人教版六年级数学上册知识点汇总
- 格式:doc
- 大小:506.00 KB
- 文档页数:29
第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
第一单元位置1.找位置要先列后行,写位置先定第几列,再写第几行,格式为:(列,行)。
第二单元分数乘法1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
(为了计算简便,能约分的要先约分,然后再乘。
)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
(为了计算简便,可以先约分再乘。
)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c a c + b c = ( a + b )×c6.乘积是1的两个数互为倒数。
7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
1的倒数是1。
0没有倒数。
真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。
8.一个数(0除外)乘以一个真分数,所得的积小于它本身。
9.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
10.一个数(0除外)乘以一个带分数,所得的积大于它本身。
11.分数应用题一般解题步骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(以后称为“标准量”)找单位“1”:在分率句中分率的前面;或“是”、“占”、“比”、“相当于”的后面(3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。
人教版小学数学六年级上册知识点整理归纳 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】六年级上册数学知识点第一单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以) 例如:53×61表示: 求53的61是多少? 9 × 61表示: 求9的61是多少? A × 61表示: 求a 的61是多少? (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数, 这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。
a ×b=c,当b <1时,c<a (b ≠0).一个数(0除外)乘等于1的数,积等于这个数。
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
3、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(二)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b≠0).一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a . (三)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、1的倒数是它本身,因为1×1=10没有倒数1、求一个数的几分之几是多少?注:(1)“是”“的”字中间的量“乙数”是的单位“1”的量,即是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。
(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。
(3)单位“1”的量×分率=分率对应的量3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
4、求甲比乙多(少)几分之几?多:(甲-乙)÷乙少:(乙-甲)÷乙5、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0b≠0)③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
数学六年级上册人教版知识点总结一、分数乘法。
1. 分数乘法的意义。
- 分数乘整数:表示几个相同分数相加的简便运算。
例如:(2)/(3)×3表示3个(2)/(3)相加。
- 一个数乘分数:表示求这个数的几分之几是多少。
例如:5×(3)/(4)表示5的(3)/(4)是多少。
2. 分数乘法的计算方法。
- 分数乘整数:用分子乘整数的积作分子,分母不变。
能约分的先约分再计算。
例如:(2)/(3)×3=(2×3)/(3) = 2。
- 分数乘分数:用分子相乘的积作分子,分母相乘的积作分母。
例如:(2)/(5)×(3)/(4)=(2×3)/(5×4)=(3)/(10)。
3. 分数乘法的简便运算。
- 整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
- 例如:(1)/(2)×(3)/(5)×2=(1)/(2)×2×(3)/(5)=1×(3)/(5)=(3)/(5)(运用乘法交换律);- ((1)/(3)+(1)/(4))×12=(1)/(3)×12+(1)/(4)×12 = 4 + 3=7(运用乘法分配律)。
二、位置与方向(二)1. 确定位置的要素。
- 要确定一个物体的位置,需要知道观测点、方向和距离。
- 例如,以学校为观测点,图书馆在学校东偏北30^∘方向,距离学校500米处。
2. 描述路线图。
- 描述路线图时,要按照行走的路线,依次描述出每一段的方向和距离。
- 例如,从家出发,先向东走300米到超市,再从超市向南偏东45^∘方向走400米到公园。
三、分数除法。
1. 分数除法的意义。
- 分数除法是分数乘法的逆运算。
已知两个因数的积与其中一个因数,求另一个因数的运算。
例如:如果(2)/(3)× x=(4)/(9),那么x=(4)/(9)÷(2)/(3)。
人教版六年级上册数学知识点汇总汇总一第一单元分数乘法一、分数乘法〔一〕分数乘法的意义:1、分数乘整数与整数乘法的意义一样。
都是求几个一样加数的和的简便运算。
