离心压缩机防喘振控制
- 格式:doc
- 大小:175.00 KB
- 文档页数:6
离⼼式压缩机防喘振控制离⼼式压缩机防喘振控制的探讨The research of anti-surge control forcentrifugal compressor杨宝星中国⽯油辽阳⽯化分公司芳烃⼚仪表车间摘要:对离⼼式压缩机喘振产⽣的原因进⾏了分析,总结了防⽌离⼼压缩机喘振的控制⽅法。
重点阐述了本⼚压缩机防喘振的控制⽅法及实际操作中应该注意的问题。
关键词:离⼼式压缩机;喘振;防喘振控制Abstract: This paper analyzes the reasons that surge occurs on centrifugal compressor and summarizes the control method of anti-surge control from centrifugal compressor. It especially illustrates the control method of anti-surge control from our plant’s compressor and discusses the problems in real operation. Keywords: Centrifugal compressor; surge; anti-surge control1、引⾔离⼼式压缩机具有体积⼩、流量⼤、重量轻、运⾏效率⾼、易损件少、输送⽓体⽆油⽓污染、供⽓均匀、运转平稳、经济性好等⼀系列优点。
因此,离⼼式压缩机在⽯油化⼯⽣产中得到了⼴泛的应⽤,但是它在⼀些特定⼯况下会发⽣喘振使压缩机不能正常⼯作,稍有失误就会造成严重的事故。
因此,压缩机不允许在喘振状态下运⾏只能采取相应的防喘振控制。
1.1 离⼼式压缩机喘振产⽣的原因离⼼式压缩机在运⾏过程中,负荷下降到⼀定数值时,⽓体的排送会出现强烈的振荡,机⾝亦随之发⽣剧烈振动,这些现象被称为喘振。
其产⽣的原因是压缩机⼯作流量⼩于最⼩流量时,⽓流在离⼼式压缩机叶⽚进⼝处与叶⽚发⽣冲击,使叶⽚⼀侧⽓流边界层严重分离,出现漩涡区,从⽽形成旋转脱离或旋转失速。
离心式压缩机喘振产生的原因及解决方案一一离心式压缩机是工业生产中的重要设备,其具有排气量大、结构简单紧凑等优点,但也存在一些缺点如稳定工况区间较窄、容易发生喘振。
喘振给压缩机带来危害极大,为了保障压缩机稳定运行,必须应用有效的防喘振控制。
本文主要介绍了离心式压缩机喘振产生的原因,详细叙述了压缩机防喘振的意义与方法,以离心式空气压缩机为例,基于霍尼韦尔DCS系统如何实现防喘振控制。
离心式压缩机的工作原理随着我国工业的迅速发展,工业气体的需求日益增长,离心式压缩机因其优秀的性能及较大的排气量而被广泛应用于工业生产中。
在离心式压缩机中,汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体会被甩到工作轮后面的扩压器中去。
而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进气部分进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。
气体因离心作用增加了压力,以很高的速度离开工作轮,经扩压器后速度逐渐降低,动能转变为静压能,压力增加,同时气体温度相应升高,在单级压缩不能达到压力要求的情况下,需要经过多级压缩,压缩前需要经过气体冷却器冷却,经过这种多级冷却多级压缩后,最终达到气体压缩的目的。
喘振产生的原因喘振是目前离心式压缩机容易发生的通病。
离心式压缩机的操作工况偏离设计工况导致入口流量减小,使得压缩机内部叶轮、扩压器等部件气流方向发生变化,在叶片非工作面上出现气流的旋转脱离,造成叶轮通道中气流无法通过。
该工况下,压缩机出口压力及与压缩机联合工作的管网压力会出现不稳定波动,进而使得压缩机出口气体反复倒流即“喘振”现象。
另外,压缩机的吸入气体温度发生变化时,其特性曲线也将改变,如图1、图2所示,这是压缩机在某一恒定转速情况下,因吸入气体温度变化时的一组特性曲线。
曲线表明随着温度的升高,压缩机易进入喘振区。
图1离心压缩机的性能曲线图2温度对性能曲线的影响喘振现象的发生,由于气体反复倒流,会打破压缩机原有的运动平衡,导致转子的振动增大,在旋转中与定子接触摩擦,通常监控上的表现为压缩机出口的压力反复波动,轴承温度逐渐升高。
离心式空气压缩机喘振故障分析与控制预防摘要:离心式压缩机是一种实现连续运输和高转速的节能设备,依靠高速旋转的叶片带动气体产生离心力并完成做功。
