杂化轨道理论、配合物理论
- 格式:ppt
- 大小:1.29 MB
- 文档页数:21
课时跟踪检测〔七〕杂化轨道理论配合物理论1.下列画线的原子的杂化轨道类型属于sp杂化的是()A.H2O B.NH3C.C6H6D.C2H2解析:选D H2O中O、NH3中N价层电子对数均为4,均采取sp3杂化,C6H6分子为平面形分子,C采取sp2杂化,C2H2分子中含有两个π键,C采取sp杂化。
2.下列分子的空间构型可用sp2杂化轨道来解释的是()①BF3②CH2===CH2③④CHCH⑤NH3⑥CH4A.①②③B.①⑤⑥C.②③④D.③⑤⑥解析:选A①BF3是平面三角形分子,且B—F键夹角为120°;②CH2===CH2是平面形分子,其中碳原子以sp2杂化,未杂化的2p轨道形成π键;③中碳原子以sp2杂化,未杂化的2p轨道形成特殊的π键;④CHCH为直线形分子,其中碳原子为sp杂化;⑤NH3是三角锥形分子,中心原子氮原子为sp3杂化;⑥CH4是正四面体形分子,中心碳原子为sp3杂化。
3.三氯化磷分子中的中心原子以sp3杂化,下列有关叙述正确的是()①3个P—Cl键长、键角均相等②空间构型为平面三角形③空间构型为正四面体④空间构型为三角锥形A.①②B.②③C.③④D.①④解析:选D PCl3中P以sp3杂化,有一对孤对电子,结构类似于NH3分子,3个P—Cl 键长、键角均相等,空间构型为三角锥形。
4.下列关于配位化合物的叙述中,不正确的是()A.配位化合物中必定存在配位键B.配位化合物中只有配位键C.[Fe(SCN)6]3-中的Fe3+提供空轨道,SCN-中的硫原子提供孤电子对形成配位键D.许多过渡元素的离子(如Cu2+、Ag+等)和某些主族元素的离子或分子(如NH3、H+等)都能形成配合物解析:选B配位化合物中一定含有配位键,但也可能含有离子键等其他化学键,A正确,B错误;Fe3+、Cu2+、Ag+等过渡元素的离子有空轨道,可形成配合物;NH3中的氮原子、SCN-中的硫原子等有孤电子对,H+有空轨道,也可以形成配合物,C、D均正确。
第2课时杂化轨道理论简介配合物理论简介1.了解杂化轨道理论及常见的杂化轨道类型(sp,sp2,sp3),并能根据杂化轨道理论判断简单分子或者离子的构型。
2.能正确叙述配位键的概念及其形成条件,会分析配位化合物的形成及应用。
3.熟知几种常见的配离子:[Cu(H2O)4]2+、[Cu(NH3)4]2+、[Fe(SCN)n](3-n)+、[Ag(NH3)2]+等的颜色及性质。
杂化轨道理论简介1.轨道的杂化与杂化轨道(1)概念①轨道的杂化:原子内部能量相近的原子轨道重新组合形成与原轨道数相等的一组新轨道的过程。
②杂化轨道:杂化后形成的新的能量相同的一组原子轨道。
(2)杂化轨道类型杂化类型sp sp2sp3参与杂化的原子轨道及数目1个s轨道和1个p轨道1个s轨道和2个p轨道1个s轨道和3个p轨道杂化轨道的数目 2 3 4①在形成多原子分子时,中心原子价电子层上的某些能量相近的原子轨道(n s,n p)发生杂化,双原子分子中,不存在杂化过程。
②杂化过程中,原子轨道总数不变,即杂化轨道的数目与参与杂化的原子轨道数目相等。
③杂化过程中,轨道的形状发生变化,但杂化轨道的形状相同,能量相等。
④杂化轨道只用于形成σ键或用来容纳未参与成键的孤电子对,且杂化轨道之间要满足最小排斥原理。
2.杂化轨道类型与分子立体构型的关系杂化类型sp sp2sp3杂化轨道间的夹角180°120°109°28′分子立体构型名称直线形平面三角形正四面体形实例CO2、C2H2BF3、HCHO CH4、CCl4型与杂化轨道的形状有所区别。
如水分子中氧原子的sp3杂化轨道有2个是由孤电子对占据的,其分子不呈正四面体构型,而呈V形,氨分子中氮原子的sp3杂化轨道有1个由孤电子对占据,氨分子不呈正四面体构型,而呈三角锥形。
