矩阵求逆方法大全-1
- 格式:docx
- 大小:155.98 KB
- 文档页数:8
矩阵求逆方法大全
矩阵的逆是一个重要的数学概念,它在很多领域中都得到了广泛的应用,如线性代数、微积分、概率论等。
求解矩阵的逆可以用于解线性方程组、计算行列式、计算特征值和特征向量等。
本文将介绍几种常见的矩阵求逆方法,包括伴随矩阵法、高斯消元法、LU分解法和特征值分解法。
1.伴随矩阵法:
伴随矩阵法是求解逆矩阵最常用的方法之一、首先,计算出矩阵的伴
随矩阵,然后将其除以矩阵的行列式即可得到逆矩阵。
2.高斯消元法:
高斯消元法是一种常用的线性方程组求解方法,也可以用来求解矩阵
的逆。
通过将待求逆矩阵与单位矩阵连接起来,然后进行初等行变换,直
至左边的矩阵变为单位矩阵,右边的矩阵即为所求逆矩阵。
3.LU分解法:
LU分解法将矩阵分解为下三角矩阵L和上三角矩阵U的乘积,然后
通过求解两个三角矩阵的逆矩阵,进而求得原矩阵的逆。
LU分解法是一
种常用的数值计算方法,应用广泛。
4.特征值分解法:
特征值分解法是一种通过矩阵的特征值和特征向量来求解矩阵的逆的
方法。
首先,根据特征值定理求解矩阵的特征值和特征向量,然后利用这
些特征值和特征向量构建一个对角矩阵,最后通过对角矩阵求逆得到原矩
阵的逆。
除了上述方法外,还有其他一些方法可以用来求解矩阵的逆,如迭代法、SVD分解法等。
这些方法在不同的应用场景下有不同的优势。
总之,求解矩阵的逆是一个重要的数学问题,在实际应用中有着广泛的应用。
以上介绍的几种方法是常用的求解逆矩阵的方法,读者可以根据自己的需求选择合适的方法进行求解。
求逆矩阵的几种方法
1. 嘿,你知道吗?直接用定义去求逆矩阵就像是摸着石头过河。
比如说矩阵 A,咱们就按照公式一步一步来,那可得细心哦!
2. 哇塞,初等变换法可是个厉害的招儿!就像变魔术一样,把矩阵变得服服帖帖。
就拿那个矩阵 B 来说,通过一系列变换就能轻松找到它的逆矩阵啦!
3. 哎呀呀,利用伴随矩阵求逆矩阵也很不错呢!这就好像顺藤摸瓜,找到伴随矩阵,就能把逆矩阵给揪出来了。
像矩阵 C,试试这种方法,很有趣呀!
4. 嘿哟,分块矩阵法就像是把大问题拆分成小问题。
比如说对于一个复杂的分块矩阵 D,用这个方法就能巧妙解决啦!
5. 哇哦,行列式法你可别小瞧呀!它就像一把钥匙,能打开求逆矩阵的大门。
对矩阵 E 使用行列式法,会有惊喜哦!
6. 哈哈,迭代法也可以试试呀!就如同不断探索,逐步靠近答案。
拿矩阵 F 试试这种看上去有点特别的方法吧!