离心式压缩机的发展历程已有百年历史。
离心式压缩机的出现和发展晚于往复式压缩机,但目前在许多领域,已逐渐代替往复式压缩机而成为了主要的动力机械,特别是在重大化工生产、气体传输和液化等领域得到了广泛的应用。
关键词:离心式压缩机;应用现状;性能;常见故障引言某企业煤气化装置空分单元的空气压缩机采用的是四级离心式压缩机,压缩机的安全可靠运行对生产意义重大。
喘振是离心式压缩机在入口流量减少到一定程度时所发生的一种非正常工况下的振动,对于离心式压缩机有严重损害。
压缩机的流量控制通过改变入口导叶阀的导叶叶片开度即旋转角度来控制进气量大小,由分散控制系统(DCS)根据导叶阀进口流量经过比例积分微分(PID)运算发出4~20mA控制信号,经过阀门定位器使活塞执行机构带动连杆控制导叶叶片来实现。
离心式压缩机设有防喘振的自动放散阀,一旦出口压力过高,压缩机接近喘振区或者发生喘振时,该阀门会自动打开,以解除喘振。
1离心式压缩机在发电领域内的应用现状布雷顿循环是以乔治.布雷顿的名字命名的热力循环系统,包括绝热压缩、等压加热、绝热膨胀和等压冷却4个部分。
超临界二氧化碳(S-CO)布雷顿动力循环是指以二氧化碳为工质的传热体系,其结构紧凑,效率高,安全稳定,在化石能源、核能、太阳能等发电领域得到了广泛的应用。
以超临界(S-CO)为工质的离心式压缩机大大提高了布雷顿循环热效率以及各种热源形式的利用。
美国Sandia国家实验室和能源部对以S-CO,为工质的发电技术进行了大量的实验,并建造S-CO,压缩机实验台用于研究压缩机的性能。
2018年,在德州开建了一个S-CO,光热发电示范项目“SupercriticalTransformationalElectricPower”(“S-TEP”,超临界转换发电装置),成功推进S.co.发电技术的大型化。
离心式压缩机防喘振控制措施分析摘要:在化工企业生产过程中,离心式压缩机有着十分重要的作用和地位,其有着排气压力在,输送流量小的优势,但其在具体运行过程中也存在一定缺陷问题。
如喘振问题,发生喘振对压缩机会造成极大危害,所以,需要采取有效防控措施,以确保压缩机得以安全、稳定地运行。
有鉴于此,下文在充分结合相关文献研究以及自己多年工作实践经验情况下,先是对离心式压缩机喘振问题的成因展开了认真分析,进而探讨了几点离心式压缩机喘振防控的有效措施,以供借鉴。
关键词:离心式压缩机;防喘振;控制措施一、探析离心式压缩机发生喘振的原因通常生产装置运行中的压缩机在运作时,如果受到外部因素影响而致使流量减小并达到Qmin值时,则会致使压缩机流道发生旋转脱离问题。
如果气量继续减少,那么压缩机叶轮整体流道就会形成气体旋涡区,而此时压缩机出口压力则会发生及时降低。
而与此同时,与压缩机出口相互连接的管网系统压力并不断立刻降低,且管网内气体还会倒流到压缩机内。
当管网内压力比压缩机出口排气压力小时,气体就会停止倒流,此时压缩机就会向管网内进行排气。
但由于进气量不够,当压缩机出口管网恢复到一定压力时流道内就会发生旋涡。
在这种循环下,机组和管道内流量也会随着之出现周期性变化,机器进出口压力也会引发较大幅度脉动。
另外,因气体压缩机进出口部位发生倒流,与此同时还会有较大周期性气流声响以及大幅度振动现象。
喘振是离心式压缩机自身所固有的一种特性,其发生喘振的原因通常可以在对象特性方面找出来。
因压缩机压缩比和流量曲线上存在一个交点,当其在右面曲线上进行作业时,压缩机是处于稳定状态的。
如在曲线左面低流量范围内作业时,会受到气体所具有的可压缩性特征影响,而出现不稳定。
而如果流量降低到喘振线时,倘若压缩比降下,那么流量就会继续减少;再加上输出管线气体压力要比压缩机出口压力大,所以,已经被压缩气体就会迅速倒流到压缩机内,随后管线内压力会进一步减小,进而会致使气体流动方向发生反转,并最终引发周期性喘振。
离心式压缩机喘振危害防喘振控制论文
离心式压缩机喘振的危害及防喘振控制摘要:本文就天然气液化(lng)过程中冷剂压缩机(离心式压缩机)有关防喘振方面的相关内容展开了探讨,主要就喘振机理、影响因素、危害及判断,防喘振控制以及发生喘振时的处理措施进行了分析。
关键词:离心式压缩机喘振
压缩机运行中一个特殊现象就是喘振,防止喘振是压缩机运行中极其重要的问题。
在运行时,喘振的迹象一般是首先流量大幅度下降,压缩机排量显著降低,出口压力波动,压力表的指针来回摆动,机组发生强烈振动并伴有间断低沉的吼声,好像人在咳一般。
判断喘振除了凭人的感觉外,还可以根据仪表和运行参数配合性能曲线查出。
一、喘振的危害及判断
1.喘振的危害
