丰富的图形世界测试题
- 格式:doc
- 大小:314.00 KB
- 文档页数:4
第一章丰富的图形世界单元测试卷(含答案)Chapter 1: Rich World of Shapes Unit TestPart 1: Multiple Choice (12 ns)1.Which of the following is the net of a triangular prism。
(A。
B。
C。
or D)2.If the shape on the left is folded to form a cube。
whichcube is correct。
(A。
B。
C。
or D)3.If the net of a cube is shown as below。
what number is opposite to 0 after it is folded into a cube。
(A。
B。
C。
or D)4.Figure 1 XXX。
If it is cut as shown in Figure 2.which ofthe following nets correctly shows all the cut lines。
(A。
B。
C。
or D)5.Among the four geometric shapes shown below。
howmany of them have different front and top views。
(A。
B。
C。
or D)6.Which of the following geometric shapes has a circularfront view。
(A。
B。
or D)7.The left view of a triangular prism is shown below。
Which one is it。
(A。
B。
or C)8.The solid figure made up of six small cubes is shown below。
Which of the following is its top view。
第一章丰富的图形世界达标测试卷(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列几何体为圆柱的是()A B C D2.图1是由5个相同的小立方块搭成的立体图形,从正面看它得到的形状图是()A B C D图1 图2 图33.下列图形绕虚线旋转一周能够得到图2所示的几何体的是()A B C D4. 把图3所示的三棱柱表面展开,得到的展开图可能是()A B C D5. 往图4所示的一个密封的正方体容器持续注入一些水,注水的过程中,可将容器任意放置,水平面形状不可能是()A.三角形B.正方形C.六边形D.七边形图4 图5 图66. 一个正方体的每个面上都有一个汉字,其展开图如图5所示,那么在该正方体中与“绿”字所在面的相对面上的汉字是()A.低B.碳C.发D.展7. 图6是由一些大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示该位置小立方块的个数,则该几何体从左面看到的形状图是()A B C D8.下列说法错误的是()A.若直棱柱的底面边长相等,则它的各个侧面的面积相等B.正九棱柱有9条侧棱,9个侧面,侧面为长方形C.长方体、正方体都是棱柱D.若一个棱柱有12个顶点,则这个棱柱的底面是八边形9. 已知一个不透明的正方体的六个面上分别写着1~6六个数字,如图7是我们能看到的三种情况,请你判断数字4对面上的数字是()A.6 B.3 C.2 D.1图7图810. 将图8所示的无盖正方体沿①、②、③、④边剪开后展开,则下列展开图的示意图正确的是()A B C D二、填空题(本大题共6小题,每小题3分,共18分)11. 用一个平面去截一个球,无论怎样切截,截面形状都是_______.12. 粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,这个现象用数学知识解释为______________.13. 如图9所示的几何体是由________个面围成,面与面相交成________条线,其中直的线有________条,曲线有________条.图9 图1014. 图10是由4个相同的棱长为1的小正方体组成的几何体,则从上面看它的平面图形的面积是______.15. 如图11是一些几何体的展开图,它们的几何体的名称从左到右依次是______________.图11 图1216.一个立体图形由若干个完全相同的小立方块搭成,如图12是分别从正面、左面、上面看这个立体图形得到的形状图.这个立体图形由 _____________个小立方块搭成.三、解答题(本大题共6小题,共52分)17.(6分)如图13所示是一个正六棱柱.(1)填写下表:(2)若该正六棱柱所有侧棱长的和为72 cm,底面的边长为5 cm,求该正六棱柱的所有侧面的面积和.图1318.(8分)如图14,小明同学在制作正方体模型的时候,在方格纸上画出几个小正方形(图中的阴影部分),但是由于疏忽少画了一个,请你给他补画一个,使之可以折叠成正方体,请你把所有的画法都补上,在图上用阴影注明.图14 备用图19.(8分)小明用一个平面去截图15所示的几何体.(1)写出几何体截面形状的名称,①__________,②___________,③___________.(2)除了上述三个截面形状外,还有其他互不相同的截面形状吗? 请分别再写出一个.图1520.(8分)如图16是一张长方形纸片,AB长为4 cm,BC长为6 cm.若将此长方形纸片绕它的一边所在直线旋转一周,(1)得到的几何体是__________;这个现象用数学知识解释为 ______________;(2)若将这个长方形纸片绕它的一边所在直线旋转一周,求形成的几何体的体积.(结果保留π)图16②①③21. (10分)图17是由棱长都为2 cm的6个小立方块搭成的简单几何体.图17(1)请在下面的方格中画出该几何体从三个方向看到的形状图;从正面看从左面看从上面看(2)根据形状图求简单几何体的表面积;(3)如果在这个几何体上再添加一些小立方块,并保持从正面和左面看到的形状图不变,那么最多可以再添加_________个小立方块.22.