小学六年级数学上册知识点归纳
- 格式:docx
- 大小:26.06 KB
- 文档页数:12
六年级上册数学知识点归纳整理
六年级上册数学主要内容包括以下知识点:
1. 整数运算:加法、减法、乘法、除法等整数的运算。
2. 小数运算:加法、减法、乘法、除法等小数的运算。
3. 分数运算:加法、减法、乘法、除法等分数的运算。
4. 有理数与小数之间的转换。
5. 线段的比较与运算:通过比较线段的长短、进行线段的加法、减法等运算。
6. 直角、钝角、锐角的概念与判断。
7. 三角形的性质与分类:根据三角形的边长、角度判断其性质与分类。
8. 平方与平方根的计算:对给定的正整数,求其平方与平方根。
9. 长方体与正方体的体积计算。
10. 二维图形的边长、面积计算:例如矩形、正方形、三角形、圆等二维图形的边长和面积的计算。
11. 数据处理:通过图表的形式进行数据的整理、归纳、分析和解读。
以上是六年级上册数学的主要知识点,通过学习这些知识点,可以帮助学生提高数学
运算能力和问题解决能力。
需要注意的是,对于不同教材和学校可能会有略微的差异,建议结合具体的教材内容进行学习和复习。
小学六年级数学知识点归纳第一部分数与代数一、数的认识知识点一:数的意义及分类1.整数是无限的,没有最小或最大的整数。
2.自然数是无限的,最小的自然数是1,没有最大的自然数。
3.既不是正数也不是负数的数称为零。
4.分数有真分数、假分数、带分数和最简分数。
5.百分数是百分数和分数的对比。
6.小数是有限小数和无限小数(无限不循环小数和无限循环小数)。
知识点二:计数单位和数位1.个、十、百……以及十分之一、百分之一……都是计数单位。
2.各个计数单位所占的位置称为数位。
3.十进制计数法。
4.数的分级。
知识点三:数的读、写法1.整数、小数、分数、百分数、正数和负数的读写法。
知识点四:数的改写1.把多位数改写成以“万”或“亿”为单位的数,可直接改写或省略尾数。
2.求小数的近似数。
3.假分数和带分数、整数之间的互化。
4.分数、小数与百分数之间的互化。
知识点五:数的大小比较1.整数、小数、分数、正数和负数的大小比较。
2.比较小数、分数和百分数的大小时,可把分数和百分数化成小数,把各小数的相同数位上下对齐进行比较,最后排序结果一定要排列原数。
知识点六:数的性质1.分数的基本性质。
2.小数的基本性质。
3.移动小数点的位置可引起小数大小变化,需要补位。
知识点七:因数倍数质数合数1.因数和倍数的意义。
2.因数和倍数的特征,一个数的因数个数有限,最小因数为1,最大因数为本身;一个数的倍数个数无限,最小倍数为本身,没有最大倍数;一个数既是它本身的因数,也是它本身的倍数。
3.2、3、5的倍数的特征。
4.奇数和偶数的意义,自然数不是奇数就是偶数,最小奇数为1,最小偶数为2.5.质数和合数的意义,最小质数为2,2是唯一的偶质数,没有最大质数;最小合数为4,没有最大合数。
6.判断一个数是质数还是合数的方法。
7、质因数、分解质因数、分解质因数的方法质因数是指能整除一个数的质数,分解质因数是将一个数分解成若干个质因数的乘积。
分解质因数的方法有多种,常用的有试除法和分解质因数法。
六年级上册数学知识点整理归纳长方体和正方体L氏方体和面体的特征:长方体有6个面,每个面都是长方形(翩的有百寸面是正方形). 相对的面完全相同有12条棱r越寸的棱平行且相等府8个顶点.访形有6个面」每个药都是正方形,所有的面都完全相同;有1琮标,所有的标都相等;有8个顶点।L长、鼠高:相交I■质点的三条棱的长度分别叫做长方睡乩患高I长方体的棱长思保斗竞斗匐M正方体的棱长总和二楼长H24、表面积:长方体或正方体6个面的总面积叫做它的袤面既5、立体的表面积二(长K宽-长m高+克工高工2s项b+ah+hh)x2正方体的表面和二棱长x棱兵工6用字母表示:s=6、表面积单位:平方厘米平方分米平方米相件弹位的进率为1007、W?:物体所占空间的大小叫雌体丽.&、长方体的体枳=长乂奇工高用字母薪:2亦11长=体积7 (竟因匐克=体积*长X高息=体积一(长X周9,体积单位:立方厘米立方分米ffl立方米相邻单位的进率为1000⑪、长方体和正方体的体积统一公式;长方体或正方体的体根;层面根工高丫=§11 11.体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;把低级单位聚成高级单位,用嗾单位数除以进率.12、容积:容器所能容纳物体的体积0以容积单位:升和皇升(1和巾1)11=1000同11 = 100口立方厘米1刑=1立方厘米14,容积的计算:长方体H正方体容翳容积的计算方法跟体积的计算方法相同,但要从县面量分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:义7表示:求7个的和是多少?或表示:的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:义表示:求的是多少?9 X表示:求9的是多少?A X表示:求a的是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
第一单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质易错探析分数乘整数及整数乘分数用分敛的分子和整数相乘的积作分子,分母不变。