我觉得呀,求逆矩阵这些方法都各有特点和用处,我们要根据不同的情况选择合适的方法,这样就能又快又准地求出逆矩阵啦!。
逆矩阵的计算方法逆矩阵在线性代数中扮演着非常重要的角色,它在解线性方程组、计算行列式、求解线性变换等问题中都有着广泛的应用。
本文将介绍逆矩阵的计算方法,希望能够帮助读者更好地理解和运用逆矩阵。
首先,我们来看逆矩阵的定义。
对于一个n阶方阵A,如果存在另一个n阶方阵B,使得AB=BA=I(其中I为单位矩阵),那么我们称B是A的逆矩阵,记作A^-1。
逆矩阵的存在与唯一性是一个非常重要的问题,只有可逆的方阵才有逆矩阵。
下面我们将介绍如何计算逆矩阵。
一、初等变换法。
对于一个n阶方阵A,我们可以通过初等行变换将其变为单位矩阵,此时A经过一系列的初等行变换得到单位矩阵的同时,对应的变换也可以得到B,即A的逆矩阵。
这种方法需要进行较多的计算,但是在实际应用中是非常有效的。
二、伴随矩阵法。
对于一个n阶方阵A,我们可以通过伴随矩阵来求其逆矩阵。
伴随矩阵是由A的代数余子式按一定规律排列而成的矩阵,通过伴随矩阵的计算可以得到A的逆矩阵。
这种方法在理论上是非常简洁和直观的,但是在计算过程中需要大量的代数运算。
三、求逆矩阵的性质。
除了通过初等变换和伴随矩阵来计算逆矩阵外,我们还可以利用逆矩阵的一些性质来简化计算过程。
例如,如果A和B都是可逆的方阵,那么(AB)^-1 = B^-1A^-1;如果A是可逆的方阵,那么A的转置矩阵也是可逆的,并且(A^-1)^T =(A^T)^-1。
这些性质在实际计算中可以帮助我们简化逆矩阵的求解过程。
四、逆矩阵的应用。
逆矩阵在线性代数中有着广泛的应用,例如在解线性方程组时,我们可以通过逆矩阵来求解未知数;在计算行列式时,我们可以利用逆矩阵的性质简化计算过程;在求解线性变换的逆变换时,逆矩阵也起到了非常重要的作用。
因此,对逆矩阵的计算方法有着深入的理解是非常重要的。
总结。
逆矩阵在线性代数中有着重要的地位,它的计算方法有多种多样,包括初等变换法、伴随矩阵法以及利用逆矩阵的性质来简化计算过程。
逆矩阵的应用也非常广泛,涉及到线性方程组的求解、行列式的计算以及线性变换的逆变换等问题。
求矩阵逆矩阵的常用方法求矩阵逆矩阵是线性代数中的一个重要问题。
在实际应用中,常常需要对矩阵进行逆矩阵的计算,以便进行某些后续操作。
以下是几种常见的求矩阵逆矩阵的方法:1. 伴随矩阵法:如果矩阵 A 可逆,则其伴随矩阵 A^(-1) 也是存在的。
实际上,A^(-1) = A^(-T),其中 A^(-T) 表示 A 的逆矩阵的转置矩阵。
伴随矩阵法简单易行,但是要求矩阵 A 必须可逆。
2. 初等行变换法:对于任意矩阵 A,可以通过初等行变换将其化为行简化梯矩阵的形式。
如果左边子块是单位矩阵 E,则矩阵 A 可逆,且其逆矩阵为 A^(-1) = (A^(-T))[E - (A^T)A]。
这里,(A^(-T))[E - (A^T)A] 表示将 A 的逆矩阵插入到单位矩阵 E 和 A 的伴随矩阵A 之间的矩阵。
初等行变换法适用于大多数矩阵,但是需要对矩阵进行多次行变换,因此计算效率较低。
3. 列主元消元法:对于矩阵 A,可以通过列主元消元法将其化为行阶梯形式。
如果矩阵 A 的行主元不为 0,则其逆矩阵为 A^(-1) = (A^(-T))[(A^T)A - EE^T]。
这里,EE^T 表示矩阵 A 的列主元部分,(A^(-T))[(A^T)A - EE^T] 表示将矩阵 A 的逆矩阵插入到行阶梯形式的矩阵 A 的列主元和主元部分之间的矩阵。
列主元消元法适用于矩阵 A 为非方阵的情况,但是要求矩阵 A 的行主元不为 0。
以上是几种常见的求矩阵逆矩阵的方法。
不同的矩阵可以通过不同的方法来求其逆矩阵,选择适合该矩阵的方法可以有效地提高计算效率。
此外,对于一些特殊的矩阵,可能存在更高效的算法。
矩阵求逆是线性代数中的一个重要概念,通常指的是对于一个给定的方阵,找到一个同样大小的矩阵,使得两者相乘得到单位矩阵。
以下是几种常见的求逆矩阵的方法:
1. 高斯消元法:这是一种通过行变换将矩阵转换为行阶梯形矩阵,然后通过回代求解未知数的方法。
如果矩阵可逆,最终可以通过回代得到其逆矩阵。
2. LU分解法:这种方法将矩阵分解为一个下三角矩阵L和一个上三角矩阵U的乘积。
如果这样的分解存在,那么矩阵的逆可以表示为U的逆和L的逆的乘积。
3. SVD分解法:奇异值分解(SVD)是一种将矩阵分解为三个矩阵的乘积的方法。
如果矩阵是可逆的,那么它的逆可以通过对分解得到的矩阵进行相应的逆运算得到。
4. QR分解法:这种方法将矩阵分解为一个正交矩阵Q和一个上三角矩阵R的乘积。
如果矩阵可逆,那么其逆可以表示为R的逆和Q的转置的乘积。
5. 伴随矩阵法:这是通过计算矩阵的伴随矩阵和行列式的倒数来求逆的方法。
适用于小矩阵或者行列式容易计算的情况。
6. 初等变换法:通过对矩阵进行一系列的初等行变换或列变换,将其转换为单位矩阵,同时对单位矩阵进行相同的变换,最终得到的就是原矩阵的逆。
求逆矩阵的若干方法和举例苏红杏广西民院计信学院00数本(二)班[摘 要] 本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面的读者参考。
[关键词] 逆矩阵 初等矩阵 伴随矩阵 对角矩阵 矩阵分块 多项式等引 言 在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。
但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。
为此,我介绍下面几种求逆矩阵的方法,供大家参考。
定义: n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B方法 一. 初等变换法(加边法)我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积A=m Q Q Q 21, 从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。
即,必有一系列初等矩阵 m Q Q Q 21使E A Q Q Q m m =-11 (1) 则1-A =E A Q Q Q m m =-11 (2)把A ,E 这两个n 阶矩阵凑在一起,做成一个n*2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A ) (3) 这样就可以求出矩阵A 的逆矩阵1-A 。
例 1 . 设A= ⎪⎪⎪⎭⎫ ⎝⎛-012411210 求1-A 。
解:由(3)式初等行变换逐步得到:⎪⎪⎪⎭⎫ ⎝⎛-100012010411001210→ ⎪⎪⎪⎭⎫ ⎝⎛-100012001210010411 →⎪⎪⎪⎭⎫ ⎝⎛----123200124010112001→⎪⎪⎪⎪⎭⎫ ⎝⎛----21123100124010112001于是1-A = ⎪⎪⎪⎪⎭⎫ ⎝⎛----21123124112说明:此方法适用于求元素为具体数字的矩阵的逆矩阵,比较简便,特别是当阶数较高时,使用初等变换法的优点更明显。
求元素为具体数字的矩阵的逆矩阵时,常采用如下一些方法.
方法1 伴随矩阵法:.
注1对于阶数较低(一般不超过3阶)或元素的代数余子式易于计算的矩阵可用此法求其逆矩阵.注意元素的位置及符号.特别对于2阶方阵
,其伴随矩阵,即伴随矩阵具有“主对角元互换,次对角元变号”的规律.
注2 对分块矩阵不能按上述规律求伴随矩阵.
方法2 初等变换法:
注对于阶数较高()的矩阵,采用初等变换法求逆矩阵一般比用伴随矩阵法简便.在用上述方法求逆矩阵时,只允许施行初等行变换.
方法3分块对角矩阵求逆:对于分块对角(或次对角)矩阵求逆可套用公式
其中均为可逆矩阵.
例1已知,求.解将分块如下:
其中,
而
,
从而
例2已知,且,试求.解由题设条件得
例3 设4阶矩阵
且矩阵满足关系式,试将所给关系式化简,并求出矩阵.解由所给的矩阵关系式得到
,即
故.利用初等变换法求.由于
故
例4 设,则_________.
应填:.
分析在遇到的有关计算时,一般不直接由定义去求,而是利用的
重要公式.如此题,由得,而,于是
=
例5 已知,试求和.
分析因为,所以求的关键是求.又由
知,可见求得和后即可得到.
解对两边取行列式得,于是
即,故
又因为,其中,又,可求得
,
故由得
例6 设,其中(),则____.
