1电力电子电路仿真解析
- 格式:ppt
- 大小:2.40 MB
- 文档页数:85
电力电子电路分析与仿真实验报告实验目的:1.理解电力电子电路的基本工作原理;2.熟悉电力电子电路的常用元件,如二极管、晶闸管等;3.学习使用仿真软件进行电力电子电路的模拟分析。
实验仪器与软件:1.电力电子实验箱;2.PC机;3. Multisim仿真软件。
实验步骤:1.搭建一个简单的单相半波整流电路,其中包括一个二极管、一个负载电阻和一个输入交流电源。
2. 打开Multisim仿真软件,选择电力电子电路仿真模块,并导入所搭建的电路图。
3.模拟设置输入交流电源的电压、频率等参数,并运行仿真。
4.观察仿真结果,记录输出直流电压、负载电流及负载电压的波形。
5.更改交流电源的电压、负载电阻的数值,并重新仿真,观察输出波形的变化。
6.搭建一个三相桥式整流电路,其中包括六个二极管和一个负载电阻。
7. 导入三相桥式整流电路图到Multisim仿真软件,并设置相关参数进行仿真。
8.观察输出直流电压、负载电流及负载电压的波形,并记录数据。
9.更改电源电压及负载电阻的数值,重新进行仿真分析。
实验结果与分析:在进行了以上实验步骤后,我们分别得到了单相半波整流电路和三相桥式整流电路的仿真结果。
通过观察输出波形和记录的数据,我们发现以下几个规律:1.在单相半波整流电路中,输出直流电压的平均值较输入交流电压的峰值小,且具有脉动。
负载电流和负载电压的波形与输入交流电压的波形相同,只是幅值减小。
2.在三相桥式整流电路中,输出直流电压的平均值较输入交流电压的峰值小,且同样存在脉动。
负载电流的波形是一个六段的锯齿波,而负载电压的波形是一个脉冲波。
结论:通过本次实验,我们深入了解了电力电子电路的基本工作原理,并熟悉了常用的电力电子元件。
同时,通过使用Multisim仿真软件进行电路仿真分析,我们能够更直观地观察到电路各个参数的变化情况,提高了实验效率和准确性。
电力电子仿真实验实验报告院系:电气与电子工程学院班级:电气1309班学号: 17学生姓名:王睿哲指导教师:姚蜀军成绩:日期:2017年 1月2日目录实验一晶闸管仿真实验........................................ 错误!未定义书签。
实验二三相桥式全控整流电路仿真实验.......................... 错误!未定义书签。
实验三电压型三相SPWM逆变器电路仿真实验..................... 错误!未定义书签。
实验四单相交-直-交变频电路仿真实验.......................... 错误!未定义书签。
实验五 VSC轻型直流输电系统仿真实验.......................... 错误!未定义书签。
实验一晶闸管仿真实验实验目的掌握晶闸管仿真模型模块各参数的含义。
理解晶闸管的特性。
实验设备:MATLAB/Simulink/PSB实验原理晶闸管测试电路如图1-1所示。
u2为电源电压,ud为负载电压,id为负载电流,uVT 为晶闸管阳极与阴极间电压。
图1-1 晶闸管测试电路实验内容启动Matlab,建立如图1-2所示的晶闸管测试电路结构模型图。
图1-2 带电阻性负载的晶闸管仿真测试模型双击各模块,在出现的对话框内设置相应的模型参数,如图1-3、1-4、1-5所示。
图1-3 交流电压源模块参数图1-4 晶闸管模块参数图1-5 脉冲发生器模块参数固定时间间隔脉冲发生器的振幅设置为5V,周期与电源电压一致,为(即频率为50Hz),脉冲宽度为2(即º),初始相位(即控制角)设置为(即45º)。
串联RLC分支模块Series RLC Branch与并联RLC分支模块Parallel RLC Branch的参数设置方法如表1-1所示。
表1-1 RLC分支模块的参数设置元件串联RLC分支并联RLC分支类别电阻数值电感数值电容数值电阻数值电感数值电容数值单个电阻R0inf R inf0单个电感0L inf inf L0单个电容00C inf inf C 在本系统模型中,双击Series RLC Branch模块,设置参数如图1-6所示。