易错点:单位“1”的选取容易出错。
举例探析:判断:甲数比乙数多[,则5乙敛匕甲教少1O(X)S探析:甲数比乙数多1,则S乙数;匕甲数少】°6分数乘分数分敛乘分敛,用分子相乘的积作分子、分母相乘的积作分母。
小数乘分数可以把小数化成分数,也可以把分数化成小数,再计算a分数乘法混合运算和简便计算1.分数乘法混合运算,没有括号的先算束法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。
2.整数乘法的交换律、结合律和分配津,对于分数乘法也适用,解决问题1.连续求一个歇的儿分之几是多少,用连乘。
2.求比一个数多几分之几的数是多少,列式为ax(1+儿分之几)©3.求比一个数少几分之几的数是多少,列式为q x(1-几分之几)。
第二单元考点梳理总结归纳一览表单元考点基本概念与性质位置与方向1.描述物休的位丑与观浏点有关,说浏点不同,物休位置的描述洸不同,物体的位置关系具有相对性勺2.描述物体位丑的三要素:观测点、方向、距离口简单的路线图描述路线图时,要先按行走的路线确定每一个观测点,然后,以每一个观测点为参照,描述到下一个目标行走的方向和路程口-1-第三单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质倒数的认识1.乘积是1的两个数互为例数。
2.1的倒数是1,0没有倒敬。
分数除法除以一个数(0除外),等于乘这个数的倒数。
整数可以寿成分母是1的分数,分数四则混合运算分数混合运角和整数混合运算的运算顺序相同,,解决问题1.巳知一个数的几分之几是多少,求这个数。
1.方程法:(1)找出单位“1”,设未知堇为心(2)我出题中的等量关系式;(3)列方程.2.算术法:(1)我出单位“T;(2)找出题中的对应关系;(3)列出算式。
2.已知一个数以及这个数比另一个数多(少)几分之几,求另一个数,要找准单位“1”,若设另一个数为心列方程:(1±几分之几*=b或列算式:b-r(1土几分之几)〉3.求两分量:找一个未知量设心用两分量的关系列出等式即可。
人教版小学数学六年级(上下册)知识点梳理归纳上册第一单元《分数乘法》知识点归纳(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
分数乘法1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。
例如:?×5的意义是:表示求5个?连加的和的简便运算。
2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
(为了计算简便,能约分的要先约分,然后再乘。
)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。
例如:5×?的意义是:表示求5的?是多少。
0.8×?的意义是:表示求0.8的?是多少。
4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
(为了计算简便,可以先约分再乘。
)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。
6.乘积是1的两个数互为倒数。
7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
1的倒数是1。
0没有倒数。
真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。
8.一个数(0除外)乘以一个真分数,所得的积小于它本身。
例如:15×32<159.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
例如:25×33=25 14×1415>14 10.一个数(0除外)乘以一个带分数,所得的积大于它本身。
例如:36×131>36。
11.分数应用题一般解题步骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(以后称为“标准量”)(3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。
(4)根据线段图写出等量关系式:标准量×对应分率=比较量。
(5)根据已知条件和问题列式解答。
六上数学知识点归纳整理每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。
下面是小编给大家整理的一些六上数学的知识点,希望对大家有所帮助。
小学六年级上册数学知识点1.根据方向和距离可以确定物体在平面图上的位置。
2.在平面图上标出物体位置的方法:先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。
3.描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。
4.绘制路线图的方法:(1)确定方向标和单位长度。
(2)确定起点的位置。
(3)根据描述,从起点出发,找好方向和距离,一段一段地画。
除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。