(12分)现有如图18所示的长方体,长、宽、高分别为4,3,6.图18(1)若将它的表面沿某些棱剪开,展开成一个平面图形,则下列图形中,可能是该长方体的展开图的是 _______.(填序号)(2)图A,B分别是图18所示的长方体的两种表面展开图,求得图A的外围周长为52,请你求出图B的外围周长.(3)图18所示的长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个展开图,并求出它的外围周长.附加题(20分,不计入总分)一个几何体是由若干个棱长为3 cm的小立方块搭成的,从左面、上面看到的几何体的形状图如图所示.(1)该几何体最少由________个小立方块搭成,最多由________个小立方块搭成.(2)当该几何体用最多的小立方块搭成时,将该几何体的形状固定好.①求该几何体的体积;①若将该几何体表面涂上油漆,求所涂的油漆面积.(山西左丁政)第一章丰富的图形世界达标测试卷参考答案答案速览一、1. B 2. C 3. B 4. B 5. D 6. C 7. B 8. D 9. B 10. A二、11. 圆12. 线动成面13. 4 6 4 214. 3 15. 圆锥圆柱16. 9三、解答题见“答案详解”答案详解三、17. 解:(1)填表如下:(2)该正六棱柱的所有侧面的面积的和为(72÷6)×5×6=360(cm2).18. 解:如图1所示.图119.解:(1)圆长方形梯形(2)有,不唯一,如:还有三角形,椭圆,拱形门,如图2所示.图2几何体顶点数棱数面数正六棱柱___12_____18_______8____三角形拱形门椭圆20. 解:(1)圆柱面动成体(2)分两种情况:①绕AB所在直线旋转一周:V=π×62×4=144π(cm3);②绕BC所在直线旋转一周:V=π×42×6=96π(cm3).所以形成的几何体的体积是144π cm3或96π cm3.21. 解:(1)如图3所示.从正面看从左面看从上面看图3(2)简单几何体的表面积为2×(5+3+4)×2×2=96(cm2).(3)222. 解:(1)①②③(2)图B的外围周长为4×6+4×4+6×3=58.(3)外围周长最大的表面展开图如图4所示,外围周长为8×6+4×4+3×2=70.图4附加题:解:(1)观察图形可知,最少的情形有2+3+1+1+1+1=9(个)小立方块,最多的情形有2+3+3+3+3+1=14(个)小立方块(如图所示).(2)①该几何体的体积为33×14=378(cm3).①露在外面的面有2×[6+6+(9+2)]=46(个),所涂的油漆面积为36×9=414(cm2).。
第一章丰富的图形世界测试卷班级:姓名:学号:得分:一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列立体图形中,为斜棱柱的是( )2.如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )3.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是( )4.如图是某几何体的表面展开后得到的平面图形,则该几何体是( )A.三棱锥B.圆锥C.三棱柱D. 长方体5.由4个大小相同的小立方块搭成的几何体如图所示,从正面看到的这个几何体的形状图是( )6.生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是( )7.一个几何体由若干大小相同的小立方块搭成,从上面和左面看到的这个几何体的形状图如图所示,那么搭成该几何体所需小立方块的个数至少为( )A.4B.5C.6D.78.用一个平面去截一个几何体,若截面的形状是三角形,则原来的几何体不可能是( )A.球B.圆锥C.六棱柱D.长方体9.将“共建平安校园”六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体上,与“共”字所在面相对的面上的汉字是( )A. “校”B. “安”C. “平”D. “园”10.如图为一个长方体的展开图,且长方体的底面为正方形,该长方体的体积为( )A.144B.224C.264D.300二、填空题:本大题共5小题,每小题3分,共15分.11.一个圆柱的侧面展开后是一个边长为12.56 cm的正方形,则这个圆柱的底面半径是cm.(π取3.14)12.若用一个平面去截一个五棱柱,截面的边数最多是 .13.若一个直棱柱有10个顶点,则它共有个面.14.在一个仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱从三个不同方向看到的情形画出来,如图所示,则这堆货箱共有个.15.一张长50cm、宽40cm的长方形纸板,在其四个角上分别剪去一个边长为7cm的小正方形后,折成一个无盖的长方体盒子,这个长方体盒子的容积最大为cm³.三、解答题(一):本大题共3小题,每小题7分,共21分.16.一个几何体由若干个大小相同的小立方块(棱长为1cm)搭成,从上面看到它的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.请分别画出从正面和左面看到的这个几何体的形状图,并求出这个几何体的体积.17.如图为一个正方体的平面展开图,若将图中平面展开图折叠成正方体后,相对面上的两个数字之和均为5,求x+y−z的值.18.如图,已知直角三角形纸板ABC,直角边AB=4cm,BC=8cm.(1)将直角三角形纸板ABC绕其边所在的直线旋转一周,能得到种大小不同的几何体;(2)若将直角三角形纸板ABC绕边 BC 所在的直线旋转一周,请写出得到的几何体的名称,并计算其体积.四、解答题(二):本大题共3小题,每小题9分,共27分.19.如图是一个正六棱柱,它的底面边长是3cm,高是6cm.(1)这个棱柱有个顶点,有条棱,所有的棱的长度之和是 cm,这个棱柱的侧面积是(cm²;(2)通过观察,试用含n的式子表示n棱柱的面数和棱的条数.20.如图是分别从三个不同方向看到的某个几何体的形状图.(1)写出这个几何体的名称;(2)根据图中数据(单位:cm),求它的表面积和体积.21.综合与实践【主题】搭立体图形【素材】若干个棱长为2cm的小立方块(假设数量足够多).【实践操作】在桌面上按如图所示搭三个立体图形.【实践探索】(1)照这样的规律搭下去,第7个立体图形用了多少个小立方块?