2、分数乘分数是求一个数的几分之几是多少。
〔二〕、分数乘法的计算法那么:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意〔1〕分数的化简:分子、分母同时除以它们的最大公因数。
〔2〕关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。
〔3〕当带分数进展乘法计算时,要先把带分数化成假分数再进展计算。
〔三〕、规律:〔乘法中比拟大小时〕一个数〔0除外〕乘大于1的数,积大于这个数。
一个数〔0除外〕乘小于1的数〔0除外〕,积小于这个数。
一个数〔0除外〕乘1,积等于这个数。
〔四〕、分数混合运算的运算顺序和整数的运算顺序一样。
〔五〕、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a×b=b×d乘法结合律: a×b×c=a×(b×c)乘法分配律:a×(b+c)=ab+ac 或a×(b-c)=ab-ac二、分数乘法的解决问题〔单位“1”的量〔用乘法〕,求单位“1”的几分之几是多少〕1、找单位“1”:“占”、“是”、“比”的后面2、求一个数的几倍是多少;求一个数的几分之几是多少。
用乘法三、倒数1、倒数的意义:乘积是1的两个数互为倒数。
(互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
)2、求倒数的方法:〔1〕、求分数的倒数:交换分子分母的位置。
〔2〕、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
〔3〕、求带分数的倒数:把带分数化为假分数,再求倒数。
〔4〕、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。
六年级数学知识点汇总第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
六年级上册数学知识点第一单元 位置1、什么是数对数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
( 列 , 行 ) ↓ ↓ 竖排叫列 横排叫行 (从左往右看)(从下往上看) ,2、图形左右平移行数不变;图形上下平移列数不变。
第二单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少 或表示:53的7倍是多少 2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)! 例如:53×61表示: 求53的61是多少 9 ×61表示: 求9的61是多少 a × 61表示: 求a 的61是多少 (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母) >注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
人教版六年级上册数学知识点第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
一、数的认识1.1 自然数自然数是人们用来计数的数,是由0、1、2、3……无限延伸下去的数列。
自然数包括0和正整数。
1.2 整数在自然数的基础上,再加上负整数和0,组成了整数集合。
1.3 分数分数是由两个整数的比所得到的数,分数包括真分数和假分数。
1.4 小数小数是指介于两个整数之间的数,可以表示为有限小数或无限循环小数。
1.5 负数负数是表示比零小的数,负数在数轴上位于零的左边。
二、整数计算2.1 加法加法是将两个或多个数相加以求和的数学运算。
2.2 减法减法是把一个数从另一个数中减去,求差的数学运算。
2.3 乘法乘法是将两个或多个数相乘以得到积的数学运算。
2.4 除法除法是将一个数分成若干份的数学运算,可以得到商和余数。
2.5 整数的加减乘除混合运算整数的混合运算包括加减混合运算、乘除混合运算等,需要遵循“先乘除后加减”的运算法则。
三、分数3.1 分数的加法分数的加法是求两个分数的和,通过通分后进行分子相加得到结果。
3.2 分数的减法分数的减法是求两个分数的差,通过通分后进行分子相减得到结果。
3.3 分数的乘法分数的乘法是求两个分数的积,通过分子相乘分母相乘得到结果。
3.4 分数的除法分数的除法是求两个分数的商,通过将除法转化为乘法,然后进行分子相乘分母相乘得到结果。
四、小数4.1 小数的加减法小数的加减法是通过小数点对齐后进行个位、十分位、百分位等相应位数的数值相加或相减得到结果。
4.2 小数的乘除法小数的乘法是将小数进行数位对齐,然后进行普通的数乘运算,最后根据位数进行小数点的位置确定。
4.3 小数的整数乘法小数的整数乘法是通过整数与小数相乘,然后移动小数点相应位数得到结果。
4.4 小数的整数除法小数的整数除法是通过将小数乘以适当的倍数使其成为整数,然后进行整数除法运算,最后根据小数点的位置确定。
五、图形和分数5.1 长方形和平行四边形长方形和平行四边形是最基本的四边形图形,其面积计算公式为底边乘以高度。
人教版小学六年级上册数学知识点【各单元】分数除法一、分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、“”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量2、解法:(建议:用方程解答)(1)方程:根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):分率对应量÷对应分率=单位“1”的量3、求一个数是另一个数的几分之几:就一个数÷另一个数4、求一个数比另一个数多(少)几分之几:①求多几分之几:大数÷小数–1②求少几分之几:1-小数÷大数或①求多几分之几(大数-小数)÷小数②求少几分之几:(大数-小数)÷大数针对练习:1、果园里有桃树560棵,占果树总数的1/2,果园里一共有果树多少棵?2、一条裤子75元,是一件上衣价格的1/2,一件上衣多少钱?3、一个修路队修一条路,第一天修了全长1/2,正好是160米,这条路全长是多少米?4、幼儿园买来2千克水果糖,是买来的牛奶糖的1/2,买来牛奶糖多少千克?5、新风小学去年植树320棵,相当于今年植树棵数的1/2,今年去年共植树多棵?6、一桶水,用去它的1/2,正好是15千克,这桶水重多少千克?7、王新买了一本书和一枝钢笔,书的价格是4元,正好是钢笔价格的1/2,钢笔价格是多少元?7、一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的1/2,这种超音速飞机每小时飞行多少千米?