仲恺农业工程学院实验报告自动化(院、系)自动化专业121 班组电力电子实验课学号201210344105 姓名彭森荣日期2014年11月20日教师评定实验一:单相桥式半控整流电路仿真一、实验目的:1.通过实验了解单项桥式半控整流电路的工作原理;2.通过仿真发现在没有续流二极管时发生失控的波形图,并分析;3.初步熟悉multisim 13软件的使用。
二、实验器材:实验PC机、multisim 13电路仿真软件等。
三、实验原理:单项桥式半控整流电路中,假设负载的电感很大,且电路已工作在稳态的时候。
在输入交流正弦电压u2,晶闸管在α处的上升沿进行触发,两个不同的触发信号使得两个晶闸管在不同时刻触发。
在u2的正半周,触发信号给VD1进行触发,此时VD2关断,与D4形成通路,构成正向导通桥式电路,这个阶段,若忽略器件的通态电压,那么输出的电压变为0,不会出现负数的情况;同样,当在u2的负半周时,当触发信号到达的时候,VD2被触发而开通,VD1关断,与D3形成通路,构成反向导通桥式电路,这个阶段中,同样假设忽略器件的通态,那么当U2过零边正时,输出电压又变为零。
两次触发使得电流大方向并不发生改变,从而使得输出的电流和电压都是在坐标轴的上方,即数值均不为负数,因此达到了整流的效果。
本实验在进行仿真的时候,没有用到续流二极管(其作用是防止在实际运用的1 / 52 / 5 时候发生失控)进行续流,而是用开关对晶闸管VD2进行间接控制,以便看到失控时的仿真效果。
四、 实验步骤与内容:1. 按照原理的实验图在multisim 中进行操作,如图(1)所示;2. 对脉冲信号源V2,V3进行数据的修改,其中V2修改如图(2)所示,V (3)的修改如图(3)所示;3. 修改电感L 的数据和电阻R 的阻值,不断测试数据是否合适仿真,并把电流器和电压器的阻值分别改为11.246Ω和113.82M Ω;4. 把输入的信号源的相角值由0改为36°,以观察此时的波形图;5. 电子元件的数据修改完成后,点击开始仿真,并打图(1) 图(2)图(3)3 / 5开示波器观察示波的波形,适当时候把开关打开,再观察波形;6. 形成报告,分析结果。
《电力电子技术》仿真实验实验一单相桥式全控整流电路说明:1、为选修《电力电子技术》的工科本科生编写的实验指导书;2、课前安排了一节Matlab、Simulink入门课,让同学们仿真了单相桥式不可控整流电路;3、本指导书适用于新版本Matlab。
实验一单相桥式全控整流电路一、实验目的1、掌握单相桥式全控整流电路的工作原理;2、掌握单相桥式全控整流电路的仿真方法;3、了解不同类型负载输出波形的差异。
二、实验环境及器件仿真软件:Simulink所用器件如下表1所示(以Matlab2019b版本为例)。
表1 实验器件三、实验原理(a )电阻负载(b )阻感负载图1 单相桥式全控整流电路单相桥式全控整流电路是常用的单相整流电路之一,主电路由两对桥臂构成,晶闸管VT 1和VT 4组成一对桥臂,VT 2和VT 3组成另一对桥臂。
认为输入电压u2正半周时上端电压为正。
1、电阻负载如图1(a )所示,以一个电流周期为例,在正半周时某一时刻t ,触发VT 1和VT 4可导通流过电流,若交流电周期为T ,则VT 1和VT 4在T/2时刻,电压过零变负时关断。
在T/2+t 时刻触发VT 2和VT 3可以导通,VT 2和VT 3在T 时刻电压过零变正时关断。
整流电压的平均值为:2211cos sin d()0.92d U t t U πααωωπ+==⎰ 其中α为时刻t 对应的电角度,U 2为输入交流电的电压幅值,α的变化范围为0~180°。
2、电感电阻负载如图1(b )所示,VT 1和VT 4导通后,电压过零变负时,由于电感的作用,仍有电流流过VT 1和VT 4,VT 1和VT 4不会关断,直到在T/2+t 时刻触发VT 2和VT 3导通,反向电压使VT 1和VT 4关断。
同理,VT 2和VT 3导通后,电压过零变正时不会关断,直到VT 1和VT 4导通时承受反向电压关断。
