五年级下册数学课件-思维拓展训练:5.10 行程问题的综合练习 全国通用 (共23张PPT)
- 格式:ppt
- 大小:1.27 MB
- 文档页数:23
比例解行程问题知识框架比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时来表示,大体可分为以下两种情况:间、路程分别用v,v;st,t;s乙乙乙甲,甲甲1.当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s?v?t?ss甲甲甲甲乙,这里因为时间相同,即,所以由t?t?t?tt?,?乙甲乙甲s?v?tvv?乙乙乙乙甲svss甲甲甲t 乙内的路程之比等于速度比,得到,甲乙在同一段时间??t?vvsv乙乙乙甲2.当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
s?v?t?甲甲甲s?s?ss?v?t,s?v?t,由,这里因为路程相同,即?乙乙乙乙甲甲甲甲s?v?t?乙乙乙vt甲s乙t?t?sv?v?上的时间之比等于速度比的反比。
,得,甲乙在同一段路程?乙乙甲甲tv乙甲例题精讲两地之间匀速往返行走,甲的速度大于乙的速度,甲每次到地出发,在、 1】甲、乙两人同时【例BAA之间行走方向不会改变,已知两地或遇到乙都会调头往回走,除此以外,两人在地、达ABAB 那么第二次相遇的地点米,米,第三次的相遇点距离地人第一次相遇的地点距离地8001800BB。
地距离BBBCA地时,459点分到达8地。
甲点出发,乙8点45甲【巩固】、乙两人都从分出发。
乙地经地到CCB地。
问:到达甲已经离开分。
两人刚好同时到达地20地时是什么时间?某人沿公路前进,迎面来了一辆汽车,他问司机:“后面有骑自行车的人吗?”司机回答:“10 2】【例分,遇到了这个骑自行车的人。
周二2022-2023学年小学五年级思维拓展专题 行程(多次相遇)问题知识精讲专题简析:通过前面对行程应用题的学习,同学们可以发现,行程问题大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度×时间(3)同向而行:追及时间=追及距离÷速度差如果上述的几种情况交织在一起,组成的应用题将会丰富多彩、千变万化。
解答这些问题时,我们还是要理清题中已知条件与所求问题之间的关系,同时采用“转化”、“假设”等方法,把复杂的数量关系转化为简单的数量关系,把一复杂的问题转化为几个简单的问题逐一进行解决。
典例分析1.(2019•岳麓区)甲、乙两人同时从A地出发,在直道A、B两地往返跑步,甲每分钟72米,乙每分钟48米,甲乙第二次迎面相遇与甲第二次从后面追上乙,两地相距80米,求A、B两地相距多少米?2.(2019•郑州)如图,ABCD是一个边长为6米的模拟跑道,甲玩具车从A出发顺时针行进,速度是每秒5厘米,乙玩具车从CD的中点出发逆时针行进(乙车速度小于甲车速度),结果两车第二次相遇恰好是在B点,求乙车每秒走多少厘米?周二3.(2018春•江宁区期末)小欣和小鸣分别从一座桥的两端同时相向出发,往返于两端之间.小欣每分钟走65米,小鸣每分钟走70米,经过5分钟后两人第二次相遇.这座桥长多少米?4.(2018•广东)甲乙二人分别从A、B两地出发相向而行,到达目的地后马上掉头回到出发地,他们第一次相遇距A地800米,第二次距B地500米,A、B两地相距多少米?真题演练一、选择题(共5小题,满分5分,每小题1分)1.(1分)(2015秋•漳州期末)爸爸和儿子去2km外的公园,爸爸和儿子同时出发.儿子骑车到公园时,爸爸只走了一半路程.儿子立刻返回,遇到爸爸后又骑向公园,到公园又返回⋯直到爸爸到达公园.儿子从出发开始一共骑了()A.2kmB.4kmC.6km2.(1分)甲乙两人分别从桥的两端同时出发,往返于桥的两端之间。
《行程问题》练习题(含答案)行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现.行程问题包括:相遇问题、追及问题、流水行船问题、环形行程问题等等,思维灵活性大,辐射面广,但万变不离根本,就是距离、速度、时间三个基本量之间的关系,即:距离=速度×时间 .在这三个量中,已知两个,可求出第三个未知量.这一讲就是通过例题加深对这三个基本数量关系的理解.解决行程问题时,画图分析是一个非常有效的方法,我们一定要养成画图解决问题的好习惯!【复习1】甲、乙两辆汽车从东、西两地同时相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地间的距离是多少千米?分析:画图分析.相遇时甲车比乙车多行:32×2=64(千米),甲车每小时比乙车多行:56-48=8(千米),甲、乙两车从同时出发到相遇要:64÷8=8(小时),东、西两地间的距离是:(56+48)×8=832(千米).【复习2】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。
已知C离A有80米,D离B有60米,求这个圆的周长.分析:从A点出发到第一次相遇,两人共走了0.5圈;从A点出发到第二次相遇,两人共走了1.5圈。
因为1.5÷0.5=3,所以第二相遇时甲走的路程是第一次相遇时的3倍,即弧ACD=AC×3=240(米),则弧AB=240—BD=180(米),圆周长为180×2=360(米)【复习3】两名运动员在湖的周围环形道上练习长跑. 甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?分析:在封闭的环形道上同向运动属追及问题,反向运动属相遇问题.同地出发,其实追及路程或相隔距离就是环形道一周的长.这道题的解题关键就是先求出环形道一周的长度. 环形道一周的长度:(250-200)×45=2250(米).反向出发的相遇时间:2250÷(250+200)=5(分钟).【例1】汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?分析:假设AB两地之间的距离为480÷2=240千米,那么总时间=480÷48=10(小时),回来时的速度=240÷(10-240÷40)=60(千米/时).【前铺】汽车上山以30千米/时的速度,到达山顶后立即以60千米/时的速度下山.求该车的平均速度.