(4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。
小学六年级数学知识点(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。
能约分的可以先约分,再计算。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的公因数。
一、整数的加减法与混合运算
1.正整数和负整数的加减法;
2.整数的混合运算;
3.整数的加法和减法性质。
二、小数的加减法与混合运算
1.小数的加法与减法;
2.小数的混合运算;
3.小数的加法和减法性质。
三、直角坐标系
1.直角坐标系的引入和表示;
2.坐标轴的构建;
3.点在直角坐标系中的表示。
四、图形的排列、组合与对称
1.图案排列和组合;
2.图案的轴对称和旋转对称;
3.对称图形的性质。
五、面积的测量和计算
1.长方形的面积;
2.平行四边形的面积;
3.三角形的面积;
4.面积单位的换算。
六、容积的测量和计算
1.直方体的容积;
2.柱体的容积;
3.容积单位的换算。
七、比例与比例的运用
1.比例的基本概念和性质;
2.比例的四则运算;
3.比例的应用。
八、分数的概念与运算
1.分数的引入和表示;
2.分数的加减法;
3.分数的乘法;
4.分数的除法。
九、长度的度量和换算
1.公里、米、分米和厘米的关系;
2.长度单位的换算;
3.给定长度单位的换算。
十、时间的度量和换算
1.秒、分、时、日的关系;
2.时间单位的换算;
3.给定时间单位的换算。
十一、数据的收集、整理和分析
1.数据的收集和整理;
2.数据的处理和分析;
3.统计图的分析和读图。
十二、解方程的初步探索
1.探索式子的变化规律;
2.探索简单线性方程的解法;
3.解简单线性方程。
小学六年级数学知识点归纳六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
小学六年级数学上册知识点归纳小学六年级数学上册知识点归纳在我们平凡的学生生涯里,看到知识点,都是先收藏再说吧!知识点在教育实践中,是指对某一个知识的泛称。
还在为没有系统的知识点而发愁吗?下面是店铺为大家整理的小学六年级数学上册知识点归纳,仅供参考,希望能够帮助到大家。
小学六年级数学上册知识点归纳1第一单元圆1、使学生认识圆的特征:圆的半径、直径、圆心。
认识在同圆内半径和直径的关系。
知道圆是轴对称图形,有无数条对称轴,而这些对称轴都过圆心。
知道生活中有了圆才使我们的生活更美好。
2、认识同心圆、等圆。
知道圆的位置由圆心决定,圆的大小由半径或直径决定。
等圆的半径相等,位置不同;而同心圆的半径不同,位置相同。
3、使学生知道圆的周长和圆周率的含义,掌握圆的周长的计算公式,能够正确地计算圆的周长.介绍祖冲之在圆周率研究上的成就,渗透爱国主义教育。
在运用上,要能根据圆的周长算直径或半径,会算半圆的周长:圆的周长×1/2+直径。
会求组合图形的周长。
4、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
5、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
会灵活运用圆的面积公式。
已知圆的周长会算圆的面积,会求组合图形的面积。
会算圆环的面积,并且知道在周长相等的情况下,正方形、长方形、圆三种图形中,圆的面积最大。
6、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
第二单元百分数的应用本单元重点讲解百分数在生活中的应用,知识点为:1、知道百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
百分数通常不写成分数形式,而用百分号“%”表示;百分数有时也定义为分母是100的分数,但百分数与分数是有区别的:分数既可表示具体的量,又可表示两个数量间的倍比关系;然而百分数只能表示两个数量间的倍比关系;所以是不名数,也就是不能带单位的数。
2、在具体情景中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
3、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
4、知道出勤率、出粉率、成活率等百分数的意义及在实际生活中的应用,会计算这种百分数。
5、知道成数、打折的含义。
表示一个数是另一个数十分之几、百分之几的数,叫做成数。
打折就是按原价的百分之几十、十分之几出售。
八五折就是按原价的85%出售。
成数和折扣数不能用小数表示。
6、能解决“比一个数增加百分之几的数是多少”或“比一个数减少百分之几的数是多少”的实际问题。
7、进一步加强对百分数的意义的理解,并能根据百分数的意义列方程解决实际问题,会解含有百分数的方程。
8、能利用百分数的有关知识,解决一些与储蓄有关的实际问题,提高解决实际问题的能力。
知道利息是本金存入银行过一段时间取出后多出来的钱;本金是存入银行的钱;利率就是某段时间中利息占本金的百分比;利息税是国家银行规定的针对利息收入的税收。
会计算利息。
利息=本金×利率×时间9、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。
