巧用宏程序加工大螺距梯形螺纹
- 格式:doc
- 大小:65.50 KB
- 文档页数:7
巧妙利用宏程序实现不同类型梯形螺纹的加工
丁小红
【期刊名称】《广西轻工业》
【年(卷),期】2010(026)010
【摘要】梯形螺纹的加工是数车加工中的一个难点.结合FANUC Oi-Serjes-tc数控车床的应用实践,借助于宏程序中变量的使用,从编程加工方面探讨了数控车削梯形螺纹及非标梯形螺纹的方法.
【总页数】2页(P64-65)
【作者】丁小红
【作者单位】南通市工贸技工学校,江苏,南通,226007
【正文语种】中文
【中图分类】TG62
【相关文献】
1.采用含变量参数的宏程序加工不同类型梯形螺纹
2.数控车床加工梯形螺纹B类宏程序的设计
3.运用宏程序加工梯形螺纹探索
4.数控车床加工梯形螺纹B类宏程序的设计
5.利用宏程序实现大螺距梯形螺纹加工
因版权原因,仅展示原文概要,查看原文内容请购买。
梯形螺纹加工常用的方法有直进法、斜进法、左右车削法和车阶梯槽法等,这些加工方法由于其自身存在缺陷,生产效率较低,精度稳定性差,很难实现产品批量生产或产品的改型,这也极大地影响了产品的加工效率和加工质量。
以FAN UC系统数控车床为例,能够用来加工螺纹的基本指令有G32、G92、G76等,它们各有自身的优缺点。
如果单独使用其中某一指令来加工梯形螺纹的话,只能加工小螺距或精度较低的螺纹,切削效率低,难以满足更高的要求。
1 梯形螺纹加工的相关知识(1)车刀的选择与安装。
梯形螺纹加工选择的是成型车刀,车刀在安装时,车刀主切削刃必须与工件轴线等高,同时应和工件轴线平行。
刀头的角度平分线要垂直于工件轴线。
可以使用样板找正装夹,以免产生螺纹半角加工误差。
(2)工件的装夹。
一般采用两顶尖或一夹一顶的方式装夹。
(3)数控车床的选择和调整。
梯形螺纹加工选择C K 6140数控车床,F A N U C -0i -mate TC数控系统。
要求数控车床加工精度高、磨损少、滚珠丝杠反向间隙小。
2 梯形螺纹的车削方法2.1直进法刀具沿直径方向进刀,如图1所示,常用于小螺距普通螺纹的加工。
使用G32\G92指令代码编程常采用此种进刀方式。
该加工方式采用的是三刃同时参与切削,刀头负荷较大,为了均衡刀具的受力,常采用递减规律分配吃刀量。
对于大螺距普通螺纹和梯形螺纹如采用该种方式加工,刀头很容易受力过大而折断或者产生扎刀现象。
2.2斜进法刀具进刀方向沿牙形角方向,如图2所示,由于采用单刃切削,切削力减少,排屑顺畅,F A N U C 系统中的G 76指令即为典型①作者简介:张长红(1978.3—)女,江苏泗洪人,本科,机械讲师,江苏省连云港工贸高等职业技术学校/江苏省经贸技师学院,研究方 向:数控专业理论及实践教学。
浅析用宏程序加工梯形螺纹的方法①张长红(江苏省连云港工贸高等职业技术学校/江苏省经贸技师学院 江苏连云港 100084)摘 要:螺纹传动在机械传动中应用广泛,在传递较大动力的大型设备中梯形螺纹应用较多。
B类宏程序加工梯形螺纹的方法和技巧作者:陈未峰来源:《职业·中旬》2012年第03期一、B类宏程序在数控编程中的重要性在数控车削加工中,普通轴类零件的轮廓形状都可以利用G功能指令来完成加工。
但异形曲线和大螺距螺纹大大增加了零件的加工难度,G指令编程不好实现这类零件的有效加工。
例如梯形螺纹较之三角螺纹,螺距和牙型都大,而且精度高,牙型两侧表面粗糙度值较小,这样梯形螺纹车削时,吃刀深、走刀快、切削余量大、切削抗力大,导致梯形螺纹的车削加工难度较大。
与宏程序相比,一般程序的程序字为常量,一个程序只能描述一个几何形状,所以缺乏灵活性和适用性。
而用户宏程序本体中可以使用变量进行编程,还可以用宏指令对这些变量进行赋值、运算等处理,从而可以使用宏程序执行一些有规律变化的动作。
与A类宏程序相似,B类宏程序的变量也是由“#”符号和1至3位数字构成;但B类宏程序的数学运算可直接用数学符号完成,而不需采用G65语句,有效地提高了零件的编程灵活性和加工效率。
因此,使用B类宏程序加工有梯形螺纹的零件,对提高数控编程的效率是非常重要的。
二、球头梯形螺纹零件加工工艺分析1.球头梯形螺纹零件分析如图1所示,球头梯形螺纹轴由球面、曲面、退刀槽和梯形螺纹构成,其螺距为6mm,加工精度要求较高,球面和曲面加工简单。