分析:注意平均速度=总路程÷总时间,我们可以把上山的路程看作“1”,那么就有:(1+1)÷(113060)=40(千米/时),在这里我们使用的是特殊值代入法,当然可以选择其他方便计算的数值,比如上山路程可以看作60千米,总时间=(60÷30)+(60÷60)=3,总路程=60×2=120,平均速度=120÷3=40(千米/时).【例2】一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如右图).它爬行一周平均每分钟爬行多少厘米?分析:假设每条边长为200厘米,则总时间=200÷50+200÷20+200÷40=4+10+5=19(分钟),爬行一周的平均速度=200×3÷19=113119(厘米/分钟).【例3】老王开汽车从A到B为平地(见右图),车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,老王开车从A到D共需要多少时间?分析:设上山路为x千米,下山路为2x千米,则上下山的平均速度是:(x+2x)÷(x÷22.5+2x ÷36)=30(千米/时),正好是平地的速度,所以行AD总路程的平均速度就是30千米/时,与平地路程的长短无关.因此共需要72÷30=2.4(时).【例4】小明放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行. 每隔9分钟就有辆公共汽车从后面超过他,每隔7分钟就遇到迎面开来的一辆公共汽车. 问:该路公共汽车每隔多少分钟发一次车?公共汽车的速度是小明步行速度的几倍?分析:假设小明在路上向前行走了63(7、9的最小公倍数)分钟后,立即回头再走63分钟,回到原地.这时在前63分钟他迎面遇到63÷7=9(辆)车,后63分钟有63÷9=7(辆)车追上他,那么在两个63分钟里他共遇到朝同一方向开来的16辆车,所以发车的时间间隔为:63×2÷(9+7)=778(分).公共汽车的发车时间以及速度都是不变的,所以车与车之间的间隔也是固定不变的. 根据每隔9分钟就有辆公共汽车从后面超过他,我们可以得到:间隔=9×(车速-步速);每隔7分钟就遇到迎面开来的一辆公共汽车,我们可以得到:间隔=7×(车速+步速),所以9×(车速-步速)=7×(车速+步速),化简可得:车速=8倍的步速.【巩固】小红放学后沿着公共汽车的线路以4千米/时的速度往家走,一边走一边数来往的公共汽车. 到家时迎面来的公共汽车数了11辆,后面追过的公共汽车数了9辆. 如果公共汽车按相等的时间间隔发车,那么公共汽车的平均速度是多少?分析:我们可以假设小红放学走到家共用99分钟,那么条件就可以转化为:“每隔9分钟就有辆公共汽车迎面开来,每隔11分钟就有辆公共汽车从后面超过他”.根据汽车间隔一定,可得:间隔=11×(车速-步速)=9×(车速+步速),化简可得:车速=10倍的步速.所以车速为40千米/时.【例5】一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟. 有一个人从乙站出发沿电车线路骑车前往甲站. 他出发的时候,恰好有一辆电车到达乙站. 在路上他又遇到了10辆迎面开来的电车。
本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和 路程差=追及时间×速度差 二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
知识框架环形跑道【例 1】两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A ,B 两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B 点时,甲车过B 点后恰好又回到A 点.此时甲车立即返回(乙车过B 点继续行驶),再过多少分与乙车相遇?【巩固】 周长为400米的圆形跑道上,有相距100米的A ,B 两点.甲、乙两人分别从A ,B 两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A 时,乙恰好跑到B .如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米?【例 2】甲、乙两车同时从同一点A 出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶例题精讲65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上一车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离有多少米?【巩固】二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。
问第十五次击掌时,甲走多长时间乙走多少路程?【例 3】下如右图所示,某单位沿着围墙外面的小路形成一个边长300米的正方形.甲、乙两人分别从两个对角处沿逆时针方向同时出发.如果甲每分走90米,乙每分走70米,那么经过多少时间甲才能看到乙?【巩固】如图,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?【例 4】如图,长方形ABCD中AB∶BC=5∶4。
多次相遇与追及问题知识框架一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题精讲【例1】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【巩固】甲、乙二人从相距60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?【例2】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D 点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【例3】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【例4】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑。