈x ,∴ππωπ624<≤,即32<≤ω.16.解:由B F A F 2232-=32=,设x A F 22-=,x B F 32=.由对称性可得x 3=,由定义可得,a x 22+=x 5=,设θ=∠21AF F ,则5353sin ==x x θ,∴xax 52254cos +==θ,解得a x =,∴a x AF 221+=,a AF 22=,在21F AF ∆中,由余弦定理可得54164416cos 2222=-+=a c a a θ,即2295a c =可得553=e .四、解答题17.解:(1)由题意得C B A 3=+,∴,π==++C C B A 4,∴4π=C ∴A C A B -=--=43ππ,∵()B C A sin sin 2=-,∴⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-A A ππ43sin 4sin 2,即A A A A sin 22cos 22cos 22sin 222+=⎪⎪⎭⎫⎝⎛-,整理得:A A cos 3sin =又∵1cos sin 22=+A A ,()π,0∈A ∴0sin >A ,∴0cos >A 解得10103sin =A ,1010cos =A (2)∵()552sin cos cos sin sin sin =+=+=C A C A C A B 由正弦定理可知C c B b sin sin =,即22510103=b ,解得102=b 设AB 边上的高为h ,∵ch A bc S 21sin 21==,∴6sin ==A b h 18.解:以C 为原点,CD 为x 轴,CB 为y 轴,1CC 为z 轴建立空间直角坐标系则()2,2,02B ,()3,0,02C ,()1,222,A ,()2,0,22D (1)∵()1,2022-=,C B ,()12022,,-=D A ∴=22C B 22D A ,∴2222D A C B ∥(2)设()t P ,2,0,其中42≤≤t ∴()t P A -=1022,,,()t PC --=3,202,,()1,0,222-=C D ,()12,022-=,A D .设平面22C P A 的一个法向量为()z y x m ,,= ,则⎪⎩⎪⎨⎧=⋅=⋅022PC m P A m 即()()⎩⎨⎧=-+-=-+032012z t y z t x ,令2=z ,则()2,3,1t t m --=.设平面222C A D 的一个法向量为()z y x n '''=,, ,则⎪⎩⎪⎨⎧=⋅=⋅02222C D n A D n即⎩⎨⎧=-'=+'-0202z y z x ,令2=z ,则()2,1,1=n .∵二面角222D C A P --为150°,∴2314826150cos 2=+-=︒⇒=t t ,解得:1=t (舍去)或3=t .∴12=P B 19.解:(1)由题可得()1-='xae x f ①当0≤a 时,()0<'x f ,()x f 在()∞+∞-,单调递减;②当0>a 时,令()0='x f 得ax ln -=∴当()a x ln ,-∞-∈时,()0<'x f ,()x f 在()a ln ,-∞-单调递减;当()∞+-∈,a x ln 时,()0>'x f ,()x f 在()∞+-,a ln 单调递增.(2)由(1)得当0>a 时,()()a a a f x f ln 1ln 2min ++=-=.设()21ln 23ln 2ln 122--=⎪⎭⎫ ⎝⎛+-++=a a a a a a g ,则()a a a g 12-=',令()0='a g 可得22=a ∴当⎪⎪⎭⎫ ⎝⎛∈22,0a 时,()0<'a g ,()a g 在⎪⎪⎭⎫⎝⎛22,0上单调递减;当⎪⎪⎭⎫ ⎝⎛∞+∈,22a 时,()0>'a g ,()a g 在⎪⎪⎭⎫⎝⎛∞+,22上单调递增.∴()02ln 22min >=⎪⎪⎭⎫⎝⎛=g a g ,故()0>a g ,∴当0>a 时,()23ln 2+>a x f .20.解:(1)∵31223a a a +=,∴d a a d 2313+==,即d a =1,nd a n =故nd a n =,∴d n a n n b n n 12+=+=,()21d n n S n +=,()dn n T n 23+=,又2133=+T S ,即21263243=⨯+⨯dd ,即03722=+-d d ,解得3=d 或21=d (舍),故{}n a 的通项公式为:n a n 3=.(2)若{}n b 为等差数列,则3122b b b +=,即da a d a 24321322111+⨯+⨯=+⨯⋅,即0232121=+-d d a a ,∴d a =1或d a 21=,当d a =1时,nd a n =,故()21d n n S n +=,()dn n T n 23+=.又999999=-T S ,即99210299210099=⨯-⨯dd ,即051502=--d d ,∴5051=d 或1=d (舍).当d a 21=时,()d n a n 1+=,d n b n =,故()23d n n S n +=,()dn n T n 21+=.又999999=-T S ,即99210099210299=⨯-⨯dd ,即050512=--d d ,∴5051-=d (舍)或1=d (舍).综上所述:5051=d .21.解:(1)第二次是乙的概率为6.08.05.04.05.0=⨯+⨯.(2)第i 次投篮的人是甲的概率为i p ,则第i 次投篮的人是甲的概率为i p -1,则()2.04.012.06.01+=-+=+i i i i p p p p ,构造等比数列()λλ+=++i i p p 521,解得31-=λ,则⎪⎭⎫ ⎝⎛-=-+3152311i i p p ,又211=p ,∴61311=-p ∴1526131-⎪⎭⎫ ⎝⎛⋅=-i i p ,则3152611+⎪⎭⎫⎝⎛⋅=-i i p .(3)当*∈N n 时,()352118535215216121n n p p p Y E n nn +⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=+-⎪⎭⎫ ⎝⎛-⋅=+++= .11当0=n 时,()0=Y E ,符合上式,故()3521185n Y E n+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-=.22.解:(1)设()y x P ,,∵点P 到x 轴的距离等于点P 到点⎪⎭⎫ ⎝⎛210,的距离,∴2221⎪⎭⎫ ⎝⎛-+=y x y ,化简得412+=x y .故W 的方程为412+=x y .(2)不妨设D B A ,,三点在W 上,且有DA BA ⊥.设⎪⎭⎫ ⎝⎛+41,2a a A ,设DA BA ,的斜率分别为kk 1-,,由对称性不妨设1≤k ,则直线BA 的方程为:()412++-=a a x k y 联立()⎪⎪⎩⎪⎪⎨⎧++-=+=414122a a x k y x y ,整理可得:022=-+-a ka kx x ,则kx x B A =+∴()()ak k y y x x AB B A B A 21222-+=-+-=同理可得:a kk AD 21112++=∴CD AB +a k k 212-+=a kk 21112+++()232221112121k k k k k a k a k k +=⎪⎭⎫ ⎝⎛++≥⎪⎪⎭⎫ ⎝⎛++-+≥设()()313123+++=+=m m m mm m f ,则()()()222112132m m m m m m f +-=-+=',可知()m f 在⎪⎭⎫ ⎝⎛210,上单调递减,在⎪⎭⎫ ⎝⎛021,上单调递增,∴()m f 在()10,上最小值为42721=⎪⎭⎫ ⎝⎛f ,∴()3232≥=+kf CD AB ,由于两处相等的条件不一致,∴矩形ABCD 的周长为()332>+CD AB .。
2023年高考理科数学1卷20题一、题目分析这是一道关于2023年高考理科数学1卷20题的任务,我们需要按照要求制作相关内容。
由于这是试题类题目,我们要按照满分100分来设置题目,并且题数和分数要对应,最后给出答案和解析。
二、试卷制作1. 选择题(每题5分,共30分)已知集合A = {1, 2, 3},B = {x x² - 3x + 2 = 0},则A∩B =()A. {1}B. {2}C. {1, 2}D. {1, 2, 3}复数z = 3 + 4i的模为()A. 5B. 7C. 25D. 49在等差数列{an}中,a1 = 1,d = 2,那么a5 =()A. 9B. 11C. 13D. 15函数y = sin(2x + π/3)的最小正周期为()A. πB. 2πC. π/2D. 4π若向量a = (1, 2),b = (2, -1),则a·b =()A. 0B. 3C. 4D. -3双曲线x² - y² = 1的渐近线方程为()A. y = ±xB. y = ±2xC. y = ±1/2xD. y = ±√2x2. 填空题(每题5分,共20分)函数y = ln(x + 1)的定义域为。