整流电压的平均值为:d 221sin d()0.9cos U t t U παωωαπ+==⎰其中α为时刻t 对应的电角度,U 2为输入交流电的电压幅值,L 极大时,α的变化范围为0~90°。
实验一:单相半波可控整流电路的仿真一、实验名称:单相半波可控整流电路的仿真二、实验原理:在大功率的电力电子电路中广泛采用可控整流电路对输出电压进行控制和调整,以满足各种功率较大的用电器对电源的要求。
可控整流电路最常用的控制器件是晶闸管,因为晶闸管性能可靠、价格低廉、控制电路简单。
整流电路按负载的不同可以分为带电阻负载和带阻感负载两种情况。
在生产实践中,更常见的是后者,即既有电感又有电阻,若负载中感抗ωL>>电阻R时,负载主要呈现为电感,成为电感负载。
三、仿真电路图各项参数为:图中V3 为220V, 50Hz 的正弦交流电源,X1 为晶闸管,V2 为晶闸管的触发脉冲信号源。
触发脉冲的幅度为-10V(对门、阴极间而言是+10V),脉冲宽度为0.lms,上升、下降时间均为1us,周期等于输入电源V3 的周期(20ms)。
电组R=2Ω,电感L取6.5mH。
四、波形图分析:电压波形图:现象:电压有跳变!上面是电阻电压,下面是电感电压。
相加大概为110V 左右,实验时占空比是50%,正好是110V。
电压突变是晶闸管由断态转向触发时所致。
电感两端的电压电流波形图:现象:上面是电感电流,下面是电感电压。
电压跳变是电流过0点时,晶闸管由断态触发开通时,由于电感L作用使电流不能突变。
电感很大的时候会没有跳变或跳变很小。
电阻电压电流波形图:结论:有跳变,电流从正向负跳变时候跳变要剧烈一点。
五、心得体会:通过本次实验基本上学会了此软件的基本用法。
同时仿真了单相半波可控整流电路,验证了晶闸管的作用及观察到其对电路的影响。
实验二:三相半波可控整流电路的仿真刘峻玮222007322042015 工程技术学院自动化1班一、实验名称:三相半波可控整流电路的仿真二、实验原理:当整流负载容量很大时,或要求直流电压脉动较小时,应采用三相整流电流,其交流侧由三相电源供电。
三相可控整流电路中,最基本的是三相电路可控整流电路,应用最为广泛的是三相桥式全控整流电路以及双反星形可控整流电路等等,均可在三相半波的基础上分析。
电⼒电⼦Simulink仿真——整流电路1. 单相可控整流电路1.1 单相半波课本P44晶闸管处于断态时,电路中⽆电流,负载电阻两端电压为零,u2全部施加在VT两端。
如在u2正半周晶闸管承受正向阳极电压期间给VT门极加触发脉冲,则VT开通。
式3-1:{U_d} = \frac{{\sqrt 2 {U_2}}}{{2\pi }}(1 + \cos \alpha )模型:输⼊电压:100V峰值,50Hz;触发:45°,5%;晶闸管压降:0.8V;负载电阻:5Ω。
得到输出如下:按照公式计算输出电压平均值为27.2V,实际输出电压均值26.9V,这是由晶闸管的导通压降引起的。
阻感负载:课本P45到u2由正变负的过零处,电流id已经处在减⼩的过程中,但尚未降到零,因此VT保持通态。
此后,电感L中储存的能量逐渐释放,直⾄id过零点处晶闸管关断并⽴即承受反压。
电阻5Ω,电感0.02H,输出波形如下。
续流⼆极管:课本P46与没有续流⼆极管时的情况相⽐,在u2正半周时两者的⼯作情况是⼀样的;当u2过零变负时,VDR导通,ud为零。
此时负的u2通过VDR向VT施加反压使其关断,L中储存的能量保证了电流id在L-R-VDR回路中流通,此过程通常称为续流。
为观察电流连续的情况,将L改为0.05H,同时添加了⼆极管,如下图所⽰。
波形:1.2 单相桥式全控课本P47在单相桥式全控整流电路中,晶闸管VT1和VT4组成⼀对桥臂,VT2和VT3组成另⼀对桥臂。
在u2正半周,若给VT1和VT4加触发脉冲,VT1和VT4即导通,电流经VT1、R 和VT4流动。
在u2负半周,VT2和VT3导通。
式3-9:{U_d} = \frac{{\sqrt 2 {U_2}}}{\pi }(1 + \cos \alpha )模型:按照公式计算输出电压平均值为54.3V,实际输出电压均值52.6V,这是由晶闸管的导通压降引起的。