应填:.
分析法1.,其中,.
从而.又,,代入即得的逆矩阵.
法2. 用初等变换法求逆矩阵.
=
故。
求矩阵逆的方法
方法一,伴随矩阵法。
对于一个n阶矩阵A,如果其行列式不为0,那么A就是可逆的。
我们可以通过求解伴随矩阵来得到A的逆矩阵。
首先,我们计算A的伴随矩阵Adj(A),然后用行列式的倒数乘以伴随矩阵即可得到A的逆矩阵。
方法二,初等变换法。
初等变换法是通过一系列的行变换将原矩阵变换为单位矩阵,然后将单位矩阵变换为A的逆矩阵。
这种方法在计算机求解中比较常见,可以通过高斯消元法来实现。
方法三,分块矩阵法。
对于某些特殊的矩阵,我们可以通过将其分解成若干个子矩阵,从而简化逆矩阵的求解过程。
例如,对角矩阵、上三角矩阵、下三角矩阵等都有相对简单的逆矩阵求解方法。
方法四,特征值分解法。
对于对称正定矩阵,我们可以通过其特征值和特征向量来求解其逆矩阵。
通过特征值分解和特征向量矩阵的转置,我们可以得到原矩阵的逆矩阵。
方法五,数值逼近法。
对于大型矩阵或者特殊结构的矩阵,有时候我们无法通过解析的方法求解其逆矩阵,这时可以通过数值逼近的方法来计算其逆矩阵。
例如,利用迭代法或者矩阵分解等方法来近似求解逆矩阵。
总结:
以上是几种常见的求解矩阵逆的方法,不同的方法适用于不同类型的矩阵。
在实际问题中,我们需要根据具体情况选择合适的方法来求解矩阵的逆,以便更好地解决实际问题。
希望本文能够对您有所帮助,谢谢阅读!。
前言矩阵理论在《线性代数》课程中有着重要的地位,矩阵和数相仿可以运算,特别是乘法和数一样有逆运算,其定义为:对于 n 阶方阵 A,如果存在 n 个阶段 B 使得 AB=BA=E,则 n 个阶方阵 A 为可逆的,B 为 A 的逆矩阵。
掌握好求逆矩阵的方法对线性方程组、二次型、线性变换等问题的解决有很大帮助。
关于矩阵求逆问题,不同的《线性代数》教材介绍了不同的方法。
下面对求逆矩阵方法进行全面论述,并做一步探讨。
1矩阵求逆常见的几种方法 1.1 用伴随矩阵法求逆矩定理1.1.1:n 阶矩阵)(ij a A =可逆的充要条件0≠A ,而且当)2(≥n 阶矩阵A 有逆矩阵,*-=A AA 11,其中*A 伴随矩阵。
例1 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=412112013A 是否可逆?若可逆,求1-A 解:A A ∴≠=05可逆又511=A ,421=A ,3131=A ,1012=A ,1222=A ,332-=A ,013=A ,123=A ,133=A∴*-=A AA 11 例 2 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=543022001A ,*A 是A 的伴随矩阵,求()1-*A 解:1-*=A A A ,又()kB kB 11--=, 所以()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡====---*5430220011011011111A A A AA A且有规律可循。
对于三阶以上方阵用该方法逆矩阵,不仅计算量大且易出错,一般不用此种方法。
对求出逆矩阵正确与否,一般用E AA A A ==--11来检验是否正确。
1.2 用初等变换法求逆矩阵定理 1.2.1 如果n 阶方阵A 可逆,则存在有限个初等矩阵,l P P P 21,使得l P P P A 21=。
如果A 可逆,则1-A 也可逆,由上述定理, 存在初等矩阵l Q Q Q ,,,21 使得l Q Q Q A 211=-那么A A AA E 11--== 即A Q Q Q E l 21= E Q Q Q A l 211=-于是我们得到一个求逆矩阵的方法如下:如果n 阶方阵A 可逆,作一个n n 2⨯的矩阵E A ,然后对此矩阵施以初等行换,使A 化为单位矩阵E 同时化为1-A ,即:E A 1-−−−→−A E 初等行变换例1 用初等行变换求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=521310132A 的逆矩阵解:=E A →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100132310521100010001521310132 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--201010100910310521211010100600310521⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→316161100123210103461361001316161100010310100521 故⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=-3161611232134613611A 同理,如果n 阶矩阵A 可逆,作一个n n ⨯2的矩阵⎥⎦⎤⎢⎣⎡E A ,然后此矩阵施以初等变换,使矩阵A 化为单位阵E ,则同时E 化为1-A ,即⎥⎦⎤⎢⎣⎡−−−→−⎥⎦⎤⎢⎣⎡-1A E E A 初等列变换。