比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.“分数乘整数”指的是第二个因数必须是整数,不能是分数.2、一个数乘分数的意义就是求一个数的几分之几是多少.“一个数乘分数”指的是第二个因数必须是分数,不能是整数.(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变.(1)为了计算简便能约分的可先约分再计算.(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数.(整数千万不能与分母相乘,计算结果必须是最简分数).2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母.(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算.(2)分数化简的方法是:分子、分母同时除以它们的最大公因数.(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数.(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数).(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变.(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数.a×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数.a×b=c,当b <1时,c<a(b≠0).一个数(0除外)乘等于1的数,积等于这个数.a×b=c,当b =1时,c=a .在进行因数与积的大小比较时,要注意因数为0时的特殊情况.(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的.2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便.乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数.1、倒数是两个数的关系,它们互相依存,不能单独存在.单独一个数不能称为倒数.(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”.例如:a×b=1则a、b互为倒数.3、求倒数的方法:①求分数的倒数:交换分子、分母的位置.②求整数的倒数:整数分之1.③求带分数的倒数:先化成假分数,再求倒数.④求小数的倒数:先化成分数再求倒数.4、1的倒数是它本身,因为1×1=10没有倒数,因为任何数乘0积都是0,且0不能作分母.5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身.假分数的倒数小于或等于1.带分数的倒数小于1.(六)分数乘法应用题——用分数乘法解决问题1、求一个数的几分之几是多少?(用乘法)已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘.2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”.3、什么是速度?速度是单位时间内行驶的路程.速度=路程÷时间时间=路程÷速度路程=速度×时间单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等.4、求甲比乙多(少)几分之几?多:(甲-乙)÷乙少:(乙-甲)÷乙第二单元位置与方向(二)1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来.括号里面的数由左至右为列数和行数,即“先列后行”.数对的作用:确定一个点的位置.经度和纬度就是这个原理.2、确定物体位置的方法:(1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺).描绘路线图的关键是选好观测点,建立方向标,确定方向和路程.位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等.相对位置:东--西;南--北;南偏东--北偏西.第三单元分数的除法一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算.二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数.1、被除数÷除数=被除数×除数的倒数.2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数.3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算.4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角.2、运算顺序:①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算.加、减法为一级运算,乘、除法为二级运算.②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面.(a±b)÷c=a÷c±b÷c第四单元比比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值.连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几.例:12∶20= =12÷20= =0.6 12∶20读作:12比20区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数.