3.杂化轨道的立体构型与微粒的立体构型下面为几种常见分子的杂化类型、VSEPR模型与分子构型的对应关系。
三、杂化轨道理论的简述1.杂化轨道理论认为:在形成分子时,通常存在激发、杂化、轨道重叠等过程。
但应注意,原子轨道的杂化,只有在形成分子的过程中才会发生,而孤立的原子是不可能发生杂化的。
同时只有能量相近的原子轨道(如2s,2p等)才能发生杂化,而1s轨道与2p轨道由于能量相差较大,它是不能发生杂化的。
2.杂化轨道成键时,要满足化学键间最小排斥原理,键与键间排斥力大小决定于键的方向,即决定于杂化轨道间的夹角。
由于键角越大化学键之间的排斥力越小,对sp杂化来说,当键角为180°时,其排斥力最小,所以sp杂化轨道成键时分子呈直线形;对sp2杂化来说,当键角为120°时,其排斥力最小,所以sp2杂化轨道成键时,分子呈平面三角形。
由于杂化轨道类型不同,杂化轨道夹角也不相同,其成键时键角也就不相同,故杂化轨道的类型与分子的空间构型有关。
3.杂化轨道的数目与组成杂化轨道的各原子轨道的数目相等。
四、ABm型杂化类型的判断1.公式: 电子对数n=2荷数电配位原子的成键电子数中心原子的价电子数++2.根据n值判断杂化类型一般有如下规律:当n=2,sp杂化;n=3,sp2杂化;n=4,sp3杂化。
例如:SO2n=(6+0)/2=3sp2杂化NO3-n=(5+1)/2=3sp2杂化NH3n=(5+3)/2=4 sp3杂化注意①当上述公式中电荷数为正值时取“-”,电荷数为负值时取“+”。
②当配位原子为氧原子或硫原子时,成键电子数为零。
3、判断分子或离子中心原子的杂化类型的一般方法:(1).对于主族元素来说,中心原子的杂化轨道数=价层电子数=σ键电子对数(中心原子结合的电子数)+孤电子对数规律:当中心原子的价层电子对数为4时,其杂化类型为SP3杂化,当中心原子的价层电子对数为3时,其杂化类型为SP2杂化,当中心原子的价层电子对数为2时,其杂化类型为SP杂化。
(2).通过看中心原子有没有形成双键或三键来判断中心原子的杂化类型。
杂化轨道和配合物理论(第一课时)班级: 姓名: 小组: 。
【学习目标】1.学生通过阅读课本39-40,记忆SP SP 2 SP 3轨道组成、形状,说出杂化轨道的特点及用途。
2.学生通过阅读课本41页表2-6,能判断杂化轨道的数目、类型及与分子构型之间的关系。
3.学生通过阅读课本41-43页内容,能利用定义判断中心原子、配体,并正确表示配位键。
4.学生通过教师讲解,结合内、外界原子性质的不同,利用实验现象确定配合物的结构。
【重点难点】重点:判断杂化轨道类型,推断分子的立体构型,常见配合物的形成结构及表示方法。
难点:杂化轨道类型及分子构型的判断。
【导学流程】一.基础感知1.结合课本39-41页“杂化轨道理论”内容,完成下列问题:1)2)确定杂化轨道步骤①计算中心原子的价层电子对②确定VSEPR 模 ③确定杂化轨道类型 由上述步骤确定中心原子采取的杂化轨道类型,并推测分子的立体构型。
①PCl 3 ②BCl 2 ③CS 2 ④SCl 2 ⑤HCHO ⑥SO 42- ⑦H 3O +思考:有机物中标有“·”的碳原子的杂化方式依次为?2.结合课本41-43页“配合物理论”内容,完成下列问题:1)配合物的组成如右图所示,回答关于配合物[TiCl(H 2O)5]Cl 2•H 2O 的相关问题:A.配体是 ,配位数是B.作为配体的Cl −与非配体Cl −的数目关系C.中心离子是 ,配离子D.1mol 该物质与足量AgNO 3溶液作用,最多生成 molAgCl2)向CuSO 4溶液中加入过量的NaOH 溶液可生成[Cu(OH)4]2-,试回答:①提供孤电子对的是 ②提供空轨道的是③[Cu(OH)4]2-的结构可用示意图表示为杂化类型 轨道组成 轨道夹角 实例 立体构型 SPBeCl 2 SP 2 BF 3 SP 3 CH 4內界 (配离子)。
第二课时杂化轨道理论与配合物理论简介A组1.已知Zn2+的4s轨道和4p轨道可以形成sp3杂化轨道,那么[ZnCl4]2-的立体结构为()A.直线形B.平面正方形C.正四面体形D.正八面体形解析:根据杂化轨道理论,Zn2+的4s轨道和4p轨道形成sp3杂化轨道后,其杂化轨道构型一定为正四面体形,又由于Zn2+结合了4个Cl-,孤电子对数为0,所以[ZnCl4]2-的立体结构为正四面体形。
答案:C2.在分子中,羰基碳原子与甲基碳原子成键时所采取的杂化方式分别为()A.sp2杂化;sp2杂化B.sp3杂化;sp3杂化C.sp2杂化;sp3杂化D.sp杂化;sp3杂化解析:羰基上的碳原子共形成3个σ键,为sp2杂化,两侧甲基中的碳原子共形成4个σ键,为sp3杂化。
答案:C3.下列关于苯分子的性质描述错误的是()A.苯分子呈平面正六边形,六个碳碳键完全相同,键角皆为120°B.苯分子中的碳原子,采取sp2杂化C.苯分子中的碳碳键是介于单键和双键中间的一种特殊类型的键D.苯能使酸性KMnO4溶液褪色解析:苯分子中的碳原子采取sp2杂化,6个碳原子呈平面正六边形结构,键角为120°;在苯分子中间形成一个六电子的大π键,因此苯分子中的碳碳键并不是单双键交替结构,也就不能使酸性KMnO4溶液褪色。
答案:D4.在下列化学反应:①H++OH-H2O;②2H2+O22H2O;③HCl+NH3NH4Cl;④BaCl2+(NH4)2SO4BaSO4↓+2NH4Cl;⑤Fe+Cu2+Cu+Fe2+;⑥NaNH2+H2O NaOH+NH3中,反应时不形成配位键的是()A.①②④⑤⑥B.④⑤⑥C.②④⑤D.②③解析:由结构可知:①②⑤⑥中各物质均不含有配位键,④虽然N中含有配位键,但在反应过程中该离子没有发生变化,故也没有形成新的配位键。
只有③中由于生成铵离子而形成配位键。
答案:A5.配位化合物简称配合物,它的数量巨大,组成和结构形形色色,丰富多彩。
杂化轨道理论配合物理论一、选择题1.以下有关杂化轨道的说法中,错误的是()A.ⅠA族元素成键时一般不能形成杂化轨道B.杂化轨道既可形成σ键,也可能形成π键C.孤电子对有可能占据杂化轨道D.s轨道和p轨道杂化不可能有sp4杂化答案B解析ⅠA族元素如果是碱金属,易失电子,不能参加杂化,如果是H,一个电子在1s能级上也不可能杂化,故A正确.杂化轨道只能形成σ键或者容纳未参加成键的孤电子对,不可能形成π键,故B 错误。
H2O分子中的氧原子采取的是sp3杂化,4个sp3杂化轨道有2个被孤电子对占用,故C正确.杂化前后原子轨道数目不变,sp4杂化需要5个原子轨道,但是同一能层中s能级和p能级一共只有4个原子轨道,所以s轨道和p轨道不可能有sp4,故D正确.2.下列对sp3、sp2、sp杂化轨道的夹角的比较,得出结论正确的是( )A.sp杂化轨道的夹角最大B.sp2杂化轨道的夹角最大C.sp3杂化轨道的夹角最大D.sp3、sp2、sp杂化轨道的夹角相等答案A解析sp、sp2、sp3杂化轨道的夹角分别为180°、120°、109°28′。
3.下列分子中划横线的原子的杂化轨道类型属于sp杂化的是()A.CH4B.C2H4C.C2H2D.NH3答案C解析CH4分子中碳原子的杂化轨道是由一个2s轨道和三个2p 轨道重新组合而成,属sp3杂化;C2H4分子中碳原子的杂化属sp2杂化;C2H2分子中的碳原子的原子轨道发生的是sp杂化;NH3分子中的N原子的原子轨道发生的是sp3杂化。
4.下列分子中,中心原子轨道杂化类型相同,空间构型也相同的是()A.H2O、SO2B.BeCl2、CO2C.H2O、NH3D.NH3、CH2O答案B解析H2O和SO2的空间构型都是V形,但中心原子轨道杂化类型分别是sp3杂化和sp2杂化。
BeCl2和CO2的空间构型均是直线形,中心原子轨道杂化类型均是sp杂化,符合题意。