求解逆矩阵的常用三种方法逆矩阵是一个矩阵的逆操作,即找到一个矩阵,与原矩阵相乘后得到单位矩阵。
逆矩阵在线性代数中具有重要的应用,比如求解线性方程组、计算矩阵的行列式等。
在实际应用中,常用的求解逆矩阵的方法包括:伴随矩阵法、初等变换法和分块矩阵法。
第一种方法是伴随矩阵法。
对于一个n阶矩阵A,如果它的行列式不为0,那么它存在逆矩阵。
首先计算矩阵A的伴随矩阵,记作Adj(A),然后用伴随矩阵除以原矩阵A的行列式,即可得到逆矩阵。
具体步骤如下:1. 计算矩阵A的行列式det(A);2. 计算矩阵A的伴随矩阵Adj(A),其中第i行第j列的元素等于原矩阵A的代数余子式Aij的行列式乘以(-1)^(i+j);3. 将伴随矩阵Adj(A)的每个元素除以原矩阵A的行列式det(A),得到逆矩阵A^(-1) = Adj(A)/det(A)。
第二种方法是初等变换法。
利用矩阵的初等行变换和初等列变换来求解逆矩阵。
具体步骤如下:1.将原矩阵A和单位矩阵I进行横向拼接,得到一个增广矩阵[A,I];2.对增广矩阵进行行变换,将矩阵A变为单位矩阵I,同时单位矩阵I经过相同的行变换得到逆矩阵A^(-1);3.若矩阵A无法通过行变换变为单位矩阵I,则矩阵A不可逆。
第三种方法是分块矩阵法。
将原矩阵A按照其中一种方式进行分块,然后通过对分块矩阵进行运算来求解逆矩阵。
常见的分块矩阵法有Schur补法和Sherman–Morrison公式法,这里以Schur补法为例进行说明。
1.将原矩阵A分解为分块矩阵,例如A=[B,D;E,F];2.利用矩阵分块的性质求解逆矩阵,A^(-1)=[B^(-1)+B^(-1)D(X-F^(-1)E)B^(-1),-B^(-1)DF^(-1);-F^(-1)EB^(-1),F^(-1)+F^(-1)EHF^(-1)],其中X=(F-EF^(-1)D)^(-1);3.若分块矩阵的逆存在,即B可逆、F可逆且B-DF^(-1)E可逆,那么原矩阵A也存在逆矩阵。
求逆矩阵的若干方法和举例苏红杏广西民院计信学院00数本(二)班[摘 要] 本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面的读者参考。
[关键词] 逆矩阵 初等矩阵 伴随矩阵 对角矩阵 矩阵分块 多项式等引 言 在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。
但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。
为此,我介绍下面几种求逆矩阵的方法,供大家参考。
定义: n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B方法 一. 初等变换法(加边法)我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积A=m Q Q Q 21, 从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。
即,必有一系列初等矩阵 m Q Q Q 21使E A Q Q Q m m =-11 (1)则1-A =E A Q Q Q m m =-11 (2)把A ,E 这两个n 阶矩阵凑在一起,做成一个n*2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A ) (3) 这样就可以求出矩阵A 的逆矩阵1-A 。
例 1 . 设A= ⎪⎪⎪⎭⎫ ⎝⎛-012411210 求1-A 。
解:由(3)式初等行变换逐步得到: ⎪⎪⎪⎭⎫ ⎝⎛-100012010411001210→ ⎪⎪⎪⎭⎫⎝⎛-100012001210010411 →⎪⎪⎪⎭⎫ ⎝⎛----123200124010112001→⎪⎪⎪⎪⎭⎫⎝⎛----21123100124010112001于是1-A = ⎪⎪⎪⎪⎭⎫ ⎝⎛----21123124112说明:此方法适用于求元素为具体数字的矩阵的逆矩阵,比较简便,特别是当阶数较高时,使用初等变换法的优点更明显。
同样使用初等列变换类似行变换,此略,注意在使用此方法求逆矩阵是,一般做初等行变换,避免做初等列变换。