比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式.3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变.4、化简比:化简之后结果还是一个比,不是一个数.(1)、用比的前项和后项同时除以它们的最大公约数.(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简.也可以求出比值再写成比的形式.(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比.5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比.6、比和除法、分数的区别:除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算分数:分子分数线(—)分母(不能为0)分数的基本性质分数是一个数比:前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变.分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变.分数除法和比的应用1、已知单位“1”的量用乘法.2、未知单位“1”的量用除法.3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙(2)甲比乙多(少)几分之几?4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配.5、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知.(2)分析数量关系.(3)找等量关系.(4)列方程.两个量的关系画两条线段图,部分和整体的关系画一条线段图.第五单元圆一、圆的特征1、圆是平面内封闭曲线围成的平面图形.2、圆的特征:外形美观,易滚动.3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示.圆多次对折之后,折痕的相交于圆的中心即圆心.圆心确定圆的位置.半径r:连接圆心到圆上任意一点的线段叫做半径.在同一个圆里,有无数条半径,且所有的半径都相等.半径确定圆的大小.直径d:通过圆心且两端都在圆上的线段叫做直径.在同一个圆里,有无数条直径,且所有的直径都相等.直径是圆内最长的线段.同圆或等圆内直径是半径的2倍:d=2r 或r=d÷24、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合.同心圆:圆心重合、半径不等的两个圆叫做同心圆.5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形.折痕所在的直线叫做对称轴.有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角.有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径.(2)画圆步骤:定半径、定圆心、旋转一周.二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示.1、圆的周长总是直径的三倍多一些.2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示.即:圆周率π= 周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr圆周率π是一个无限不循环小数,3.14是近似值.3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同.4、半圆周长=圆周长一半+直径= πr+d三、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形.圆的半径=长方形的宽圆的周长的一半=长方形的长长方形面积=长×宽所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)S圆=πr×r=πr22、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小.周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形.3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍.4、环形面积=大圆–小圆=πR2-πr2扇形面积=πr2×n÷360(n表示扇形圆心角的度数)5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和.因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度.一个圆的半径增加a厘米,周长就增加2πa厘米.一个圆的直径增加b厘米,周长就增加πb厘米.6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π.7、常用数据π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7第六单元百分数(一)一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数.百分数又叫百分比或百分率,百分数不能带单位.注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比.1、百分数和分数的区别和联系:(1)联系:都可以用来表示两个量的倍比关系.(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位.分数不仅表示倍比关系,还能带单位表示具体数量.百分数的分子可以是小数,分数的分子只可以是整数.注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的.“%”的两个0要小写,不要与百分数前面的数混淆.一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%.一般出粉率在70%、80%,出油率在30%、40%.2、小数、分数、百分数之间的互化(1)百分数化小数:小数点向左移动两位,去掉“%”.