在FANUC 0i数控系统机床上加工时,利用G73复合固定循环就可以进行有效加工,但由于梯形螺纹螺距较大和加工精度较高,致使梯形螺纹车削时,吃刀深、切削余量大、切削抗力大,车削加工难度较大。
利用普通G功能指令无法高质量、有效地完成该零件的加工,需利用B类宏程序进行切削加工。
2.计算相关尺寸,并查表确定公差该零件上梯形外螺纹为Tr36×6,螺距为6mm,公制梯形螺纹的牙型角为30°,梯形螺纹的牙型如图2所示,各基本尺寸计算结果如下:大径中径d2=d-0.5P=36-3=33,查表确定其公差,故;牙高h3=0.5P+ ac=3.5;小径d3=d-2 h3=29,查表确定其公差,故;牙顶宽f=0.366P=2.196;牙底宽W=0.366P-0.536ac =2.196-0.268=1.928螺纹中经三针测量法测量,如图3所示,用3.1mm的测量棒测量中径,则测量尺寸为M=d2+4.864dD-1.866P=32.88,根据中径公差确定公差,则(其中dD表示测量用量针的直径,P 表示螺距)。
梯形螺纹的宏程序加工摘要:梯形螺纹是数控车工加工的难点,宏程序是数控编程的难点,然而二者结合起来就会使数控机床加工梯形螺纹,操作者只要修改参数的数值就可以完成不同螺距与长度的梯形螺纹加工,十分的方便快捷。
关键词:数控车床FANUC系统梯形螺纹宏程序#1=A 梯形螺纹大径#2=B 梯形螺纹小径#3=B 梯形螺纹牙底槽宽#4=I 梯形螺纹车刀刀头宽度#5=J 梯形螺纹长度L#6=K 梯形螺纹螺距#7=D 升速段长#8=E 减速段长#9= 粗车转速#10= 精车转速#19=S 精加工余量(直径值)主程序:O0001;N10 G54 G40 G21;N20 T0404;调用梯形螺纹车刀N30 G65 P333;调用梯形螺纹宏程序N40 M05;主轴停止转动N50 M30;程序结束并返回程序开头宏程序;O333N10 M03 S#9;主轴正转,转速为#9N20 #30=FUP[[#1-#2-#19]/2/#18];根据背吃刀量和精加工余量计算径向粗车循环次数(下取整)N30 #31=[#1-#2-#19]/#30;计算径向粗加工每次背吃刀量(直径值)N40 #40=FUP[#3-#4-#19/2]/2/#20;计算Z向粗车循环次数;N50 #41=[#3-#4-#19/2]/2/#40;计算Z向粗加工每次背吃刀量N60 #28=1;径向切削次数初始值赋值N70 WHILE[#28GT#30]DO1;N80 G00 X[#1+3];车刀快速移动到X方向起刀位置N90 Z#7;车刀快速移动到Z方向起刀点N100 X[#1-#31];车刀径向切入一个背吃刀量N120 G32 Z-[#5+#8]F#6;粗车梯形螺纹N110 #29=1;Z向切削次数初始值赋值N130 WHILE[#29GT#40]DO2;N140 G00 X[#1+3];车刀快速返回到X方向起刀位置N150 Z#7;车刀快速移动到Z方向起刀点N160 W-#41;车刀Z向负向移动一个切削量N170 X[#1-#31];车刀径向进刀#31N180 G32 Z-[#5+#8]F#6;粗车梯形螺纹N190 G00 X[#1+3];车刀快速返回到X方向起刀位置N200 Z#7;车刀快速移动到Z方向起刀点N210W#41;车刀Z向正向移动一个切削量N220X[#1-#31];车刀径向进刀#31N230G32Z-[#5+#8]F#6;粗车梯形螺纹N240G00X[#1+3];车刀快速返回到X方向起刀位置N250Z#7;车刀快速移动到Z方向起刀点N260#29=#29+1;Z向移动次数增加1N270#41=#41*#29;Z向移动量递增N280END2;N290#28=#28+1;X向切削次数增加1N300#31=#31*#28;X向切削量递增N310END1;N320 #41=[#3-#4-#19/2]/2/#40;计算Z向粗加工每次背吃刀量N330#29=1;Z向切削次数初始值赋值N340S#10;选用精加工转速N350G00X[#1+3];车刀快速返回到X方向起刀位置N360Z#7;车刀快速移动到Z方向起刀点N370X#2;车刀进给到X向精车位置N380G32Z-[#5+#8]F#6;精车螺纹牙底N390WHILE[#29GT#40]DO3;N400G00X[#1+3];车刀快速返回到X方向起刀位置N410Z#7;车刀快速移动到Z方向起刀点N420X#2;车刀进给到X向精车位置N430W-#41;车刀Z向负向移动一个切削量N440G32Z-[#5+#8]F#6;精车螺纹牙底N450G00X[#1+3];车刀快速返回到X方向起刀位置N460Z#7;车刀快速移动到Z方向起刀点N470X#2;车刀进给到X向精车位置N480W#41;车刀Z向正向移动一个切削量N490G32Z-[#5+#8]F#6;精车螺纹牙底N500#29=#29+1;Z向移动次数增加1N510#41=#41*#29;Z向移动量递增N520END3;N530G00X[#1+3];车刀快速返回到X方向起刀位置N540Z#7;车刀快速移动到Z方向起刀点N550X#2;车刀进给到X向精车位置N560W-[#3-#4]/2;车刀移动到螺纹牙右侧面起点N570G32Z-[#5+#8]F#6;精车螺纹牙牙右侧面N580G00X[#1+3];车刀快速返回到X方向起刀位置N590Z#7;车刀快速移动到Z方向起刀点N600X#2;车刀进给到X向精车位置N610W[#3-#4]/2;车刀移动到螺纹牙左侧面起点N620G32Z-[#5+#8]F#6;精车螺纹牙牙左侧面N630G0X100;N640Z100;N650M99。
谈利用宏程序对大螺距螺纹的加工作者:王俊辉来源:《职业·下旬》2012年第01期摘要:在机械中,许多零件都具有大螺距螺纹。
传统加工方法很难保证加工精度和效率,而数控机床宏程序加工,不仅能高速度、高质量地完成加工,而且有能力分析和解决在螺纹车削中出现的各种质量问题。
关键词:数控车床高效率宏程序大螺纹数控编程是数控机床进行零件加工的必要前提,而程序的编写方法直接决定数控加工的效率。
一些典型的零件,依靠传统的指令格式进行编程,已经不能体现出数控加工的优点。
笔者主要介绍螺纹加工指令在应用时,如何与宏程序配合进行使用,解决加工中的一些突出问题。
它们的应用,使一些典型工件高效率的加工变成了现实。
一、大螺距螺纹的加工难点螺纹升角的大小决定了螺距的大小,大螺纹的升角将造成与走刀方向同侧的侧后刀面和工件之间的剧烈摩擦,出现让刀的情况,从而使工件精度达不到要求。
随着螺距增大,加工深度也增大,会出现夹刀现象,造成闷车、断刀等危险情况。
所以,要考虑刀具切削力的大小及刀具的承受能力。
二、传统加工方法用直进法进刀,使切屑垂直于螺纹轴线方向,有利于排出铁屑,而左右切削法因车刀只有一条刀刃参加切削,减小刀具和工件的接触面积,避免多刃同时切削,造成扎刀。
综合而言,就是直进法进刀,然后利用左右借刀,扩大加工面积,保证螺纹牙底和牙顶的尺寸,达到精度合格。
G92螺纹指令的进刀方法为直进法,走刀路线四方循环,左右借刀无法有指令完成,且程序内容过多,编写困难,加工到一定深度容易造成夹刀,轻者刀具损坏,重者工件报废。
G76代码可加工带螺纹退尾的直螺纹和锥螺纹,通过多次螺纹粗车、螺纹精车,完成规定牙高(总切深)的螺纹加工,可实现单侧刀刃螺纹切削,吃刀量逐渐减小,有利于保护刀具,提高螺纹精度。
进刀方法是斜进法。
但是左右借刀量无法控制,加工过程中一旦出现问题,很难控制尺寸,且指令参数较多,如果选择不合适,就会造成加工精度不合格,零件报废。
巧用宏程序加工大螺距梯形螺纹(转载) 专业知识2010-01-25 18:25:55 阅读261 评论0字号:大中小
【摘要】为在数控车床上加工
大螺距梯形螺纹,对梯形螺纹的加工工艺和
FANUC 0i系统宏指令的应用进行了研究,
探索出一套利用宏指令在数控车床上加工
合格梯形螺纹的方法,并结合实际生产验证
了其可行性,拓展了宏指令的应用范围。
【关键词】梯形螺纹;加工工艺;
宏指令
1引言
近年来数控大赛受到各方面的重
视,其大赛的内容也在逐步丰富,加工梯形
螺纹课题是普通车床的生产实习过程中最
基本的实习课题,现也成为数控大赛中的一
项重要内容。
但在数控车床实习过程中,常
常由于加工工艺方面的原因,却很少进行梯
形螺纹的加工练习,再加上受学校设备的影
响,所加工出的梯形螺纹质量较差。
如何在
数控车床上高效、高质量地加工出合格梯形
螺纹成为许多指导教师急待解决的难题。
其
实,只要工艺分析合理,使用的加工指令得
当,完全可以在数控车床上加工出合格的梯形螺纹。