喘振现象对压缩机十分有害,主要表现在以下几个方面:①喘振时由于气流强烈的脉动和周期性振荡,会使供气参数(压力、流量等)大幅度地波动,破坏了工艺系统的稳定性。
②会使叶片强烈振动,叶轮应力大大增加,噪声加剧。
③引起动静部件的摩擦与碰撞,使压缩机的轴产生弯曲变形,严重时会产生轴向窜动,碰坏叶轮。
④加剧轴承、轴颈的磨损,破坏润滑油膜的稳定性,使轴承合金产生疲劳裂纹,甚至烧毁。
⑤损坏压缩机的级间密封及轴封,使压缩机效率降低,甚至造成爆炸、火灾等事故。
⑥影响与压缩机相。
离心式压缩机的防喘振控制设计探讨摘要:离心式压缩机的防喘振控制设计需要把握安全下限值设定、防喘振控制阀设计、出口管线布置设计。
为了提高离心式压缩机的防喘振控制效率,本文从健全防喘振系统警报机制、加大检测与调控压力、开发远程控制功能、科学设计机器参数等方面探讨,节约资源,提高工作效率。
关键词:离心式压缩机;喘振;控制设计工业快速发展,广泛应用了离心式压缩机[1]。
电脑上压缩机工作中受到分子量与温度变化影响与管理应用不当的影响容易出现振喘问题,威胁了机器的安全性、使用寿命及工作效率等等。
因此,设计人员应把握防喘振控制设计要点,从多个方面做好离心式压缩机的防喘振控制工作,保障机器的正常运行。
1离心式压缩机的防喘振控制设计要点1.1安全下限值设定设定安全下限值时其对防喘振阀的启动产生直接的影响。
由此可见,压缩机防喘振控制中安全下限值是相当关键的因素。
一般来说,工作人员可以通过可变极限流量与固定极限流量设定压缩机入口流量的安全下限值。
通过固定极限流量控制压缩机入口位置的流量值在固定值之上,避免压缩机的工作点误入喘振区。
设置固定极限流量并不复杂,防喘振具有投资少,可靠性强的特点,主要用于转速变化范围小与固定转速范围很小的压缩机。
若压缩机在转速较低的范围内运行,受到流量安全裕度较大的影响,可能浪费大量的能源[2]。
而要想降低压缩机能量损耗,可以设置可变式防喘振极限流量,设置压缩机入口流量的安全下限值。
若压缩机出现负荷波动,需要调节转速则可以使用此方法。
1.2防喘振控制阀设计设计防喘振控制阀时需要满足几个问题:一是针对可能发生的最大波动具有良好的防喘振效果;二是确保压缩机性能曲线上的操作的所有区域均具有良好的防振喘保护效果;三是控制防喘振最大流量值时比保证在稳定操作的前提下预防喘振流量更大;四是设计防喘流通能力时要全面规避压缩机进入阻塞区;五是从可控角度分析时需要控制降低防喘振阀的尺寸。
1.3出口管线布置设计设置压缩机出口管线时压缩机系统地可控性一定程度上受到影响。
离心式压缩机喘振故障分析与防喘振控制措施摘要:喘振是离心式压缩机非常典型的故障类型之一。
离心压缩机在日常运行过程中,如果发生喘振故障,那么就会影响其运行的稳定性,导致其性能缺失,最终致使生产无法正常进行。
文章探讨了离心压缩机喘振控制的重要性,总结了喘振故障的判定方法,分析了压缩机发生喘振的原因,并提出了防喘振控制措施。
关键词:离心式压缩机;喘振;流量;叶轮离心式压缩机在现代工业生产中发挥着重要作用,防喘振控制及逆流保护历贯穿其管理的全过程。
为了防止压缩机出现喘振故障,除了自控角度选择相应的控制策略、控制系统及现场仪表外,还可以从工艺管道设计选型、设备参数选择及运行过程中的操作和维护这几个方面综合考虑,最终才能确保压缩机能安全、平稳运行。
1离心式压缩机喘振故障控制的重要性化石能源输送、化工生产、钢铁冶炼、化肥生产等国家重点项目中都离不开基于离心式压缩机对气体的压缩与输送,可以说离心式压缩机是工业设计、生产、工程改造的重点对象。
离心式压缩机是一种基于回转运动原理的设备,其具有空间占地小、设备密度低、结构单元紧凑、运行稳定、输送压缩气体流量大等特点。
但是离心式压缩机运行时也会面对如喘振、稳定工作区域窄等技术问题,一方面会影响压缩机工作性能造成装置运行波动,另一方面也会造成压缩机故障或者寿命缩减。
例如喘振会导致离心式压缩机轴承润滑液体被破坏,导致轴瓦过电压损坏;离心式压缩机密封设备损坏,造成气体泄漏。
因此,准确的掌握离心式压缩机工作原理,掌握离心式压缩机出现喘振故障的诱导因素,制定采取一系列防止喘振的措施,保障离心式压缩机脱离喘振工作范围,是保证工业生产的关键手段。
2 离心式压缩机喘振故障的判断方法离心式压缩机发生喘振现象时会伴随着明显的机组和管道异常特征:(1)离心式压缩机和管道会发生周期性、高频率振动,这种震动会产生振动噪音,严重时整个离心式压缩机机组会发生激烈的“吼叫”噪音。
(2)机组外壳、轴承、机组配件等发生剧烈振动,振动频率、幅度随机变化,并伴随着剧烈、周期性的气流声。