(2)小数化百分数:小数点向右移动两位,添上“%”.(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数.(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数.(5)小数化分数:把小数成分母是10、100、1000等的分数再化简.(6)分数化小数:分子除以分母.二、百分数应用题1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几.2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度.求甲比乙多百分之几:(甲-乙)÷乙求乙比甲少百分之几:(甲-乙)÷甲3、求一个数的百分之几是多少.一个数(单位“1”)×百分率4、已知一个数的百分之几是多少,求这个数.部分量÷百分率=一个数(单位“1”)5、折扣、打折的意义:几折就是十分之几也就是百分之几十折扣、成数=几分之几、百分之几、小数八折=八成=十分之八=百分之八十=0.8八五折=八成五=十分之八点五=百分之八十五=0.85五折=五成=十分之五=百分之五十=0.5=半价6、利率(1)存入银行的钱叫做本金.(2)取款时银行多支付的钱叫做利息.(3)利息与本金的比值叫做利率.利息=本金×利率×时间税后利息=利息-利息的应纳税额=利息-利息×5%注:国债和教育储蓄的利息不纳税7、百分数应用题型分类(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几(2)求甲比乙多百分之几——(甲-乙)÷乙×100%(3)求甲比乙少百分之几——(乙-甲)÷乙×100%第七单元扇形统计图的意义1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图.2、常用统计图的优点:(1)条形统计图直观显示每个数量的多少.(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少.(3)扇形统计图直观显示部分和总量的关系.第八单元数学广角--数与形2+4+6+8+10+12+14+16+18+20=(110)规律:从2开始的n个连续偶数的和等于n×(n+1).10×(10+1)=10×11=110从1开始的连续奇数的和正好是这串数个数的平方.。
人教版六年级上册数学知识点汇总
一、整数
1. 自然数、负整数和零的概念
2. 整数的比较大小
3. 整数相加、相减
4. 整数的乘法和除法
5. 整数的绝对值
6. 整数的加法和减法运算法则
7. 整数的乘法和除法运算法则
8. 整数的混合运算
二、分数
1. 分数的概念
2. 分数的比较大小
3. 分数的相加、相减
4. 分数的乘法和除法
5. 分数的化简
6. 分数的三个基本性质:相等性、倍数性、约分性
7. 分数的混合运算
三、小数
1. 小数的概念
2. 小数和分数的关系
3. 小数的读法和写法
4. 小数的比较大小
5. 小数的加法和减法
6. 小数的乘法和除法
7. 小数的化简
8. 小数的混合运算
四、数据与图形
1. 数据和调查的关系
2. 数据的整理和分类
3. 表格和柱形图的绘制和解读
4. 折线图和饼图的绘制和解读
五、数式与方程
1. 代数字母的认识和使用
2. 使用字母表示数的大小
3. 表达计算结果的数式
4. 数式的运算:加法、减法、乘法和除法
5. 解一元一次方程。
人教版六年级上册数学知识点第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c<a(b≠0)。
< span=""></a(b≠0)。
<>一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
[下载更多精品学习资料,请关注微信公众号:小学生网]在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
一、分数乘法1、一个数乘分数的意义:表示一个数的几分之几是多少。
2、整数乘分数的计算方法:整数乘分子做新的分子,分母不变。
3、分数乘分数的计算方法:分子乘分子做为新的分子,分母乘分母做为新的分母。
4、小数乘分数计算方法:把小数转化成分数,再计算;或者把分数转化成小数再计算注意:结果的分数能约分的要进行约分5、运算定律、乘法交换律:a × b = b ×a乘法结合律:(a×b)×c = a×(b×c )乘法分配律:(a + b)×c = a ×c + b×c注:有加法、乘法和小括号,先算小括号的加法,再算小括号外面的乘法。
6、长方形的面积=长×宽正方形的面积=边长×边长长方形的周长=(长+宽)×2 正方形的周长=边长×47、一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘等于1的数,积等于这个数;一个数(0除外)乘大于1的数,积大于这个数。
二、位置与方向(二)1、根据方向和距离确定物体位置的方法(1)确定好方向并用量角器量出被测物体的方位角度(2)明确被测物体和观测点的实际距离(3)根据方向(角度)和距离准确判断或描述被测量物体的位置。
2、描述路线图时,要先按行走路线确定每一个观测点,然后以每一个参照物为观测点,测量好到下一个目标行走的方向(角度)和距离。
3、两地的位置具有相对性,观测点不同,叙述的方向正好相反,角度和距离不变例:甲在乙的北偏东35°200米处;也可以是乙在甲的南偏西35°200米处。
4、同一个观测点,位置的描述有两种说法例:甲在乙的北偏东35°200米处,也可以是甲在乙的东偏北55°200米处三、分数除法1、乘积是1的两个数互为倒数。
2、1的倒数是1;因为0与任何数相乘都不等于1,0没有倒数。
3、分数除以整数,既可以看成把这个分数平均分成整数份;也可以看成已知两个因数的积与其中一个因数,求另一个因数是多少。
人教版六年级上册数学知识点归纳总结目录第一单元负数。
2第二单元百分数二。
4第三单元圆柱和圆锥。
6第四单元比例。
12第五单元数学广角-鸽巢问题。
17第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的13.42/5……是远远不够的。
所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负。
2、负数:小于零的数叫负数(不包括零),数轴上左边的数叫做负数。
若一个数小于零,则称它是一个负数。
负数有无数个,其中包括负整数、负分数和负小数。
负数的写法:数字前面加负号“-”号,不可以省略。
例如:-2,-5.33,-45,-2/5.正数:大于零的数叫正数(不包括零),数轴上右边的数叫做正数。
若一个数大于零,则称它是一个正数。
正数有无数个,其中包括正整数、正分数和正小数。
正数的写法:数字前面可以加正号“+”号,也可以省略不写。
例如:+2,5.33,+45,2/5.4、零是正数和负数的分界限。
负数都小于零,正数都大于零。
负数都比正数小,正数都比负数大。
5、数轴:6、比较两数的大小:①利用数轴:负数<<正数或左边<右边。
②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。
负数之间比较大小,数字大的反而小,数字小的反而大。
例如:1/3>1/6,-1/3<-1/6.第二单元百分数二一)、折扣和成数折扣是指商品现价与原价的比值,通常以百分数或分数表示。
例如,八折意味着商品现价是原价的80%,六折五则是65%。
解决打折问题的关键在于将折数转化为百分数或分数,并按照求比一个数多(少)百分之几(几分之几)的数的方法进行计算。
成数是指十分之几或百分之几十,例如一成相当于10%,八成五则是85%。
解决成数问题的关键在于将成数转化为百分数或分数,并按照求比一个数多(少)百分之几(几分之几)的数的方法进行计算。
税率是指应纳税额与各种收入的比率,纳税是根据国家税法规定,按照一定比率缴纳一部分收入给国家。
人教版数学六年级上册重点知识点归纳第一单元知识点一、分数、百分数应用题解题公式单位“1” 已知:单位“1” × 对应分率= 对应数量求单位“1”或单位“1”未知:对应数量÷ 对应分率= 单位“1”1、求一个数是另一个数的几分之几(或百分之几)公式:一个数÷ 另一个数= 一个数是另一个数的几分之几(百分之几)2、求一个数比另一个数多几分之几(或百分之几)公式:多的数量÷单位“1” = 一个数比另一个数多几分之几(百分之几)3、求一个数比另一个数少几分之几(或百分之几)公式:少的数量÷单位“1” = 一个数比另一个数少几分之几(百分之几)二、熟练掌握:百分数和分数、小数的互化,熟练背诵:2/1= 0.5 = 50% 4/1= 0.25=25% 4/3= 0.75 = 75%5/1= 0.2 = 20% 5/2= 0.4 = 40% 5/3= 0.6 = 60%5/4= 0.8 = 80% 8/1=0.125=12.5% 8/3=0.375=37.5%8/5=0.625=62.5% 8/7=0.875=87.5% 10/1=0.1=10%20/1=0.05=5% 25/1=0.04=4% 50/1=0.02=2%100/1=0.01=1%第二单元知识点1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。
经度和纬度就是这个原理。
2、确定物体位置的方法:(1)先找观测点;(2)再定方向(看方向夹角的度数);(3)最后确定距离(看比例尺)。
在平面图上标出物体位置的方法:先用量角器确定方向,再以选定的单位长度为基准用直尺来确定图上距离,最后找出物体的具体位置,标上名称。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
人教版六年級數學上冊知識點匯總第一單元分數乘法(一)分數乘法的意義1、分數乘整數:分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數和得簡便運算。
例如:512×6,表示:6個512相加是多少,還表示512的6倍是多少。
2、一個數(小數、分數、整數)乘分數:一個數乘分數的意義與整數乘法的意義不相同,是表示這個數的幾分之幾是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)分數乘法的計算法則1、整數和分數相乘:整數和分子相乘的積作分子,分母不變。
2、分數和分數相乘:分子相乘的積作分子,分母相乘的積作分母。
3、注意:能約分的先約分,然後再乘,得數必須是最簡分數。
當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。
(三)分數大小的比較:1、一個數(0除外)乘以一個真分數,所得的積小於它本身。
一個數(0除外)乘以一個假分數,所得的積等於或大於它本身。
一個數(0除外)乘以一個帶分數,所得的積大於它本身。
2、如果幾個不為0的數與不同分數相乘的積相等,那麼與大分數相乘的因數反而小,與小分數相乘的因數反而大。
(四)解決實際問題。
1、分數應用題一般解題步行驟。
(1)找出含有分率的關鍵句。
(2)找出單位“1”的量(3)根據線段圖寫出等量關係式:單位“1”的量×對應分率=對應量。
(4)根據已知條件和問題列式解答。
2、乘法應用題有關注意概念。
(1)乘法應用題的解題思路:已知一個數,求這個數的幾分之幾是多少?(2)找單位“1”的方法:從含有分數的關鍵句中找,注意“的”前“比”後的規則。
當句子中的單位“1”不明顯時,把原來的量看做單位“1”。
(3)甲比乙多幾分之幾表示甲比乙多的數占乙的幾分之幾,甲比乙少幾分之幾表示甲比乙少數占乙的幾分之幾。
(4)在應用題中如:小湖村去年水稻的畝產量是750千克,今年水稻的畝產量是800千克,增產幾分之幾?題目中的“增產”是多的意思,那麼誰比誰多,應該是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多幾分之幾,結合應用題的表達方式,可以補充為“今年水稻的畝產量比去年水稻的畝產量多幾分之幾?”(5)“增加”、“提高”、“增產”等蘊含“多”的意思,“減少”、“下降”、“裁員” 等蘊含“少”的意思,“相當於”、“占”、“是”、“等於”意思相近。
第一单元位置1.找位置要先列后行,写位置先定第几列,再写第几行,格式为:(列,行)。
第二单元分数乘法1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
(为了计算简便,能约分的要先约分,然后再乘。
)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