方法 二. 伴随矩阵法定理:矩阵A 是可逆的充分必要条件是A 非退化,而1-A =d1*A ,(d=A ≠0) (4)我们用(4)式来求一个矩阵的逆矩阵。
例 2. 求矩阵A 的逆矩阵1-A :已知A= ⎪⎪⎪⎭⎫ ⎝⎛343122321解:d=A =9+6+24-18-12-4=2≠011A =2 12A =-3 13A =221A =6 22A =-6 23A =2 31A =-4 32A =5 33A =-2用伴随矩阵法,得1-A =d 1*A =⎪⎪⎪⎪⎭⎫ ⎝⎛----11125323231 说明:虽然这个公式对任何可逆矩阵都适用,但由于计算量大,一般只用于较低阶的矩阵的求逆比如二阶三阶矩阵的逆,尤以对二阶,此方法更方便。
方法 三. 矩阵分块求逆法在进行高阶矩阵运算时,经常将高阶矩阵按某种规则分成若干块,每一小块是一小矩阵,这样一方面对小矩阵进行运算,一方面每一小矩阵又可作为一个元素按运算规则来进行运算,求出矩阵的逆矩阵。
引出公式: 设T 的分块矩阵为:T= ⎪⎪⎭⎫⎝⎛D C B A , 其中T 为可逆矩阵,则1-T = ⎪⎪⎭⎫⎝⎛------+-------------1111111111111)()()()(B CA D CA B CA D B CA D B A CA B CA D B A A , (5) 说明:关于这个公式的推倒从略。
例 3. 求下列矩阵的逆矩阵,已知 W=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛5243210040103001 解:将矩阵W 分成四块,设A=⎪⎪⎪⎭⎫ ⎝⎛100010001, B=⎪⎪⎪⎭⎫ ⎝⎛243, C=()243, D=()5,于是 ),24()(1-=--B CA D 即11)(---B CA D =)241(-B A 1-=B=⎪⎪⎪⎭⎫ ⎝⎛243, 1-CA =C=()243,利用公式(5),得1-W =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------12432208648812361215241 方法 四. 因式分解法若0=k A ,即(E-A )可逆,且有1)(--A E =12-++++K A A A E , (6)我们通过上式(6),求出1-A 例 4.求下面矩阵的逆矩阵,已知:A=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------1000011000211003211043211, 解:因为存在一个K 0,使K A E )(-=0,把这里的(E-A )替换(6)式中的“A ”,得1-A =12)()()(--++-+-+K A E A E A E E通过计算得 4)(A E -=41000011000211003211043211⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=0,即K=4所以 1-A =32)()()(A E A E A E E -+-+-+=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1000001000001000001000001+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----0000010000210003210043210 +=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1000011000111000111010111 方法 五.多项式法我们知道,矩阵A 可逆的充分必要条件是有一常数项不为零的多项式f(x),满足f(A)=0,用这个知识点也可以求出逆矩阵。
例 5.已知矩阵A=⎪⎪⎭⎫⎝⎛--3312,且A 满足多项式f(x)=0352=+-E X X ,即0352=+-E A A 试证明A 是可逆矩阵,并求其可逆矩阵。
证:由0352=+-E A A ,可得E E A A =+-)3531(从而可知A 为可逆矩阵,并且⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛---=+=-32131110013533123135311EA A方法 六. 解方程组法在求一个矩阵的的逆矩阵时,可设出逆矩阵的待求元素,根据等式E AA =-1两端对应元素相等,可得出相应的只含待求元素的诸多线性方程组,便可求解逆矩阵。