第三单元图形的变换1、通过观察、操作、想象,知道一个简单图形是怎样经过平移或旋转制作复杂图形的过程,体验图形的变换,发展空间观念。
并能借助方格纸上的操作和分析,有条理地表达图形的平移或旋转的变换过程。
2、能利用七巧板在方格纸上变换各种图形。
能运用图形的变换在方格纸上设计美丽的图案,进一步体会平移、旋转和轴对称在设计图案中的作用。
3、欣赏图案,感受图形世界的神奇。
通过生活中有趣而美丽的图案,认识数学的美,体会图形世界神奇。
第四单元比的认识1、能从具体情境中抽象出比的过程,理解比的意义。
2、能正确读写比,会求比值,理解比与除法、分数的关系。
3、能利用比的知识解释一些简单的生活问题,感受比在生活中的广泛存在。
4、理解化简比的必要性,能运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
5、能运用比的意义解决按照一定的比进行分配的实际问题,提高解决实际问题的能力。
拓展能力:能用求比值的方法化简比。
第五单元统计1、知道复式条形统计图、复式折线统计图的特点,理解单式与复式统计图的异同,并能在有纵轴、横轴的图上用复式条形统计图、复式折线统计图表示相应的数据,体会数据的作用。
2、能看懂复式条形统计图,并能根据复式条形统计图中的有关数据作简单的分析,判断和预测。
3、、会进行数据的收集与整理。
并通过数据分析发现问题,从而决定用什么什么统计图来描述数据。
第六单元观察物体1、能正确辨认从不同方向(正面、側面、上面)观察到的立体图形(5个小正方体组合)的形状,并能画出草图。
2、能根据从正面、側面、上面观察到的平面图形还原立体图形,进一步体会从三个方面观察就可以确定立体图形的形状,能根据给定的两个方向观察到的平面图形的形状,确定搭成这个立体图形所需要的正方体的数量范围。
3、给合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点、观察角度的变化而变化,并能利用所学的知识解释生活中的一些现象。
小学六年级数学上册知识点归纳2一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c当b>1时,c<ap=""(a≠0)<ap=""(a≠0)②除以小于1的数,商大于被除数:a÷b=c当b<1时,c>a(a≠0b≠0)<ap=""(a≠0)③除以等于1的数,商等于被除数:a÷b=c当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
(a±b)÷c=a÷c±b÷c小学生数学应用题理解能力差怎么办培养孩子理解应用题意的能力孩子对于一些应用题目的表述,不能正确的理解其中的意思,也是正常的。
应用题是小学低年级数学教学的重点和难点。
是小学生害怕的学习内容。
家长在辅导孩子的过程中,要注意充分利用生活实际与实物场景的方法,克服难点,诱发学习兴趣。
课堂紧跟老师课堂时间的把握,我们都知道,老师是我们学到知识的最佳途径之一。
只要自己课堂上面把握好时间,那么自己的数学成绩自然而然地就会提高。
上课的时候,千万不能马虎大意。
这一点是非常的重要,自己平时一定要牢记。
三步纠错法很多孩子在做错题的时候,都只是简单改正,没有去思考背后的原因。
因此,如果孩子做错题,要引导他们进行三步纠错法,从而从根源上解决错题。
当孩子做错题的时候,要引导他们从这三个方面进行思考:1、错在哪里?2、错的原因是什么?3、当符合什么条件时,错误才能变成正确?数学图形的变换知识点1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。
旋转只改变物体的位置,不改变物体的形状、大小。
小学六年级数学上册知识点归纳3比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20,读作:12比20区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)用比的前项和后项同时除以它们的最大公约数。
(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
也可以求出比值再写成比的形式。
(3)两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算。
分数:分子分数线(—)分母(不能为0)分数的基本性质分数是一个数。
比:前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系。
商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数除法和比的应用:1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙(2)甲比乙多(少)几分之几?4、按比例分配:把一个量按一定的'比分配的方法叫做按比例分配。
5、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
两个量的关系画两条线段图,部分和整体的关系画一条线段图。
小学六年级数学上册知识点归纳4分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。