(2)第7个立体图形露在外面的面积是多少平方厘米?五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22.【问题背景】七(1)班综合实践小组进行废物再利用的环保小卫士行动,他们准备用废弃的宣传单制作装垃圾用的无盖纸盒.【空间想象】(1)若准备制作一个无盖的正方体纸盒,图1中的 (填字母)经过折叠能围成一个无盖正方体纸盒.【深入思考】(2)图2是小明的设计图,把它折成一个无盖正方体纸盒后,与“卫”字相对的是“”.【实践操作】(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成一个无盖长方体纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕;②若四角各剪去了一个边长为3cm的小正方形,求这个纸盒的容积.23.【问题背景】小明在学习了“从立体图形到平面图形”这一节后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图1 和图2.【基础应用】(1)小明总共剪开了条棱.【实践探索】(2)现在小明想将剪断的图2重新粘贴到图1上去,而且经过折叠以后,仍然可以还原成图3所示的长方体纸盒,你认为他应该将剪断的纸条粘贴到图1中的什么位置? 请你帮助小明在图4上补全.(补一种即可)【拓展延伸】(3)小明说他所剪的所有棱中,最长的一条棱的长度是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个面积为1 dm² 的正方形,求这个长方体纸盒的体积.参考答案一、1. C 2. C 3. B 4. C 5. B 6. D 7. B 8. A 9. A 10. B二、11.2 12.7 13.7 14.4 15.6552三、16.解:如图所示.这个几何体的体积为1³×(2+3+4+1+2)=12(cm³).17.解:由题意知,面“z”与面“3”相对,面“y”与面“4”相对,面“x”与面“1”相对.则有z+3=5,y+4=5,x+1=5,解得z=2,y=1,x=4.故x+y-z=4+1-2=3.18.解:(1)3(2)得到的几何体是圆锥,其体积为13×π×42×8=1283π(cm3).四、19.解:(1)12 18 72 108(2)∵正六棱柱有(6+2)个面和(3×6)条棱,∴n棱柱有(n+2)个面和3n条棱.20.解:(1)该几何体是圆柱.(2)圆柱的表面积:2×π×1²+2π×3=8π(cm²),圆柱的体积:π×1²×3=3π(cm³),21.解:(1)1+2+3+4+5+6+7=28(个).∴第7个立体图形用了28个小立方块.(2)2×2=4(cm²).28×2×4+7×3×4=308(cm²).∴第7个立体图形露在外面的面积是308cm².五、22.解:(1)C(2)保(3)①如图所示.②(20−3×2)×(20−3×2)×3=58(cm³).∴这个纸盒的容积为588cm³.23.解:(1)8(2)如图所示.(任意一种即可)(3)∵这个长方体纸盒的底面是一个面积为1dm²的正方形,∴长方体纸盒的长和宽都为10cm,即高为10÷5=2(cm),∴这个长方体纸盒的体积为10×10×2=200(cm³).。
第一章丰富的图形世界单元测试卷一.选择题(共12小题)1.下列四个图形中是三棱柱的表面展开图的是()A.B.C.D.2.如图,把左边的图形折起来得到正方体,则下列正方体一定正确的是()A.B.C.D.3.一个正方体的展开图如图所示,将它折成正方体后,数字“0”的对面是()A.数B.5 C.1 D.学4.图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是()A.B.C.D.5.如图四个几何体,其中,它们各自的主视图与俯视图不相同的几何体的个数是()A.1 B.2 C.3 D.46.下列几何体中,主视图是圆的是()A.圆柱B.圆锥C.D.立方体7.如图是一个三棱柱,它的左视图是()A.B.C.D.8.由六个小正方体搭成的几何体如图所示,则它的俯视图是()A.B.C.D.9.如图所示几何体的俯视图是()A.B.C.D.10.如图所示的几何体的左视图是()A.B.C.D.11.用4个小立方体搭成如图摆放的几何体,下面视图是几何体主视图的是()A.B.C.D.12.如图是一个由7个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.二.填空题(共5小题)13.一个几何体的三视图如图所示,这个几何体的侧面积为.14.一个上下底密封的纸盒的三视图如图所示,请你根据图中的数据,计算这个密封纸盒的表面积为cm2.(结果保留π)(第14题) (第15题)15.如图,将一张边长为6cm的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱的侧面积为cm2.16.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为平方分米.(第16题) (第17题)17.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为.三.解答题(共5小题)18.一个直四棱柱的三视图如图所示,俯视图是一个菱形,求这个直四棱柱的表面积.19.探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边为点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?20.在直角三角形,两条直角边分别为6cm,8cm,斜边长为10cm,若分别以一边旋转一周(①结果用π表示;②你可能用到其中的一个公式,V圆柱=πr2h,V球体=,V圆锥=h)(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是?(2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少?(3)如果绕着它的斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?21.将图中的几何体进行分类,并说明理由.22.