例 6.求A=⎪⎪⎪⎭⎫ ⎝⎛343122321的逆矩阵解:求可逆矩阵A 的逆矩阵X ,则它满足AX=E ,设),,(321X X X X =,则⎪⎪⎪⎭⎫ ⎝⎛=0011AX , ⎪⎪⎪⎭⎫ ⎝⎛=0102AX , ⎪⎪⎪⎭⎫ ⎝⎛=1003AX利用消元解法求⎪⎪⎪⎭⎫ ⎝⎛=i i i i x x x X 321 (i=1,2,3)解得:⎪⎪⎪⎪⎭⎫ ⎝⎛----==-1110253232311X A方法 七. 准对角矩阵的求逆方法定义:形如 ii nn A A A A A ,0000002211⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛= 是矩阵 n i ,2,1= 。
A 称为准对角矩阵。
其求逆的方法:可以证明:如果nn A A A ,,,2211 都可逆,则准对角矩阵也可逆,且⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----11221111221100000000000nn nn A A A A A A例 7. 已知 ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=500051002300004A ,求1-A 。
解:设11A =4 ⎪⎪⎪⎭⎫⎝⎛-=512322A 533-=A ⎪⎪⎪⎪⎪⎭⎫⎝⎛=33221100000A A A A求得:,41111=-A ⎪⎪⎪⎭⎫⎝⎛=-3125171122A 51133-=-A所以 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=----51000173171001721750000410000001331221111A A A A方法八.恒等变形法有些计算命题表面上与求逆矩阵无关,但实质上只有求出其逆矩阵之后,才能解决问题。
而求其逆矩阵常对所给矩阵进行恒等变形,且常变为两矩阵乘积等于单位矩阵的等式。
例 8.已知E A =6 , 求11A , 其中⎪⎪⎪⎪⎭⎫ ⎝⎛-=21232321A , 解:对已知矩阵等式E A =6进行恒等变形,得 E A A A A A E A =•=•=•=116666于是,111-=A A ,又因为A 是正交矩阵,T A A =-1,所以⎪⎪⎪⎪⎭⎫ ⎝⎛-===-21232321111T A A A方法九.公式法利用下述诸公式,能够迅速准确地求出逆矩阵。
1) 二阶矩阵求逆公式(两调一除):若 A=⎪⎪⎭⎫ ⎝⎛d c b a , 则⎪⎪⎭⎫ ⎝⎛--=-a c b d A A 112) 初等矩阵求逆公式:ij ij E E =-1)1()(1kE k E i i =-)()(1k E k E ij ij -=-3) 对角线及其上方元素全为1的上三角矩阵的逆矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100011101111A 的逆矩阵为:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=-100001100000110000111 A4) 正交矩阵的求逆公式: 若A 为正交矩阵,则T A A =-15)其他常用的求逆公式: 111)(---=A B AB T T A A )()(11--= A A A A 111)*(*)(---==S A A A A ,,,,321 可逆 ,则11121121)(----=A A A A A A SS 例 9. 已知:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100010001A , ⎪⎪⎪⎪⎪⎭⎫⎝⎛=100110111B ,求1)(-AB 。
解:由于A 是初等矩阵,由公式得:A A =-1而B 为元素都为1的上三角矩阵,由公式得:⎪⎪⎪⎭⎫⎝⎛--=-1001100111B ,再由公式得:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=-010110101110100001100110011)(1AB到此为止,我已介绍了9种求逆矩阵的方法,除此外还有求正定矩阵的逆矩阵的三角阵法,由于其方法不是很简便,在此略。
这些方法各有所长,读者可根据实际情况进行选择。
当然,除此之外还有其它方法。
希望能和大家在今后的学习中,共同研究出更方便,更有效的矩阵求逆方法。
参考文献:[1] 高等代数/北京大学数学系几何与代数教研室代数小组编。
1988.3 [2] 高等代数一题多解200例/ 魏献祝 编 福建人民出版社。
[3] 线性代数学习指导/ 戴宗儒编科学技术出版社。
[4] 线性代数解题方法技巧归纳/ 毛纲源编华中理工大学出版社。
[5] 数学手册/ 《数学手册》编写组编。