阻感负载:课本P49加⼊0.05H电感。
电力电子电路缓冲器研究与仿真研究背景电力电子技术在电力系统中起着重要的作用,其应用已经涉及到许多领域。
电力电子电路缓冲器作为电力电子技术的重要组成部分之一,在电力电子电路中具有重要的功能和意义。
随着电力电子技术的不断发展和进步,电力电子电路缓冲器的研究也变得越来越重要。
电力电子电路缓冲器可以提供对电力电子器件的控制和保护,能够调节电力电子器件的功率输出,提高系统的稳定性和可靠性。
电力电子电路缓冲器在电力系统中的应用广泛,包括逆变器、变频器、电力调节器等。
它们能够实现能量的转换和传输,提高能源效率,减少能源浪费,对推动电力系统的发展和改善电力质量具有重要意义。
因此,对电力电子电路缓冲器进行深入研究和仿真分析,能够为电力系统的稳定运行和性能优化提供重要支持和指导,对电力电子技术的发展具有重要意义。
电力电子电路缓冲器有多种类型,包括电阻缓冲器、电容缓冲器和电感缓冲器等。
下面将介绍它们的原理、特点和应用场景。
电阻缓冲器电阻缓冲器是一种常见的电力电子电路缓冲器。
它使用电阻元件来减小电流的变化率,从而减少因突变电流引起的电压波动。
电阻缓冲器可以有效地保护电路中的其他元件免受过大的电流冲击。
它的原理简单,适用于各种电路,特别是在需要稳定电压输出的场景中常被使用。
电容缓冲器电容缓冲器是另一种常见的电力电子电路缓冲器。
它利用电容元件的充放电特性来平滑电压波动,降低峰值电压,并延长短暂电流脉冲的时间。
电容缓冲器适用于需要稳定电压输出的场景,尤其是在对电流响应时间要求较高的电路中。
电感缓冲器电感缓冲器使用电感元件来抵抗电流的变化率,从而减少电压的变化。
它通过电感的储能和释能来实现电流的平滑过渡,减少电路中的电压波动。
电感缓冲器在保护电路中的其他元件免受电压峰值和电流突变的影响方面具有良好的效果。
它常被应用于需要高度稳定性和电流保护的电路中。
以上是不同类型的电力电子电路缓冲器的简要介绍,它们都在特定的应用场景中发挥着重要的作用。
电力电子仿真实验报告电力电子仿真实验报告概述:电力电子是现代电力系统中的重要组成部分,其在电能转换、调节和控制方面发挥着关键作用。
为了更好地理解电力电子的工作原理和性能特点,本次实验通过电力电子仿真实验平台进行了一系列电路的仿真实验,以探索电力电子在电力系统中的应用。
实验一:单相半桥逆变器单相半桥逆变器是一种常见的电力电子设备,可以将直流电压转换为交流电压。
本实验中,通过仿真平台搭建了一个单相半桥逆变器电路,并进行了性能测试。
通过改变输入直流电压和负载电阻,观察逆变器的输出波形和效率变化。
实验结果表明,逆变器的输出波形呈现出交流正弦波,并且随着输入电压和负载电阻的变化,逆变器的效率也相应变化。
实验二:三相全桥整流器三相全桥整流器是一种常用的电力电子设备,可以将三相交流电转换为直流电。
本实验中,通过仿真平台搭建了一个三相全桥整流器电路,并进行了性能测试。
通过改变输入交流电压的幅值和频率,观察整流器的输出直流电压和纹波变化。
实验结果表明,整流器的输出直流电压稳定,纹波较小,且随着输入电压的增加,输出直流电压也相应增加。
实验三:PWM调制技术PWM调制技术是电力电子中常用的调节技术,通过改变脉冲宽度来实现对输出电压的调节。
本实验中,通过仿真平台搭建了一个PWM调制电路,并进行了性能测试。
通过改变调制信号的频率和占空比,观察PWM调制电路的输出波形和频谱变化。
实验结果表明,PWM调制电路能够产生稳定的输出波形,并且通过调节占空比可以实现对输出电压的精确调节。
实验四:电力电子应用案例电力电子在现代电力系统中有着广泛的应用,例如变频器、充电器、逆变器等。
本实验中,选择了一个典型的电力电子应用案例进行仿真实验。
通过搭建相应的电路和参数设置,观察电力电子设备在实际应用中的性能表现。
实验结果表明,电力电子设备能够实现电能的高效转换和精确控制,为现代电力系统的稳定运行提供了重要支持。
结论:通过电力电子仿真实验,我们深入了解了电力电子的工作原理和性能特点。