一个正方体6个面分别写着1、2、3、4、5、6,根据下列摆放的三种情况,那么每个数对面上的数是几?试卷解析卷一.选择题(共12小题)1.下列四个图形中是三棱柱的表面展开图的是()A.B.C.D.【解答】解:A、是三棱柱的平面展开图;B、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成三棱柱,故此选项错误;C、围成三棱柱时,缺少一个底面,故不能围成三棱柱,故此选项错误;D、围成三棱柱时,没有底面,故不能围成三棱柱,故此选项错误.故选:A.2.如图,把左边的图形折起来得到正方体,则下列正方体一定正确的是()A.B.C. D.【解答】解:如带圆圈图案的面在前,那么带直线图案的面一定与它相邻,所以A,B 错误;D中,带圆圈图案的面应和带直线图案的面平行,所以D也错误.故选:C.3.一个正方体的展开图如图所示,将它折成正方体后,数字“0”的对面是()A.数B.5 C.1 D.学【解答】解:正方体的平面展开图中,相对的面一定相隔一个正方形,所以“0”字的对面是“5”.故选B.4.图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是()A.B.C.D.【解答】解:动手操作可知,画出所有的切割线的是图形C.故选C.5.如图四个几何体,其中,它们各自的主视图与俯视图不相同的几何体的个数是()A.1 B.2 C.3 D.4【解答】解:A、正方体的主视图是正方形,俯视图是正方形;B、三棱柱的主视图是矩形,俯视图是三角形;C、圆柱的主视图是矩形,俯视图是圆;D、圆锥主视图是等腰形,俯视图是圆;主视图与俯视图不相同的几何体有3个,故选:C.6.下列几何体中,主视图是圆的是()A.圆柱B.圆锥C.球D.立方体【解答】解:A、圆柱的主视图是矩形,不符合题意;B、圆锥的主视图是三角形,不符合题意;C、球的主视图是圆,符合题意;D、正方体的主视图是正方形,不符合题意.故选C.7.如图是一个三棱柱,它的左视图是()A.B.C. D.【解答】解:如图三棱柱的左视图是.故选:A.8.由六个小正方体搭成的几何体如图所示,则它的俯视图是()A.B.C.D.【解答】解:所给图形的俯视图是两排正方形,第一排3个,第二排2个.故选A.9.如图所示几何体的俯视图是()A.B.C.D.【解答】解:从上边看是一个圆与矩形的左边相切,故选:B.10.如图所示的几何体的左视图是()A.B.C.D.【解答】解:从左边看是一个正方形,正方形的左上角是一个小正方形,故选:C.11.用4个小立方体搭成如图摆放的几何体,下面视图是几何体主视图的是()A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层右边是一个小正方形,故选:C.12.如图是一个由7个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:A.二.填空题(共5小题)13.一个几何体的三视图如图所示,这个几何体的侧面积为4πcm2.【解答】解:此几何体为圆锥;∵直径为2cm,母线长为4cm,∴侧面积=2π×4÷2=4π(cm2).故答案为4πcm2.14.一个上下底密封的纸盒的三视图如图所示,请你根据图中的数据,计算这个密封纸盒的表面积为600πcm2.(结果保留π)【解答】解:∵正视图以及左视图为矩形,而俯视图为圆形,∴可得这个立体图形是圆柱,∴这个立体图形的侧面积是2π×10×20=400π,底面积是:π•102=100π,∴这个立体图形的表面积为400π+200π=600π;故答案为:600π.15.如图,将一张边长为6cm的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱的侧面积为36﹣12cm2.【解答】解:∵将一张边长为6的正方形纸片按虚线裁剪后,恰好围成一个底面是正六边形的棱柱,∴这个正六边形的底面边长为1,高为,∴侧面积为长为6,宽为6﹣2的长方形,∴面积为:6×(6﹣2)=36﹣12.故答案为:36﹣12.16.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为33平方分米.【解答】解:最上层,侧面积为4,上表面面积为1,总面积为4+1=5,中间一层,侧面积为2×4=8,上表面面积为4﹣1=3,总面积为8+3=11,最下层,侧面积为3×4=12,上表面面积为9﹣4=5,总面积为12+5=17,5+11+17=33,所以被他涂上颜色部分的面积为33平方分米.故答案为:33.17.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为66.【解答】解:如图所示:AB=3,∵AC2+BC2=AB2,∴AC=BC=3,∴正方形ACBD面积为:3×3=9,侧面积为:4AC×CE=3×4×4=48,故这个长方体的表面积为:48+9+9=66.故答案为:66.三.解答题(共5小题)18.一个直四棱柱的三视图如图所示,俯视图是一个菱形,求这个直四棱柱的表面积.【解答】解:∵俯视图是菱形,∴可求得底面菱形边长为2.5cm,上、下底面积和为6×2=12cm2,侧面积为2.5×4×8=80cm2,∴直棱柱的表面积为92cm2.19.探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边为点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?【解答】解:(1)方案一:π×32×4=36π(cm3),方案二:π×22×6=24π(cm3),∵36π>24π,∴方案一构造的圆柱的体积大;(2)方案一:π×()2×3=π(cm3),方案二:π×()2×5=π(cm3),∵π>π,∴方案一构造的圆柱的体积大;(3)由(1)、(2),得以较长一组对边中点所在直线为轴旋转得到的圆柱的体积大.20.在直角三角形,两条直角边分别为6cm,8cm,斜边长为10cm,若分别以一边旋转一周(①结果用π表示;②你可能用到其中的一个公式,V圆柱=πr2h,V球体=,V圆锥=h)(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是?