离心式压缩机的防喘振控制摘要:与其他类型的压缩机相比,离心压缩机在正常情况下体积小、流量大、运行效率高,尤其是维修方便。
因此离心压缩机在现代工业生产中得到广泛应用。
但是,实际上,由于离心压缩机本身对气体压力和流量变化非常敏感,所以在实际应用中会出现喘振现象。
为了更好地保障安全生产运行,研究离心式压缩机防喘振控制措施显得尤为重要。
关键词:离心式压缩机;防喘振;性能曲线1引言当压缩机进气流量足够小时,扩散器整个流动通道将出现严重的旋转停滞,压缩机的出气压力会突然降低,使管网压力大于压缩机的出气压力,迫使气流返回压缩机;当管网压力低于压缩机出口压力时,压缩机将再次为管网供电。
当管网压力恢复到原始压力时,压缩机会产生旋转间隙,出口压力会降低,管网中的气流会返回到压缩机。
如此反复,压缩机流量和出口压力周期性波动,这种现象被称为突现现象,是离心压缩机固有的现象,是压缩机损坏的主要原因之一。
防喘振控制程序是控制系统制造商基于机组制造商提供的实验数据开发的具有防喘振控制功能的标准功能模块。
这样可以确保压缩机的安全运行,提高机组的运行效率,但如果应用不当,会使机组发生喘振,破坏设备,导致停产等事故。
2离心式压缩机概述2.1离心式压缩机运行原理在正常运行期间,压缩机随着压缩机叶轮旋转,同时气体在离心力的作用下排放,排放的气体大量进入压缩机膨胀器,然后进入叶轮位置形成真空带,同时一部分未经过处理的外部空气也流入叶轮,随着叶轮的不断旋转,气体持续吸入和排放,使气体来回循环保持流动。
2.2离心式压缩机喘振成因造成喘振现象的直接和间接因素有很多种,在很多情况下,是由于多种因素结合而形成的喘振问题。
2.2.1流量因素离心式压缩机在运行过程中,当压缩机流量下降时,压缩机出口压力增加,当在该转速下达到最大出口压力时,机组进入喘振区,同时压缩机出口压力下降,导致压缩机喘振。
同时,在一定流量下,压缩机转速越高,喘振发生越容易。
离心式压缩机喘振的发生,其主要原因是流量小,因此压缩机运行中压缩机流量的增加是防止离心式压缩机喘振的重要条件。
离心式压缩机的喘振原因与预防措施分析摘要:喘振是气流沿压气机轴线方向发生的低频率、高振幅的振荡现象,并且,故障的引发原因较多,很容易影响整体的生产效率,在我国目前的生产发展当中离心式压缩机起到了至关重要的作用,可以在一定程度上提高整体的生产效率,而由于喘振现象的出现导致离心式压缩机不能够正确的发挥作用,甚至是引发爆炸或者是火灾等灾害,不仅严重影响了整体的生产效率,还会对工作人员造成严重的人身伤害,甚至是不可挽回的恶劣后果,所以需要相关工作人员对离心式压缩机喘振现象加以重视,深度挖掘喘振现象的产生原因,并结合喘振现象的发生原因制定相应的解决对策,同时,利用信息技术实现故障诊断系统的有效应用,通过远程监测功能与智能故障预警等功能实现离心式压缩机喘振现象的智能化控制,做到科学预防、合理治理离心式压缩机喘振故障。
关键词:离心式压缩机;喘振原因;预防措施引言离心式压缩机又叫透平式压缩机,整个压缩机没有中间罐等装置,也没有巨大且笨重的基础元件,整体结构十分紧凑,总体尺寸小,分量轻。
机器内部耗油量很少,只有轴承部分需要润滑,减少了压缩空气被污染的可能性。
压缩机运行过程中振动小,出口排气连续,易于调节,维修简单。
因此广泛应用在石油化工行业的多种装置上。
1离心式压缩机喘振的故障原因1.1叶轮磨损或有附着物叶轮磨损或表面存在附着物,也是造成离心式压缩机存在喘振故障的主要原因,在离心式压缩机的运行过程当中,叶轮通过自身结构形成高速旋转为气体提供速度及其压力,从而保证离心式压缩机能够正常运行,如果叶轮出现磨损或表面存在附着物等现象就会在一定程度上改变叶轮的自身结构,降低叶轮的旋转速度,导致不能够为气体具体提供正确的速度以及压力,从而导致离心式压缩机出现喘振故障,而且叶轮在日常的运行过程当中势必会造成一定的磨损,这是无法避免的必然现象,只能通过工作人员人为检修更换来避免这一现象发生。
1.2内因离心式压缩机喘振的内因就是由叶轮以及介质所导致的,当进口的流量低于标准值时,压缩机的气流方向就会和叶片进口的安装角产生偏差,如果偏差较大,还会导致脱离,此时气体就会滞留在叶轮的流道中,进而造成压缩机的压力减小,不过由于工程管路有一定的背压,出口压力并不会变小,这样就会使气体发生回流,补充流量,使其恢复正常。
离心压缩机防喘振曲线计算为防止离心压缩机发生喘振,保证离心式压缩机安全平稳的运行,对其进行防喘振的控制成为必要,而防喘振控制的基础即为喘振曲线的计算[1] 。
1离心式压缩机喘振特性曲线概述喘振曲线的绘制是以压比为纵坐标,以流量为横坐标,在不同转速下进行绘制,得到一系列曲线,这些曲线的临界运行点即为喘振线。
获得离心压缩机喘振线的方法有两种,一种是直接通过实验方法测得。
第二种是通过离心压缩机的特性曲线,改变转速,计算在各个转速下的压比与流量值,再进行多项式的拟合,得到最终的喘振曲线。
本文采用第二种方法。
2离心式压缩机性能曲线的确定方法离心式压缩机性能曲线的确定方法一般有以下三种。
第一种,通过压缩机的现场调试,改变转速,实际测得在各个转速下的压缩机的相应参数,将这些特性参数进行拟合,进而得到压缩机的性能曲线。
第二种,根据离心压缩机厂家提供的理想性能曲线,结合现场的环境与运行条件,进行换算,得到压缩机的性能曲线。
第三种,通过离心压缩机厂家提供的设计转速下的压缩机性能曲线相关参数。
通过改变转速,运用相似原理,分别计算在相应点下的压比、流量等参数值,将这些参数进行多项式的拟合即可得到在不同转速下压缩机的性能曲线。
以一台10X 104Nm3/d的压缩机性能曲线相关参数为例,压缩机在设计转速上的5 个不同点a、b、c 、d、e 的设计参数如下表1 所示。
如果转速改变,则得到的新的对应点数值就能组成一条新的转速下的性能曲线。
式中:Qn—质量流量(kg/h );Q—体积流量(m3/h);n—压缩机的设计转速(r/min );v—气体比体积(m3/kg);Rg—气体常数;m—多变指数;P1—进口压力(MPag ; P2-出口压力(MPag ;T1—进口温度(K; T2—出口温度(K);经过换算,即可得到在转速分别为10300r/min 、10200r/min 、9800r/min 、9300r/min 、8060r/min 、7170r/min 时性能曲线a、b、c、d、e 这5 个点的性能参数。
离心式压缩机喘振分析及预防措施离心式压缩机通过叶轮带动气体运动,增加气体的动能,把气体部分的动能转换成压能,使气体压力增大。
其优点是单级流量大、压比高、气体介质密封性好。
又因离心式压缩机压力与流量关联度高,稳定运行范围较窄,容易发生喘振,为确保离心式压缩机在工艺要求条件下安全稳定运行,必须对喘振进行控制。
通过现场测量压缩机的性能曲线,在一定条件下可获得与实际运行相匹配的防喘振曲线,该防喘振系统控制下的机组应是最安全和经济的。
引言石油、天然气作为重要的能源型资源,目前在各个行业中都得到了越来越广泛的应用,只有充分考虑到压缩机在石化行业中的重要作用,切实分析离心式压缩机存在喘振问题的原因以及解决办法,才能有助于石化装置的安全稳定运行。
本文主要针对离心式压缩机防喘振控制提出观点,分析离心式压缩机喘振产生的原因及危害,结合具体设备运行过程中存在的问题,提出了离心式压缩机防喘振控制系统设计的相关探讨。
1 离心式压缩机喘振1.1 离心式压缩机喘振的原因离心式压缩机在工作中经常发生喘振。
喘振也被称呼为“飞动”,该现象的产生主要由于压缩机机组入口流量低于某一值(喘振流量),从而使压缩机机组的管网压力高于压缩机出口压力,导致气体倒流回机组,由于反复的气体脉动影响,使压缩机出现了“呼哧、呼哧”的声音,伴随着机组振动值上升。
因此,在离心式压缩机的运行过程中,应严格控制,防止喘振现象的发生,并及时加以改善。
1.1.1 内因离心式压缩机喘振的内因就是由叶轮以及介质所导致的,当进口的流量低于标准值时,压缩机的气流方向就会和叶片进口的安装角产生偏差,如果偏差较大,还会导致脱离,此时气体就会滞留在叶轮的流道中,进而造成压缩机的压力减小,不过由于工程管路有一定的背压,出口压力并不会变小,这样就会使氣体发生回流,补充流量,使其恢复正常。
如果流量继续变少且补充不足时,倒流现象还会出现,如此反复,装置中的气流就会出现振荡,这就是离心式压缩机的喘振内因。
4.2 离心压缩机防喘振控制4.2.1 离心压缩机的喘振1.离心压缩机喘振现象及原因离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。
此时可看到气体出口压力表、流量表的指示大幅波动。
随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。
如不及时 采取措施,将使压缩机遭到严重破坏。
例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。
下面以图 4.2-1 所示为离心压缩机的特性曲线来说明喘振现象的原因。
离心压缩机的特性曲线显示压缩机压缩比与进口容积流量间的关系。
当转速n 一定时,曲线上点c 有最大压缩比,对应流量设为P Q ,该点称为喘振点。
