回复再结晶-晶粒长大.概要
- 格式:ppt
- 大小:424.50 KB
- 文档页数:20
一文看懂回复和再结晶回复和再结晶一、冷变形金属在加热时的组织与性能变化金属和合金经塑性变形后,由于空位、位错等结构缺陷密度的增加,以及畸变能(晶体缺陷所储存的能量)的升高将使其处于热力学不稳定的高自由能状态,具有自发恢复到变形前低自由能状态的趋势,但在室温下,因温度低,原子活动能力小,恢复很慢,一旦受热,温度较高时,原子扩散能力提高,组织、性能会发生一系列变化。
这一变化过程随加热温度的升高可表现为三个阶段:回复:指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。
在此阶段,组织:由于不发生大角度晶界的迁移,晶粒的形状和大小与变形态相同,仍为纤维状或扁平状。
性能:强度与硬度变化很小,内应力、电阻明显下降。
(回复是指冷塑性变形的金属在(较低温度下进行)加热时,在光学显微组织发生改变前(即在再结晶晶粒形成前)所产生的某些亚结构和性能的变化过程。
)再结晶:指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程。
在此阶段,组织:首先在畸变度大的区域产生新的无畸变晶粒的核心,然后逐渐消耗周围的变形基体而长大,直到变形组织完全改组为新的、无畸变的细等轴晶粒为止。
性能:强度与硬度明显下降,塑性提高,消除了加工硬化,使性能恢复到变形前的程度。
晶粒长大:指再结晶结束之后晶粒的继续长大。
在此阶段,在晶界表面能的驱动下,新晶粒相互吞食而长大,最后得到较稳定尺寸的晶粒。
显微组织的变化:回复阶段:显微组织仍为纤维状,无可见变化。
再结晶阶段:变形晶粒通过形核长大,逐渐转变为新的无畸变的等轴晶粒晶粒长大阶段:晶界移动,晶粒粗化,达到相对稳定的形状和尺寸。
性能变化:回复阶段:强度、硬度略有下降,塑性略有提高;密度变化不大,电阻明显下降。
再结晶阶段:强度、硬度明显下降,塑性明显提高;密度急剧升高。
晶粒长大阶段:强度、硬度继续下降,塑性继续提高;粗化严重时下降。
二、回复1. 回复动力学上图同一变形程度的多晶体铁在不同温度退火时,屈服强度的回复动力学曲线特点:(1)没有孕育期;(2)在一定温度下,初期的回复速率很大,随后即逐渐变慢,直至趋近于零;(3)每一温度的恢复程度有一极限值,退火温度越高,这个极限值也越高,而达到此一极限值所需的时间则越短;(4)预变形量越大,起始的回复速率也越快,晶粒尺寸减小也有利于回复过程的加快。
根据加热温度不同,发生回复、再结晶及晶粒长大过程,经塑性变形后的金的过程称之为“退火”.回复阶段,从光学显微镜下观察的组织几乎没有变化,晶粒仍是冷变形之后的纤维状;在再结晶阶段,首先是出现新的无畸变的核心,然后逐渐消耗周围的变形基体而长大,直到变形组织完全改组为新的、无畸变的细等轴晶粒为止;晶粒长大阶段,是在界面能的驱动下,再结晶的新晶粒相互吞并而长大,以获得该温度下更为稳定的晶粒尺寸回复和再结晶的驱动力是内部储存的畸变能(内应力),在回复和再结晶过程中全部释放出来,不同的金属类型,再结晶以前释放的储能不同,从纯金属→不纯金属→合金,储能的释放增加;由于杂质和溶质原子阻碍再结晶的形核和长大,推迟再结晶过程.三个阶段金属的性能变化如图所示:①电阻率在回复阶段就已明显下降,到再结晶时下降更快,最后恢复到变形前的电阻;②强度和硬度在回复阶段下降不多,再结晶开始后硬度急剧下降,降低的规律因金属的种类不同而不同;③内应力在回复阶段明显下降,宏观内应力在回复时可以全部或大部分被消除,微观内应力部分消除;在再结温度以上,微观内应力被全部消除.④材料的密度随退火温度升高而增加.所谓回复是指冷变形金属在加热时,在新的无畸变晶粒出现之前,所产生的亚结构与性能的变化过程.回复动力学研究材料的性能向变形前回复的速率问题:①回复过程没有孕育期;②在一定的温度下,初期的回复速率很高,以后逐渐减慢,直到最后回复的速率为零.③每一个温度的回复过程都有一个极限值,退火温度越高,这个极限值越高,需要时间越短.R为回复时已恢复的加工硬化,σm σr σ0分别为变形后、回复后以及完全退火的屈服应力,R越大,(1-R)越小,表示回复阶段性能恢复程度越大.回复过程的组织变化与回复机制多边形化:金属塑性变形后,滑移面上塞积的同号刃型位错沿原滑移面水平排列,高温时通过滑移和攀移使位错变成沿垂直滑移面的排列,形成所谓的位错墙,每组角度晶界分割晶粒成亚晶,这一过程称为位错的多边形化.只在产生単滑移的晶体中,多边形化过程最典型,多滑移情况下可能存在,更易形成胞状组织.胞状组织的规整化:过剩空位消失,变形胞状组织内的位错被吸引到胞壁,并与胞壁中的异号位错互相抵消位错密度降低,位错变得平直较规整,当回复继续时,胞胞壁中的位错缠结逐渐形成能量较低的位错网,胞壁变薄,单胞有所长大,构成亚晶粒.亚晶粒的合并:可能通过位错的攀移和位错壁的消失,从而导致亚晶转动来完成.去应力退火:冷变形金属经回复后使内应力得到很大程度的消除,同时又能够保持效果,因此回复退火又称为去应力退火.工件中内应力的降低可以避免工件的变形或开裂,②异号位错在热激活作用下相互吸引而抵消③亚晶粒长大;①位错攀移和位错环缩小;②亚晶粒合并;③多边形化;中温回复(0.3-0.5T m )高温回复(≧0.5T m )不同温度下对应的回复机制(T 表示熔点)温度回复机制低温回复(0.1-0.3T m )①点缺陷移至晶界或位错处消失;②点缺陷①缠结中的位错重新排列而构成亚晶;.冷加工”塑性变形后的金属再进行加热仍是冷变形之后的纤维状;在周围的变形基体而长大,直到阶段,是在界面能的驱动粒尺寸的过程.回复和再结晶过程中全部释放金属→不纯金属→合金,储能,推迟再结晶过程.这个极限值越高,需要时间越短.后以及完全越大.沿原滑移面水平排列,高温时,每组位错墙均以小可能存在,更易形成胞状组织.被吸引到胞壁,并与胞壁中的时,胞内几乎无位错,单胞有所长大,构成亚晶粒.导致亚晶转动来完成.够保持冷变形的硬化开裂,并提高其耐腐蚀性.而抵消,位错密度下降;熔点)点缺陷合并;;0σσσσ--=m r m R质原子被吸附在晶界,织;②加工温度范围在速率敏感系数.状;抛光表面没有显示滑移线;,晶粒长大越明显;。
说明液固转变、回复、再结晶、晶粒长大、扩散的驱动力和可能
需要的工艺条件。
液固转变的驱动力是过冷度,即实际结晶温度与理论结晶温度之差。
需要的工艺条件包括控制冷却速率和温度。
回复的驱动力是变形储存能,即在变形过程中存储在材料内部的能量。
需要的工艺条件包括加热到一定温度并保持一定时间。
再结晶的驱动力也是变形储存能。
需要的工艺条件包括加热到一定温度以上,使晶粒重新形成并长大。
晶粒长大的驱动力是界面能,即晶粒边界处的能量。
需要的工艺条件包括在一定温度下保温,使晶粒逐渐长大。
扩散的驱动力是化学势梯度,即物质在不同区域的浓度差异。
需要的工艺条件包括提供足够的能量使原子或分子能够克服扩散激活能并在材料中移动。
这些过程的具体工艺条件会根据材料的类型、变形程度、温度和时间等因素而有所不同。
第10章回复与再结晶§1 冷变形金属在加热时的变化一、显微组织的变化二、性能的变化(一)力学性能的变化回复阶段:强度、硬度、塑性等力学性能变化不大。
再结晶阶段:随加热温度升高,强度、硬度显著下降,塑性急剧升高。
当晶粒长大时,强度、硬度继续下降,塑性在晶粒严重粗化时,也下降。
(二)物理性能的变化回复阶段:,密度变化不大,电阻明显下降;再结晶阶段:密度急剧升高。
(三)内应力的变化回复阶段,内应力部分消除;再结晶阶段,内应力全部消除。
§2 回复一、回复过程中微观结构的变化机制回复:回复的驱动力:弹性畸变能的降低。
根据回复阶段加热温度及内部结构变化特征、机制不同,将其分为三类:(一)低温回复温度:0.1T m~0.3 T m。
结构变化:主要是点缺陷的运动,空位浓度降低。
(二)中温回复温度:0.3T m~0.5 T m。
结构变化:除点缺陷的运动外,位错也开始运动,位错密度降低。
(三)高温回复温度:≥0.5 T m。
结构变化:位错运动发生多边化,形成亚晶结构;总的应变能下降。
二、回复动力学特点:①无孕育期;②变化速率先快后慢;③最后趋于恒定值。
回复过程的表达式:dx / dt= - cx (c=c0exp(-Q/RT))→ln(x0/x)= c0texp(-Q/RT)。
如果采用两个不同温度将同一冷变形金属的性能回复到同样程度,则有:三、去应力退火§3 再结晶再结晶:经冷变形的金属在足够高的温度下加热时,通过新晶粒的形核及长大,以无畸变的等轴晶粒取代变形晶粒的过程。
再结晶是一个显微组织彻底改组、变形储能充分释放、性能显著变化的过程。
一、再结晶的形核及长大形核的两种方式:晶界凸出形核、亚晶形核。
(一)晶界凸出形核变形度较小时,再结晶核心一般以凸出形核方式形成。
如右图所示。
若界面由I向II推进,则:当α>π/2时,晶界可以自发生长,因此,凸出形核所需的能量条件为:ΔE>2σ/ lΔE-单位体积A、B相邻晶粒储存能差;ΔA-增加的晶界面积。
用回复,再结晶和晶粒长大解释铁素体变形80%经不
同温度退火的组织演变
铁素体变形是通过回复、再结晶和晶粒长大三个过程来解释的。
这三种过程在不同温度退火下,对80%的铁素体组织演变产生了显著的影响。
1. 回复过程:在退火初期,铁素体晶粒内部的应力状态发生改变,晶格畸变逐渐消除,这一过程称为回复。
回复过程使铁素体晶粒尺寸略有增大,但变化不明显。
2. 再结晶过程:随着退火温度的升高,铁素体晶粒开始发生再结晶,即原有的铁素体晶粒破碎,重新形成新的晶粒。
在再结晶过程中,铁素体晶粒尺寸显著减小,组织变得更加细小。
在80%的铁素体中,再结晶过程使晶粒尺寸降低,提高了铁素体的塑性。
3. 晶粒长大过程:在退火后期,随着温度的进一步升高,铁素体晶粒逐渐长大。
晶粒长大过程使铁素体晶粒尺寸增大,但过大的晶粒尺寸可能会导致铁素体塑性降低。
在80%的铁素体中,晶粒长大过程对组织演变的影响相对较小。
通过以上分析,可以得出以下结论:在不同温度退火下,铁素体变形主要受回复、再结晶和晶粒长大三个过程的控制。
适当的退火温度可以实现铁素体的细化和组织均匀化,提高其塑性和韧性。
而退火温度过高或过低,都可能对铁素体的性能产生不利影响。
因此,在实际应用中,需要根据具体需求选择合适的退火温度,以实现铁素体的高性能。
金属在冷变形、回复、再结晶及晶粒长大各阶段一、金属冷变形1. 什么是金属冷变形?金属冷变形是指在室温或较低温度下对金属材料进行塑性加工,以改变其形状或尺寸的过程。
常见的冷变形工艺包括冷拔、冷轧、冷锻等。
2. 冷变形的影响冷变形可以显著提高金属材料的强度和硬度,同时可以改善其力学性能和组织结构。
但冷变形也会导致金属材料产生晶界滑移、位错堆积、析出等微观结构变化,从而影响其综合性能。
二、金属回复1. 什么是金属回复?金属回复是指在冷变形后,应力减小或消除,导致金属材料产生一定程度的弹性恢复的过程。
回复过程主要表现为晶格疲劳裂纹的原子扩散,以及位错消失和减少。
2. 回复的影响金属回复过程可以使金属材料的内应力得到释放,从而降低材料的脆性,提高其韧性和塑性。
回复还可以减小金属材料的形变硬化,有利于后续的再结晶处理。
三、金属再结晶1. 什么是金属再结晶?金属再结晶是指在冷变形后,当金属材料达到一定程度的应变累积后,晶粒开始发生变形重组,并形成新的细小晶粒,以消除原来的应变能量积累的过程。
再结晶是一种发生在高温下的晶界迁移和新晶核形成的过程。
2. 再结晶的影响再结晶可以消除金属材料变形后产生的应力和位错,从而恢复其初始的塑性和韧性。
再结晶还可以改善金属材料的晶粒结构和晶内组织,提高其综合力学性能和加工性能。
四、晶粒长大1. 什么是晶粒长大?晶粒长大是指再结晶后的金属材料,在较高温度下,晶界迁移和晶粒体积增长,有的晶粒消失,有的晶粒长大的过程。
晶粒长大的主要机制有晶界扩散、声生长和弯曲扩张。
2. 晶粒长大的影响晶粒长大会导致材料的晶粒尺寸增大,影响了金属材料的力学性能、热稳定性和加工性能。
在材料的热处理过程中,需要控制晶粒长大,以保证材料具有良好的综合性能。
结语通过对金属在冷变形、回复、再结晶及晶粒长大各阶段的过程及影响进行了解,有助于加深对金属材料内部组织和性能变化的认识,为金属材料的加工和应用提供了重要的理论基础和指导意见。