(2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少?(3)如果绕着它的斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?【解答】解:(1)两个圆锥形成的几何体;(2)V圆锥=πr2h=π×82×6=128π,(3)①如图=,解得r=,所以绕着斜边10所在的直线旋转一周形成的几何体的体积为V圆锥=πr2h=π×()2×10=76.8π②绕着直角边8所在的直线旋转一周形成的几何体的体积为V圆锥=πr2h=π×62×8=96π,故绕着直角边8所在的直线旋转一周形成的几何体的体积大.21.将图中的几何体进行分类,并说明理由.【解答】解:分类首先要确定标准,可以按组成几何体的面的平或曲来划分,也可以按柱、锥、球来划分.(1)长方体是由平面组成的,属于柱体.(2)三棱柱是由平面组成的,属于柱体.(3)球体是由曲面组成的,属于球体.(4)圆柱是由平面和曲面组成的,属于柱体.(5)圆锥是由曲面与平面组成的,属于锥体.(6)四棱锥是由平面组成的,属于锥体.(7)六棱柱是由平面组成的,属于柱体.若按组成几何体的面的平或曲来划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面,若按柱、锥、球来划分:(1)(2)(4)(7)是一类,即柱体;(5)(6)是一类,即锥体;(3)是球体.22.一个正方体6个面分别写着1、2、3、4、5、6,根据下列摆放的三种情况,那么每个数对面上的数是几?【解答】解:根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对.1对4,2对5,3对6。
七上第一章图形的世界过关测试题考试时间:100分钟;命题人:胡老师一、选择题1.如图,用一个平面去截长方体,则截面形状为()A. B. C. D.2.如图所示的正方体,用一个平面截去它的一个角,则截面不可能是(A.锐角三角形B.等腰三角形C.等腰直角三角形D.等边三角形3.用一个平面去截一个长方体,截面的形状不可能是()A.四边形B.五边形C.六边形D.七边形4.把正方体的八个角切去一个角后,余下的图形有()条棱.A.12或15B.12或13C.13或14D.12或13或14或155.用一个平面去截一个正方体,截面不可能是()A.三角形B.正方形C.五边形D.八边形6.用一个平面去截圆锥,截面图形不可能是()A. B. C. D. 7.(2004•金华)圆柱的轴截面是()A.等腰三角形B.等腰梯形C.矩形D.圆8.用平面截下列几何体,相应的截面形状是()A. B. C.9.(2003•金华)在下列几何体中,轴截面是等腰梯形的是()A.圆锥B.圆台C.圆柱D.球10.(2004•泸州)如图,从边长为10的正方体的一顶点处挖去一个边长为1的小正方体,则剩下图形的表面积为()A.600B.599C.598D.59711.(2005•宁德)将圆柱沿斜方向切去一截,剩下的一段如图所示,将它的侧面沿一条母线剪开,则得到的侧面展开图的形状不可能是()A. B. C. D.12.(2005•锦州)用一个垂直于长方体底面的平面去截如图的长方体,截面应为()A. B. C. D.13.(2005•嘉兴)圆锥的轴截面是()A.梯形B.等腰三角形C.矩形D.圆14.(2006•济宁)如图,一平面经过圆锥的顶点截圆锥所得到的截面形状是()A. B. C. D.15.(2008•茂名)用平面去截下列几何体,截面的形状不可能是圆的几何体是( )A.球B.圆锥C.圆柱D.正方体16.(2007•柳州)如图所示的一块长方体木头,想象沿虚线所示位置截下去所得到的截面图形是( )A. B. C. D.17.(2010•资阳)用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是( )A.球体B.圆柱C.圆锥D.三棱锥18.(2010•宁夏)用一个平面去截一个几何体,不能截得三角形截面的几何体是( )A.圆柱B.圆锥C.三棱柱D.正方体19.(2012•北京二模)图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是() A. B. C. D.20.(2013•沙市区三模)如图是一个底面为正方形的长方形,现将左图中的长方体切掉一个“角”后变成了右图的几何体,则右图的俯视图是( )A. B. C. D.21.如图所示的几何体的左视图...是22.下图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )A B C DA.60π B.70π C.90π D.160π23.将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A、面CDHEB、面BCEFC、面ABFGD、面ADHG二、填空题24.如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为__________cm.(不计接缝,结果保留准确值)三、解答题25.下面给出的正多边形的边长都是20cm,请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明.(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.。
初一数学《丰富的图形世界》测试题(Word可编辑版)填空题1.长方体有______个顶点,有_____条棱,_____个面,这些面的形状都是______2.圆柱的侧面展开图是_______,圆锥的侧面展开图是______3.如果一个几何体的视图之一是三角形,这个几何体可能是_____________________。
(写出两个即可)4.用平行于圆锥的底面的平面去截圆锥,则得到的截面是__________形。
5.在同一平面内用游戏棒搭4个大小一样的等边三角形,至少要_______根游戏棒;在空间搭4个一样大小的等边三角形,至少要_______根游戏棒。
6.一个多面体的面数为 12,棱数是 30,则其顶点数为_____。
7.面与面相交成______,线与线相交得到_____,点动成______,线动成_______,面动成_______。
选择题1.下列说法中,正确的是 ()A、棱柱的侧面可以是三角形B、由六个大小一样的正方形所组成的图形是正方体的展开图C、正方体的各条棱都相等D、棱柱的各条棱都相等2.用一个平面去截一个正方体,截面不可能是 ()A、梯形B、五边形C、六边形D、圆3.下列立体图形中,有五个面的是 ()A、四棱锥B、五棱锥C、四棱柱D、五棱柱4.将一个正方体截去一个角,则其面数 (A、增加B、不变C、减少D、上述三种情况均有可能5.一个长为 19cm,宽为 18cm 的长方形,如果把这个长方形分成若干个正方形,要求正方形的边长为正整数,那么该长方形最少可分成正方形的个数 ()A、5个B、6个C、7个D、8个。
2024--2025学年北师大版数学七年级上册第一章丰富的图形世界单元检测试卷2(含答案)一、选择题(本大题共10小题,每小题3分,共30分)1、下列四个几何体中,是三棱柱的为( )2、用平面去截一个正方体,截面的形状不可能是()A、三角形B、五边形C、六边形D、七边形3、下列四个图形中,不能作为正方体的展开图的是( )4、如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是 ( )A、从正面看到的图形的面积为5B、从左面看到的图形的面积为3C、从上面看到的图形的面积为3D、从正面、左面和上面看到的图形的面积都是45、如图是一个几何体从上面看到的形状图,则这个几何体的形状可能是( )6、一个三棱柱的侧面数,顶点数分别在()A、4,10B、3,6C、5,15D、6,157、如图是正方体的一种展开图,其中每个面上都有一个数字,那么在原正方体中,与数字6相对面上 的数字是( )A 、1B 、4C 、5D 、28、用一些大小相同的小正方体搭成一个几何体,从上面看这个几何体时看到的图形如图,其中正方 形中的数字表示该位置上的小正方体的个数,那么从左面看这个几何体时,看到的图形是( )9、如图,三个大小不等的正方体拼成的几何体,其中两个小正方体的棱长之和等于大正方体的棱长, 分别从正面、左面、上面看该几何体所得到的平面图形面积分别为S 1、S 2、S 3,则S 1、S 2、S 3的大 小关系是( )A 、321S S S ==B 、321S S S <<C 、123S S S <<D 、213S S S <<10、一个积木由若干个大小相同且棱长为1的正方体搭成,如图分别是从三个方向看到的形状图,则该积木中棱长为1的正方体的个数是( )A 、6个B 、7个C 、8个D 、9个二、填空题(本大题共10小题,每小题3分,共30分)11、如图,属于柱体的是__________,属于锥体的是________,属于球体的是________.(填序号)12、小明拿着一个有10个面的棱柱,小明拿着的是________棱柱。
《丰富的图形的世界》检测题一.选择题1、一个正方体的展开图如图所示,每一个面上都写有一个自然数并且相对两个面所写的两个数之和相等,那么a+b﹣2c=()A.40B.38C.36D.342、骰子是6个面上分别写有数字1,2,3,4,5,6的小立方体,它任意两对面上所写的两个数字之和为7.将这样相同的几个骰子按照相接触的两个面上的数字的积为6摆成一个几何体,这个几何体的三视图如图所示.已知图中所标注的是部分面上的数字,则“*”所代表的数是()A.2B.4C.5D.63、一个密封的圆柱体容器中装了一半的水,如果将该容器水平放置如图,那么稳定后的水面形状为()A.B.C.D.4、如图所示是正方体的展开图,原正方体“4”的相邻面上的数字之和是()A.2B.12C.14D.15二.填空题5、如图所示是由若干个完全相同的小正方体搭成的几何体的两个视图,则这个几何体可能是由个正方体搭成的。
6、如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于________。
7、一个立方体的六个面上分别标有1、2、3、4、5、6中的一个数字,下面是这个立方体的三种不同放法,则三种放法中各个立方体下面的数字分别是________、________、________。
8、已知图1是图2所示的小正方体的表面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是.三、解答题。
9、一个正棱柱有30条棱(底面是正多边形),侧棱长是10cm,底面边长为1cm.(1)这是几棱柱?(2)此棱柱的侧面积是多少?从正面看从上面看10、把棱长为1cm的若干个小正方体摆放如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)。
()1该几何体中有多少小正方体?()2画出主视图。
()3求出涂上颜色部分的总面积。
11、如图,一个直五棱柱,它的底面边长都是4cm,侧棱长是7cm.回答下列问题。
检测内容:第一章丰富的图形世界得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.视察下列实物模型,其形态是圆锥的是( C )2.左图是由哪个图形绕虚线旋转一周形成的( D )3.如图,立体图形从左面看到的形态图是( B )4.(中牟县期末)如图是某几何体的表面绽开图,则这个几何体的顶点有( B )A.4个 B.6个 C.8个 D.10个第4题图第5题图第6题图5.某正方体的表面绽开图如图,则原正方体上“中”字所在面的对面汉字是( B ) A.国 B.的 C.我 D.梦6.如图,把正方体的八个角切去一个角后,余下的图形有几条棱( D )A.12或15 B.12或13C.13或14 D.12或13或14或157.一个六棱柱模型如图所示,底面边长都是5 cm,侧棱长为4 cm,这个六棱柱的全部侧面的面积之和是( C )A.20 cm2 B.60 cm2 C.120 cm2 D.240 cm2第7题图第8题图第9题图8.如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面绽开(外表面朝上),绽开图可能是( D )A B C D9.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形态图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形态图是( D )10.骰子是6个面上分别写有数字1,2,3,4,5,6的小正方体,它随意两对面上所写的两个数字之和为7.