如果工作点为B 点,要求压缩机流量继续下降,则压缩机吸入流量P Q Q < ,工作点从C 点突跳到D 点,压缩机出口压力C P 从突然下降到D P ,而出口管网压力仍为C P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线 也下降到D P ,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到A Q 。
因流量A Q 大于B 点的流量,因此压力憋高到B P ,而流量的继续下降,又使压缩机重复上述过程,出现工作点从B A D C B →→→→的反复循环,由于这种循环过程极迅速,因此也称为“飞动”。
由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。
2.喘振线方程喘振是离心压缩机的固有特性。
离心压缩机的喘振点与被压缩机介质的特性、转速等有关。
将不同转速下的喘振点连接,组成该压缩机的喘振线。
实际应用时,需要考虑安全余量。
喘振线方程可近似用抛物线方程描述为:θ2121Q b a p p += (4.2-1)式中,下标1表示入口参数;p 、Q 、θ分别表示压力、流量和温度;b a 、是压缩机系数,由压缩机厂商提供。
离心式制冷压缩机的喘振与防喘振措施一、喘振产生的机理离心压缩机的基本工作原理是利用高速旋转的叶轮对气体做功,将机械能加给气体,使气体压力升高,速度增大,气体获得财务压力能和速度能。
在叶轮后面设置增设有通流面积逐渐扩大的扩压元件,高压气体从叶轮流向后,再流经扩压器进行降速扩压,使气体流速降低,压力继续升高,即把气体的一部分能转变为压力能,完成了压缩过程。
扩压器流道内的边界层分离现象:扩压器流道内所气流的流动,来自叶轮对气流所做功变为做功的动能,边界层内气流流动,主要靠主流产品传递中传递来的动能,形变内气流流动时,要克服梁柱的摩擦力,由于沿流道方向速度降低,压力增大,大众化的动能也不断减小。
当主流传递给边界层的动能不足以压力差之克服以使继续前进时,最终停顿边界层的气流停滞下来,进而会发生旋涡和倒流,使气流边界层分离。
气体在叶轮中的流动也微粒是一种扩压流动,当流量减小或压差增大时也会出现这种边界层分离现象。
当流道内共气体流量减少到某一值后,叶道进口气流的就和叶片进口角很不一致,冲角α大大增加,在非工作面引起流道中气流已引起边界层严重分离,使流道进出口出现强烈的气流脉动。
当流量大大减小时,由于气流流动的不均匀性及流道型线的不均匀性,假定在B流道发生气流分离的现象,这样B流道的有效通流面积减小,使原来要流过B流道的气流有西风带一部分要流向相邻的A流道和C流道,这样就改变了A流道,C流道原来气流的方向,它使C流道的冲角有所减小,A流道的冲角更加增大,从而使A流道中的气流分离,反过来使B流道冲角减小而消除了分离现象,于是分离现象由B 流道转移到A流道。
这样分离区就以和叶轮旋转方向相反的方向旋转,这种现象称为旋转脱离。
扩压器同样存在滑动脱离。
在压缩机的运转过程中,流量不断减小到Qmin值时,在压缩机流道中出现如上所述严重的偏转脱离脱离,流动严重恶化,使轴承压缩机出口排气财务压力突然大大下降,低于冷凝器的顾虑,气流就倒流向压缩机,一直到冷凝压力低于财务压力涡轮出口排气压力为止,这时倒流停止,压缩机的排量增加,压缩机趋于稳定工作。
离心压缩机防喘振控制4.2.1 离心压缩机的喘振1.离心压缩机喘振现象及原因离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。
此时可看到气体出口压力表、流量表的指示大幅波动。
随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。
如不及时 采取措施,将使压缩机遭到严重破坏。
例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。
下面以图 4.2-1 所示为离心压缩机的特性曲线来说明喘振现象的原因。
离心压缩机的特性曲线显示压缩机压缩比与进口容积流量间的关系。
当转速n 一定时,曲线上点c 有最大压缩比,对应流量设为P Q ,该点称为喘振点。
如果工作点为B 点,要求压缩机流量继续下降,则压缩机吸入流量P Q Q < ,工作点从C 点突跳到D 点,压缩机出口压力C P 从突然下降到D P ,而出口管网压力仍为C P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线 也下降到D P ,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到A Q 。