下面以如图1所示梯形螺纹,阐述其加工方法。
图1 梯形螺纹
2梯形螺纹的车削工艺分析
加工梯形螺纹的加工有很多种:直进法、斜进法、左右切削法、车直槽法、分层法等等[1]。
由于梯形螺纹较之三角螺纹,其螺距和牙型都大,而且精度高,牙型两侧面表面粗糙度值较小,致使梯形螺纹车削时,吃刀深,走刀快,切削余量大,切削抗力大。
再[1]加工许多学校的数控车床刚性较差,这就导致了梯形螺纹的车削加工难度较大,在数控车工技能培训中难于掌握,容易产生“扎刀”和“爆刀”现象,进而对此产生紧张和畏惧的心理。
在多年的数车工实习教学中,通过不断的摸索、总结、完善,对于梯
形螺纹的车削也有了一定的认知,笔者认为利用宏程序进行分层切削,可以很好地解决出现的问题。
“分层法”车削梯形螺纹实际上是直进法和左右切削法的综合应用。
在车削较大螺距的梯形螺纹时,“分层法”通常不是一次性就把梯形槽切削出来,而是把牙槽分成若干层,每层深度根据实际情况而定。
转化成若干个较浅的梯形槽来进行切削,可以降低车削难度。
每一层的切削都采用左右交替车削的方法,背吃刀量很小,刀具只需沿左右牙型线切削,梯形螺纹车刀始终只有一个侧刃参加切削(如图2),从而使排屑比较顺利,刀尖的受力和受热情况有所改善,因此能加工出较高质量的梯形螺纹,且容易掌握,程序简短,容易操作。
图2 分层切削法3宏程序分层加工大螺距梯形螺纹
3.1 参数表
宏程序[2,3]中使用的变量和含意如表1如示。
表1 变量及其含意
序号参
数
内
容
说明
1 # 1
1 螺
纹加工直径
在加工过程中由大径向小径变化
2 # 1
2 右
边借刀量
随着切深的增加而增大
3 # 1
3 左
边借刀量
随着切深的增加而减小
4 # 1
4 每
层吃刀深度
在加工中可根据情况进行调整
3.2 程序
以Fanuc 0i mateTC系统为例,图
1所示梯形螺纹的加工程序如下:
O0001;
T0101 M03 S300;换梯形螺纹刀,主轴转速300r/min
G00 X38 Z5;快速走到起刀点
M08;开冷却
#101=36;螺纹公称直径
#102=0;右边借刀量初始值
#103=-1.876;左边借刀量初始值(tg15*3.5*2或0.938*2)
#104=0.2;每次吃刀深度,初始值
N1 IF [#101 LT 29] GOTO2;加工到小径尺寸循环结束
G0 Z[5+#102] ;快速走到右边加工起刀点
G92 X[#101] Z-30 F6;右边加工一刀
G0 Z[5+#103] ;快速走到左边加工起刀点
G92 X[#101] Z-30 F6;左边加工一刀
#101=#101-#104;改变螺纹加工直径
#102=#102-0.134*#104;计算因改变切深后右边借刀量(tg15/2=0.134)
#103=#103+0.134*#104;计算因改变切深后左边借刀量(tg15/2=0.134)
IF[#101 LT 34] THEN #104=0.15;小于34时每次吃刀深度为0.15
IF[#101 LT 32] THEN #104=0.1;小于32时每次吃刀深度为0.10
IF[#101 LT 30] THEN #104=0.05;小于30时每次吃刀深度为0.05
GOTO 1;
N2 G92 X29 Z-30 F6;在底径处精加工两刀
G92 X29 Z-30 F6;
G00 X100 Z100 M09;刀架快速退回,关闭冷却
M05;主轴停
M30;程序结束
4结论
在实践教学和大赛中,运用宏程序分层加工梯形螺纹,这种易懂、易掌握的车削梯形螺纹方法,得到了充分地肯定和好
评。
教师能够较形象、较直观地把车削方法讲解和传授给学生,学生普遍也能够较快、较容易地理解和掌握这种车削方法,大大降低了梯形螺纹车削这一课题的教学难度和
强度,在数控技能大赛中累创佳绩。
我们只有掌握和熟练了各种车削方法,熟练运用数控指令,一定能在车削过程中灵活运用,高效率、高精度、高品质地完成梯形螺纹车削。
参考文献
[1]王公安.车工工艺学[M].第一版.北京:中国劳动保障出版社,2005.
[2]北京法那科机电有限公司. Fanuc 0i mate TC 操作说明书,2007.
[3]汪荣青,邱建忠.数控编程与操作(第
一版)[M].北京:化学工业出版社,2009.。