将这样相同的几个骰子依据相接触的两个面上的数字的积为6摆成一个几何体,从这个几何体三个方向看到的形态图如图所示,已知图中所标注的是部分面上的数字,则“*”所代表的数是( B )A.2 B.4 C.5 D.6二、填空题(每小题3分,共15分)11.用一个平面去截下列几何体:①正方体;②圆柱;③圆锥;④直三棱柱,其中,截面形态可以是三角形的有__①③④__.(写出全部正确结果的序号)12.假如按图中虚线对折可以做成一个上底面无盖的盒子,那么该盒子的下底面的字母是__B__.第12题图第13题图13.如图,正方形ABCD的边长为3 cm,以边AB所在直线为轴,将正方形旋转一周,所得几何体从正面看到的图形的面积是__18_cm2__.14.从图中的正方形中选两个涂色,使这两个正方形与4个写有汉字的正方形一起,折叠后能围成一个正方体,则所涂的正方形是__2和9(答案不唯一)__.(只填数字即可)第14题图第15题图15.一个正方体木块的六个面分别标有数字1,2,3,4,5,6.如图是从不同方向视察这个正方体木块看到的数字状况,则数字1对面的数字是__3__.三、解答题(共75分)16.(8分)将下列几何体分类,并说明分类的依据.解:按几何体自身特征分:柱体:(1)(2)(5)(6)(8),其中(1)(2)(5)(8)是棱柱,(6)是圆柱;锥体:(4)(7),其中(4)是圆锥,(7)是棱锥;球体:(3)17.(8分)如图是一个由若干个相同的小立方块所搭成的几何体从上面看得到的图形,小正方形中的数字表示在该位置上小立方块的个数,请画出这个几何体从正面和从左面看得到的图形.解:略18.(10分)如图是一长方体的绽开图,每一面内都标注了字母(标字母的面是外表面),依据要求回答问题:(1)假如D面在多面体的左面,那么F面在哪里?(2)B面和哪个面是相对的面?(3)假如C面在前面,从上面看到的是D面,那么从左面看是哪一面?(4)假如B面在后面,从左面看是D面,那么前面是哪个面?(5)假如A面在右面,从下面看是F面,那么B面在哪里?解:(1)右面(2)E面(3)B面(4)E面(5)后面19.(8分)把直角三角形ABC(如图)(单位:cm)沿着边AB和BC所在直线分别旋转一周,可以得到两个不同的圆锥,沿着哪条边所在的直线旋转得到的圆锥体积比较大?体积为多少?(V 圆锥=13πr 2h )解:当以AB 所在直线为轴旋转时,得到的圆锥底面半径是3 cm ,高是6 cm ,其体积=13×π×32×6=18π(cm 3);当以BC 所在直线为轴旋转时,得到的圆锥的底面半径是6 cm ,高是3 cm ,其体积=13 ×π×62×3=36π(cm 3).所以沿着边BC 所在直线旋转得到的圆锥的体积比较大,体积为36π cm 320.(8分)在平整的地面上,有若干个完全相同的小正方体堆成的一个几何体,如图所示.(1)请画出这个几何体从三个方向看到的图形;(2)若现在你手头上还有一些相同的小正方体,假如保持从上面看到的图形和从左面看到的图形不变,最多可以再添加几个小正方体?解:(1)如图所示:(2)最多可以再添加4个小正方体21.(9分)如图①所示的正方体,它的表面绽开图为图②,四边形APQC 是切正方体的一个截面.问截面的四条线段AC ,CQ ,QP ,PA 分别在绽开图的什么位置上?解:截面的四条线段AC,CQ,QP,PA在绽开图中的位置如图所示:22.(12分)(1)如图①四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有__5__个面,__9__条棱,__6__个顶点,视察图形,并解答:四棱柱有__6__个面,__12__条棱,__8__个顶点;五棱柱有__7__个面,__15__条棱,__10__个顶点;由此猜想n棱柱有__(n+2)__个面,__3n__条棱,__2n__个顶点.(2)如图②,小华用若干个正方形和长方形拼成一个长方体的绽开图,但他总觉得所拼图形存在问题.请你帮小华分析一下拼图是否存在问题:若有多余部分,则把图中多余部分涂黑;若还缺少,则干脆在原图中补全;若图中的正方形边长为2.1 cm,长方形的长为3 cm,宽为2.1 cm,恳求出修正后所折叠而成的长方体的体积.解:(2)拼图存在问题,如图,多了一个正方形.体积:2.1×2.1×3=13.23(cm3)23.(12分)一个几何体是由若干个棱长为3 cm的小正方体搭成的,从左面、上面看到的几何体的形态图如图所示:(1)该几何体最少由__9__个小立方体组成,最多由__14__个小立方体组成;(2)将该几何体的形态固定好,①求该几何体体积的最大值;②若要给体积最小时的几何体表面涂上油漆,求所涂油漆的面积.解:(2)①该几何体体积的最大值为(3×3×3)×14=378 (cm3)②有两种情形:露在外面的面=2×(前+上+侧)=2×[5+6+(6+1)]=36(个)面,涂漆面积S=36×9=324(cm2),露在外面的面=2×(前+上+侧)=2×[6+6+(6+1)]=38(个)面.涂漆面积S=38×9=342(cm2)。
单元测试(一)丰富的图形世界(时间:120分钟满分:150分)一、选择题(本大题共15小题,每小题3分,共45分)1.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆2.如图,在下面四个物体中,最接近圆柱的是( )A.烟囱B.弯管C.玩具硬币D.某种饮料瓶3.直棱柱的侧面都是( )A.正方形B.长方形C.五边形D.以上都不对4.下列几何体没有曲面的是( )A.圆锥B.圆柱C.球D.棱柱5.(芦溪县期末)如图所示,用一个平面去截一个圆柱,则截得的形状应为( )A B C D6.一个几何体的展开图如图所示,这个几何体是( )A.圆锥B.圆柱C.四棱柱D.无法确定7.如图中几何体从正面看得到的平面图形是( )A B C D 8.(长沙一模)如图,直角三角形绕直线l旋转一周,得到的立体图形是( )A B C D10.如图的四个几何体,它们各自从正面,上面看得到的形状图不相同的几何体的个数是( )A.1 B.2 C.3 D.411.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )12.下列说法不正确的是( )A.球的截面一定是圆B.组成长方体的各个面中不可能有正方形C.