因流量A Q 大于B 点的流量,因此压力憋高到B P ,而流量的继续下降,又使压缩机重复上述过程,出现工作点从B A D C B →→→→的反复循环,由于这种循环过程极迅速,因此也称为“飞动”。
由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。
2.喘振线方程喘振是离心压缩机的固有特性。
离心压缩机的喘振点与被压缩机介质的特性、转速等有关。
将不同转速下的喘振点连接,组成该压缩机的喘振线。
实际应用时,需要考虑安全余量。
喘振线方程可近似用抛物线方程描述为:θ2121Q b a p p += (4.2-1)式中,下标1表示入口参数;p 、Q 、θ分别表示压力、流量和温度;b a 、是压缩机系数,由压缩机厂商提供。
喘振线可用图4.2-2 表示。
当一台离心压缩机用于压缩不同介质气体时,压缩机系数会不同。
管网容量大时,喘振频率低,喘振的振幅大;反之,管网容量小时,喘振频率高,喘振的振幅小。
图4.2-2 离心压缩机的喘振线3.振动、喘振和阻塞喘振是离心压缩机在入口流量小于喘振流量时离心压缩机出现的流量脉动现象。
震动是高速旋转设备固有特性。
旋转设备高速运转到某一转速时,是转轴强烈震动的现象。
它是因旋转设备具有自由振动频率(称为自由振动频率),转速到该自由有振动频率的倍数时,出现的谐振(这是的谐振称为谐振频率),造成转轴振动。
振动发生在自由振动频率的倍数,转速继续升高或降低时,这这种振动会消失。
压缩机流量过大时,气体流速接近或达到音速,压缩机叶轮对气体所做功全部用于克服振动损失,气体压力不再升高的现象,这种现象称为阻塞现象。
离心压缩机的工作区、喘振区域阻塞区如图4.2-3所示,图4.2-3 离心压缩机的工作区、图中也给出了压缩机的最大和最小转速。
喘振区与阻塞区4.2.2 离心压缩机防喘振控制系统的设计要防止离心式压缩机发生喘振,只需要工作转速下的Q。
因此,当所需的流量小吸入流量大于喘振点的流量P于喘振点的流量时,例如生产负荷下降时,需要将出口的流量旁路返回到入口,或将部分出口气体放空,以增加入口流量,满足大于喘振点流量的控制要求。
防止离心式压缩机发生喘振的控制方案有两种:固定极限流量(最小流量)法和可变极限流量法。
图4。
2-4 固定流量极限防喘振控制1.固定极限线流量防喘振控制Q为(已经考该控制方案的控制策略是假设在最大转速下,离心压缩机的喘振点流量PQ,则能保证离心压缩机虑安全余量),如果能够使压缩机入口流量总是大于该临界流量PQ时,打开旁路控制阀,使出口的部不发生喘振。
控制方案适当入口流量小于该临界流量PQ为止。
如图4.2-4 所示为固定极限流量防喘振控制分气体返回到入口,使入口流量大于P系统的结构示意图。
固定极限流量防喘振控制具有结构简单、系统可靠性高、投资少等优点,但当转速较低时,流量的安全余量较大,能量浪费较大。
适用于固定转速的离心压缩机防喘振控制。
固定极限流量防喘振控制与流体输送控制中旁路控制方案的区别见表1-1表1-1 防喘振控制与旁路控制的区别2.可变极限流量防喘振控制该控制方案根据不同的转速,采用不同的喘振点流量(考虑安全余量)作为控制依据。
由于极限流量(喘振点流量)变化,因此,称为可变极限流量的方喘振控制。
可变极限流量防喘振控制系统是根据模型计算设定值的控制系统。
离心压缩机的防喘振保护曲线如图4.2-2所示,也可用模型描述为如果θ2121Q b a p p +<,则说明流量大于喘振点处的流量,工况安全;如果θ2121Q b a p p +>,则说明明流量小于喘振点处的流量,工况处于危险状态。
采用差压法测量入口流量,则有 M p ZR p p K Q d d 1111θγ== (4.2-2) 式中1K 、Z 、R 、1M 分别为流量常数、压缩系数、气体常数和相对分子质量,d p 是入口流量对应的差压。
因此,可以得到喘振模型)(1221ap p bK n p d -≥ (4.2-3) 式中,)(ZR M n =,当被压缩介质确定后,该项是常数;当节流装置确定后,1K 确定;a 和b 式与压缩机有关的系数,当压缩机确定后,它们也确定。
式(4.2-3)表明,当入口节流装置测量得到的差压大于上述计算时,压缩机处于安全运行状态,旁路阀关闭。
反之,当差压小于该计算值时,应打开旁路控制阀,增加入口流量。
上述计算值被用于作为防喘振控制器的设定值,因此,称为根据模型计算设定值的控制系统。
图4.2-5所示为防喘振控制系统的结构。
图中PY 1是加法器,完成 21ap p - 的运算,PY 2时乘法器,完成)(21ap p -与)(21bK n 的相乘运算,其输出作为防 图4。