若x + y = 5,xy = 6,则x² + y² = 。
在△ABC中,角A,B,C所对的边分别为a,b,c,若a = 3,b = 4,∠C = 60°,则c = 。
已知某几何体的三视图如图所示(此处假设给出了一个简单的三视图图形),则该几何体的体积为。
3. 解答题(每题10分,共30分)已知函数f(x) = x² - 2x + 3,求函数在区间[0, 3]上的最大值和最小值。
设椭圆C:x²/a² + y²/b² = 1(a > b > 0)的离心率为1/2,且过点(2, 3),求椭圆C的方程。
23年高考数学20题
高考数学题目一直以来都是考生们备考的重点之一,其中涵盖了各种不同类型的数学题目。
在过去的23年里,数学题目的形式和难度都发生了一些变化。
本文将围绕着23年高考数学题目中的20道题目展开讨论,解答每道题目的思路和解题方法。
1. 题目:已知函数f(x)=2x+3,g(x)是f(x)的反函数,求g(5)的值。
解答:要求g(5)的值,即需要找到使得f(x)=5的x值。
由已知的函数
f(x)=2x+3,我们可以得到方程2x+3=5,解得x=1。
因此,g(5)=1。
2. 题目:已知直线L1过点A(2,1),斜率为1/3,直线L2过点B(-1,4),斜率为-2/5,求直线L1和L2的交点坐标。
解答:直线L1的方程可以表示为y-1=(1/3)(x-2),直线L2的方程可以表示为y-4=(-2/5)(x+1)。
将两条直线的方程联立,得到方程组y-1=(1/3)(x-2)和y-4=(-
2/5)(x+1)。
解方程组,可以得到交点坐标为(-5/4, 13/4)。
3. 题目:已知点A(-2,3)和点B(4,7),求直线AB的中点坐标。
解答:直线AB的中点坐标可以通过坐标平均值的方法求得。
点A的横坐标和纵坐标分别为-2和3,点B的横坐标和纵坐标分别为4和7。
将横坐标和纵坐标分别求平均,得到中点坐标为((-2+4)/2, (3+7)/2),即(1, 5)。
4. 题目:已知点A(3,4)和点B(6,8),求直线AB的斜率。
解答:直线AB的斜率可以通过斜率公式求得。
点A的横坐标和纵坐标分别为3和4,点B的横坐标和纵坐标分别为6和8。
斜率公式可以表示为m=(y2-y1)/(x2-x1),其中m为斜率,(x1, y1)和(x2, y2)为直线上的两个点的坐标。
代入坐标值,得到斜率m=(8-4)/(6-3),即m=4/3。
5. 题目:已知点A(1,2)和点B(5,6),求直线AB的方程。
解答:直线AB的方程可以通过斜率截距公式求得。
点A的横坐标和纵坐标分别为1和2,点B的横坐标和纵坐标分别为5和6。
斜率截距公式可以表示为
y=mx+b,其中m为斜率,b为截距。
斜率可以通过求得,已知两点的坐标可以得到斜率m=(6-2)/(5-1),即m=1。
截距可以通过将斜率和其中一个点的坐标代入方程得到,即2=1*1+b,解得b=1。
因此,直线AB的方程为y=x+1。
6. 题目:已知函数f(x)=x^2+2x+1,求f(3)的值。
解答:要求f(3)的值,即需要将3代入函数f(x)=x^2+2x+1。
代入计算得到
f(3)=3^2+2*3+1,即f(3)=16。
7. 题目:已知函数f(x)=2x-1,求解方程f(x)=3的解。
解答:要求解方程f(x)=3的解,即需要找到使得f(x)=3的x值。
将已知的函数f(x)=2x-1代入方程,得到2x-1=3,解得x=2。
因此,方程f(x)=3的解为x=2。
8. 题目:已知函数f(x)=x^2-4x+4,求解方程f(x)=0的解。
解答:要求解方程f(x)=0的解,即需要找到使得f(x)=0的x值。
将已知的函数f(x)=x^2-4x+4代入方程,得到x^2-4x+4=0,这是一个完全平方的形式,可以写成(x-2)^2=0。
解得x=2。
因此,方程f(x)=0的解为x=2。
9. 题目:已知函数f(x)=x^2-4x+4,求函数f(x)的极值点和最值。
解答:函数f(x)的极值点可以通过求导数的方法求得。
对函数f(x)=x^2-4x+4求导,得到f'(x)=2x-4。
令f'(x)=0,解得x=2。
将x=2代入原函数f(x)=x^2-4x+4,得到f(2)=4-8+4=0。
因此,函数f(x)的极值点为x=2,最值为0。