从三个不同的方向看正方体,得到的平面图形都是正方形D.圆锥的截面可能是圆13.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是( )A.3 B.9 C.12 D.1814.(深圳期末)用平面去截如图所示的三棱柱,截面形状不可能是( )A.三角形B.四边形C.五边形D.六边形15.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其他空盒子混放在一起,只凭观察,选出墨水在哪个盒子中( )A B C D二、填空题(本大题共5小题,每小题5分,共25分)16.飞机表演的“飞机拉线”用数学知识解释为:________________.17.下列图形中,是柱体的有________ .(填序号)19.一个棱柱有12个顶点,所有侧棱长的和是48 cm,则每条侧棱长是________cm.20.一个正方体盒子的展开图如图所示,如果要把它粘成一个正方体,那么与点A重合的点是________.三、解答题(本大题共7小题,共80分)21.(12分)将下列几何体与它的名称连接起来.22.(6分)如图,求这个棱柱共有多少个面?多少个顶点?有多少条棱?23.(10分)若要使图中平面图形折叠成正方体后,相对面上的数字相等,求x+y+z的值.24.(10分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.25.(12分)如图所示的正方体被竖直截去了一部分,求被截去的那一部分的体积.(棱柱的体积等于底面积乘以高)26.(14分)如图所示,长方形ABCD的长AB为10 cm,宽AD为6 cm,把长方形ABCD绕AB边所在的直线旋转一周,然后用平面沿AB方向去截所得的几何体,求截面的最大面积.27.(16分)根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.参考答案1.D 2.C 3.B 4.D 5.B 6.A7.D8.C9.C10.C11.C12.B13.D14.D15.B16.点动成线17.②③⑥18.答案不唯一,如:球、正方体等19.820.C、E 21.略.22.这个棱柱共有7个面,10个顶点,15条棱.23.“2”与“y”相对,“3”与“z”相对,“1”与“x”相对.则x+y+z=1+2+3=6.24.从正面和从左面看到的形状图如图所示.25.V=12×(5-4)×(5-3)×5=5(cm3).答:被截去的那一部分体积为5 cm3.26.由题意得:把长方形ABCD绕AB边所在的直线旋转一周,得到的几何体为圆柱,且圆柱的底面半径为6 cm,高为10 cm.所以截面的最大面积为:6×2×10=120(cm2).27.根据题意,从上面看,构成几何体所需小正方体最多情况如图1所示,所需小正方体最少情况如图2所示:所以最多需要11个小正方体,最少需要9个小正方体.。
丰富的图形世界测试题
(满分:100分测试时间:90分钟)
班级______________姓名______________分数______________
一、填空题(本大题共8小题,每小题3分,共24分)
1.面与面相交成____________,线与线相交得到___________。
2.从_____,_____和____三个不同的方向看一个物体,得到的图形称_____图。
3.圆柱是由个底面和个曲面所组成的,它的侧面展开图是。
4.柱体包括____,_____,锥体包括____,_____。
5.直接写出下列立体图形的形状.
( ) ( ) ( ) ( ) ( )
6. 图中按前三个图形阴影部分的特点,将第四个图形补充完整.
7.当下面这个图案被折起来组成一个正方体,数字_______会在与数字2所在的平面相对的平面上。
8.雨点从高空落下形成的轨迹说明了;车轨快速旋转时看起来象个圆面,这说明了;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了.
二、选择题(本大题共8小题,每小题3分,共24分)
9.下列几何体的截面是().
(A)(B)(C)(D)
10.从上面看下图,能看到的结果是图形().
(C)
(A)(B)
(D)
11.下面的四个图形,能折叠成三棱柱的有( )个.
(A)1 (B)2 (C)3 (D)4
12.对于一个多面体来说,欧拉公式是指( ).
(A)顶点数+棱数-面数=2 (B)顶点数+面数-棱数=2
(C)棱数+面数-顶点数=2 (D)不同于ABC的结论
13.一个平面去截一只篮球,截面是().
(A)圆(B)三角形(C)正方形(D)非圆的曲线
14. 用一个平面去截一个正方体,截面可能是()
A、七边形
B、圆
C、长方形
D、圆锥
15. 下图是正方体的展开图的有()个
A、2个
B、3个
C、
4个D、5个
16.下列各图中,(
)是四棱柱的侧面展开图.
(A) (B) (C) (D)
17.下图是( )的平面展开图.
(A)六棱柱(B)五棱柱(C)四棱柱(D)五棱锥
18.将长方形截去一个角,剩余几个角().
(A)三个角(B)四个角(C)五个角(D)不能确定
三、解答题(共52分)
19.画出下列几何体的三视图。
(5分)
20.若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值。
(5分)
21. 用正方何小木块搭建成的,下面三个图分别是它的主视图、俯视图、和左视图,请你观察它是由多少块小木块组成的(8分)
22. 如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数。
请你画出它的主视图与左视图。
(10分)
23. 已知下图为一几何体的三视图:(12分) (1)写出这个几何体的名称;
(2)任意画出它的一种表面展开图;
(3)若主视图的长为10cm ,俯视图中三角形的边长为4cm ,求这个几何
体的侧面积。
24. 推理猜测题:(12分)
(1)三棱锥有_______条棱,四棱锥有_______条棱,十棱锥有_________条棱
(2)__________棱锥有30条棱 (3)__________棱柱有60条棱
(4)一个多面体的棱数是8,则这个多面体的面数是_________
俯视图 左视图 主视图
俯视图:等边三角形左视图:长方形主视图:长方形。