2-5 可变极限流量防喘振控制 喘振控制器FC 的设定值。
PT 1和PT 2是绝对压力变送器,测量离心压缩机的入口和出口压力,P d T 是入口流量测量用的差压变送器,其输出作为防喘振控制器FC 的测量值。
可变极限控制系统是随动控制系统。
测量值是入口节流装置测得的差压值d p ,设定值是根据喘振模型计算得到的)()]([1221ap p bK n - ,当测量值大于设定值时,表示入口流量大于极限流量,因此,旁路阀关闭;当测量值小于设定值时,则打开旁路阀,保证压缩机入口流量大于极限流量,从而防止压缩机喘振的发生。
实施该控制方案时注意事项如下:(1)可变极限流量防喘振控制系统是随动控制系统,为了使离心压缩机发生喘振时及时打开旁路阀,控制阀流量特性宜采用线性特性或快开特性,控制阀比例度宜较小,当采用积分控制作用时,由于控制器的偏差长期存在,应考虑防积分饱和问题。
(2)采用常规仪表实施离心压缩机的防喘振控制系统时,应考虑所用仪表的量程,进行相应的转换和设置仪表系数;采用计算机或DCS 实施时,可以直接根据计算式计算设定值,并能自动转换为标准信号。
(3)为了使防喘振控制系统及时动作,在采用起动仪表示时,应缩短连接到控制阀的信号传输管线,必要时可设置继动器或放大器,对信号进行放大。
(4)防喘振控制阀两端有较高压差,不平衡力大,并在开启时造成噪声、汽蚀等,为此,防喘振控制阀应选用消除不平衡力的影响、噪声及具有快开慢关特性的控制阀。
(5)可以有多中实施方案,例如,可将)12ap p p d -作为测量值,将21bK n 作为设定值;或将1p p d 作为测量值,将]))][(([1221a p p bK n -作为设定值等;应根据工艺过程的特点确定实施方案。
通常,应将计算环节设置在控制回路外,以避免引入非线性特性。
(6)根据压缩机的特性,有时可简化计算,例如,有些压缩机的0=a ,或1=a 等,这时,模型可简化为:当0=a 时 221p bK n p d ≥ (4.2-4) 当1=a 时 )(1221p p bK n p d -≥ (4.2-5) 4.2.3 测量出口流量的可变极限流量防喘振控制有些应用场合,例如,压缩机入口压力较低,压缩比有较大时,在压缩机入口安装节流装置造成的压降可能是压缩机为达到所需出口压力而需增加压缩机的级数,使投资成本提高。
这时,为防止喘振的发生,可将测量流量的节流装置安装在出口管线,组成可变极限流量防喘振的变型控制系统。
该控制系统是基于同一压缩机出口的质量流量应等于入口的质量流量。
问题的提出:入口流量无法测量(如无安装位置、入口压力低不允许大的压损等)。
图 4。
2-6 可变极限流量防喘振控制变型依据:出口处测得的重量流量和入出测得的重量流量时相等的设入口和出口孔板的校正系数K 1和K 2相等。
特点:采用孔板测量出口流量,可允许较大的压力损失可用于高压缩比的场合需要考虑出口和入口温度(重度变化)的影响有些场合,计算式可更简化。
4.2.3 离心压缩机串并联时的方喘振控制离心压缩机可以串联运行或并联运行,但这将增加运行操作的复杂性,并使能量消耗增大,因此,并不推荐使用,仅当工艺压力或流量不能满足要求时才不得不采用。
这时,串并联运行的防喘振控制系统要比单台压缩机的防喘振控制系统复杂,即操作系统需要协调。
离心压缩机串联运行时的防喘振控制1.压缩机串联运行时的变极限流量的防喘振控制当一台离心压缩机的出口压力不能满足生产要求时,需要量太或两台以上的离心压缩机串联运行。
串联运行与多级压缩相似。
图4.2-7 所视为离心压缩机串联运行时采用的一种可变极限流量防喘振控制的控制方案。
图 4.2-7 压缩机串联运行时的变极限流量的防喘振控制图中,PY1、PY2时加法器,PY3是低选器,PY4、PY5是乘法器。
P1T、P2T和P3T 是压力变送器,P d1T、P d2T测量流量的差压变送器,F1C、F2C是防喘振控制器。
与单台压缩机的防喘振控制相同,对压缩机1和压缩机2都采用可变极限防喘振控制,将计算机的设定值送防喘振控制器,为了减少旁路阀,增加了一台低选器,只要其中任一台压缩机出现喘振,都通过低选器,是旁路阀打开。
防喘振控制器选用正作用,旁路控制阀选用气关型。
图中未画出得控制器积分外反馈信号引自低选器输出,与选择性控制系统防积分饱和时的连接相同。
使用时注意:离心压缩机的串联运行只是用于低压力的压缩机,对高压力压缩机,考虑机体的强度,不宜采用串联运行;为保证系统的稳定运行,对后级压缩机的稳定工况宜大于前级。
2. 离心压缩机并联运行时的防喘振控制当一台压缩机的打气量不能满足工艺要求时,需要两台或两台以上离心压缩机并联运行。