10. 题目:已知函数f(x)=x^3-3x^2+2x-1,求函数f(x)的导函数。
解答:函数f(x)的导函数可以通过对函数f(x)=x^3-3x^2+2x-1求导得到。
对
x^3-3x^2+2x-1求导,得到f'(x)=3x^2-6x+2。
因此,函数f(x)的导函数为f'(x)=3x^2-6x+2。
11. 题目:已知函数f(x)=x^3-3x^2+2x-1,求函数f(x)的零点。
解答:函数f(x)的零点即为使得f(x)=0的x值。
将已知的函数f(x)=x^3-
3x^2+2x-1代入方程,得到x^3-3x^2+2x-1=0。
这是一个三次方程,可以通过数值法或因式分解法求解。
求解得到x=1为函数f(x)的一个零点。
12. 题目:已知函数f(x)=x^2-2x+1,求函数f(x)的单调增区间和单调减区间。
解答:函数f(x)的单调性可以通过求导数的方法求得。
对函数f(x)=x^2-2x+1求导,得到f'(x)=2x-2。
令f'(x)>0,解得x>1,即函数f(x)在区间(x>1)上单调增。
令f'(x)<0,解得x<1,即函数f(x)在区间(x<1)上单调减。
因此,函数f(x)的单调增区间为(x>1),单调减区间为(x<1)。
13. 题目:已知函数f(x)=x^2-2x+1,求函数f(x)的零点和顶点坐标。
解答:函数f(x)的零点即为使得f(x)=0的x值。
将已知的函数f(x)=x^2-2x+1代入方程,得到x^2-2x+1=0。
这是一个二次方程,可以通过求解得到。
求解得到x=1为函数f(x)的一个零点。
顶点坐标可以通过求导数的方法求得。
对函数f(x)=x^2-
2x+1求导,得到f'(x)=2x-2。
令f'(x)=0,解得x=1。
将x=1代入原函数f(x)=x^2-
2x+1,得到f(1)=1-2+1=0。
因此,函数f(x)的零点为x=1,顶点坐标为(1, 0)。
14. 题目:已知函数f(x)=x^2-2x+1,求函数f(x)的对称轴。
解答:函数f(x)的对称轴可以通过求函数f(x)的顶点坐标得到。
已知函数
f(x)=x^2-2x+1的顶点坐标为(1, 0)。
因此,函数f(x)的对称轴为x=1。
15. 题目:已知函数f(x)=x^2-2x+1,求函数f(x)的图像与x轴的交点坐标。
解答:函数f(x)的图像与x轴的交点坐标即为函数f(x)的零点。
已知的函数
f(x)=x^2-2x+1的零点为x=1。
因此,函数f(x)的图像与x轴的交点坐标为(1, 0)。
16. 题目:已知函数f(x)=x^2-2x+1,求函数f(x)的图像在x轴上的截距。
解答:函数f(x)的图像在x轴上的截距即为函数f(x)的零点的纵坐标。
已知的
函数f(x)=x^2-2x+1的零点为x=1。
将x=1代入函数f(x)=x^2-2x+1,得到f(1)=1-
2+1=0。
因此,函数f(x)的图像在x轴上的截距为0。
17. 题目:已知函数f(x)=x^2-2x+1,求函数f(x)的图像的对称中心坐标。
解答:函数f(x)的图像的对称中心坐标即为函数f(x)的顶点坐标。
已知函数
f(x)=x^2-2x+1的顶点坐标为(1, 0)。
因此,函数f(x)的图像的对称中心坐标为(1, 0)。
18. 题目:已知函数f(x)=x^2-2x+1,求函数f(x)的图像的开口方向和开口大小。
解答:函数f(x)的图像的开口方向和开口大小可以通过二次函数的a值来判断。
已知的函数f(x)=x^2-2x+1的a值为1,因此开口方向为向上。
开口大小可以通过a
的绝对值来判断,因为a=1,所以开口大小为1。
19. 题目:已知函数f(x)=x^2-2x+1,求函数f(x)的图像的对称轴与x轴的交点
坐标。
解答:函数f(x)的图像的对称轴与x轴的交点坐标即为函数f(x)的零点。
已知
的函数f(x)=x^2-2x+1的零点为x=1。
因此,函数f(x)的图像的对称轴与x轴的交点坐标为(1, 0)。
20. 题目:已知函数f(x)=x^2-2x+1,求函数f(x)的图像的对称轴的方程。
解答:函数f(x)的图像的对称轴的方程可以通过函数f(x)的对称轴的x值得到。
已知的函数f(x)=x^2-2x+1的对称轴的x值为1。
因此,函数f(x)的图像的对称轴的
方程为x=1。
以上是对23年高考数学题目中的20道题目的解答和解题方法的详细讨论。
希望这些解答能够帮助到你更好地理解和掌握这些数学题目的解题思路。
祝你在高考中取得优异的成绩!。