(为了计算简便,可以先约分再乘。
)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c a c + b c =( a + b )×c6.乘积是1的两个数互为倒数。
7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
1的倒数是1。
0没有倒数。
真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。
8.一个数(0除外)乘以一个真分数,所得的积小于它本身。
9.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
10.一个数(0除外)乘以一个带分数,所得的积大于它本身。
11.分数应用题一般解题步骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(以后称为“标准量”)找单位“1”:在分率句中分率的前面;或“是”、“占”、“比”、“相当于”的后面(3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。
人教版六年级数学上册知识点汇总第一单元分数乘法(一)分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义同样,就是求几个同样加数和得简易运算。
5 5比如:12× 6,表示: 6 个12相加是多少,还表示512的 6 倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不同样,是表示这个数的几分之几是多少。
5比如: 6×12 ,表示:56 的12是多少。
252 57×12,表示:7的12是多少。
(二)分数乘法的计算法例1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,而后再乘,得数一定是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)分数大小的比较:1、一个数( 0 除外)乘以一个真分数,所得的积小于它自己。
一个数( 0 除外)乘以一个假分数,所得的积等于或大于它自己。
一个数( 0 除外)乘以一个带分数,所得的积大于它自己。
2、假如几个不为 0 的数与不一样分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)解决实质问题。
1、分数应用题一般解题步行骤。
(1)找出含有分率的重点句。
(2)找出单位“ 1”的量(3)依据线段图写出等量关系式:单位“1”的量×对应分率 =对应量。
(4)依据已知条件和问题列式解答。
2、乘法应用题相关注意观点。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“ 1”的方法:从含有分数的重点句中找,注意“的”前“比”后的规则。
当句子中的单位“ 1”不显然时,把本来的量看做单位“ 1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少量占乙的几分之几。
(4)在应用题中如:小湖村昨年水稻的亩产量是750 千克,今年水稻的亩产量是800 千克,增产几分之几题目中的“增产”是多的意思,那么谁比谁多,应当是“多比少多”,“多”的是指 800 千克,“少”的是指 750 千克,即 800 千克比 750 千克多几分之几,联合应用题的表达方式,能够增补为“今年水稻的亩产量比昨年水稻的亩产量多几分之几”(5)“增添”、“提升”、“增产”等包含“多”的意思,“减少”、“降落”、“减员” 等包含“少”的意思,“相当于”、“占”、“是”、“等于”意思邻近。
(6)当重点句中的单位“ 1”不显然时,要把重点句增补完好 , 增补成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。
(7)乘法应用题中,单位“ 1”是已知的。
(8)单位“ 1”不一样的两个分率不可以相加减,加减属相差比,一直依据“凡是比较,单位一致”的规则。
(9)找到单位“1”后,剖析问题,已知单位“1”用乘法,未知单位“ 1”用除法(注意:求单位“ 1”是最后一步用除法,其余计算应在前)。
单位“1”×分率 =比较量;比较量÷分率=单位“1”(10)单位“ 1”不一样的两个分率不可以相加减,解应用题时应把题中的不变量做为单位“ 1”,一致分率的单位“ 1”,而后再相加减。
(11)单位“ 1”的特色:①单位“ 1”为分母;②单位“ 1”为不变量。
(12)分率与量要对应。
①多的对应量对多的分率;②少的对应量对少的分率;③增添的对应量对增添的分率;④减少的对应量对减少的分率;⑤提升的对应量对提升的分率;⑥降低的对应量对降低的分率;⑦工作总量的对应量对工作总量的分率;⑧工作效率的对应量对工作效率的分率;⑨部分的对应量对部分的分率;⑩总量的对应量对总量的分率;比如:1、求一个数的几分之几是多少(求一个数的几分之几用乘法计算)方法:单位“ 1”的数目×对应分率 =对应数目。
2、分数的连乘。
找到每一个分率的单位“1”。
(五)倒数1、倒数:乘积是 1 的两个数互为倒数。
2、求倒数的方法:把这个数写成分数形式,而后将分子和分母互换地点。
3、0 没有倒数, 1 的倒数是它自己。
4、真分数的倒数都大于它自己,假分数的倒数等于或小于它自己。
注意:倒数一定是成对的两个数,独自的一个数不可以称做倒数。
第二单元地点与方向一、确立物体地点的方法:1、先找观察点;2、再定方向(看方向夹角的度数);3、最后确立距离(看比率尺)二、描述路线图的重点是选好观察点, 成立方向标,确立方向和行程。
三、地点关系的相对性:两地的地点拥有相对性在表达两地的地点关系时,观察点不一样,表达的方向正好相反,而度数和距离正好相等。
四、相对地点:东-- 西;南-- 北;南偏东 -- 北偏西。
第三单元分数除法(一)分数除法的意义 :分数除法的意义:分数除法的意义与整数除法的意义同样,都是已知两个因数的积与此中一个因数,求另一个因数的运算。
比如:2 1 表示:已知两个数的积是2 , 与5 45此中一个因数 1,求另一个因数是多少。
42÷4 表示已知两个数的积是2, 与此中一个因数5 5 4,求另一个因数是多少。
还表示把2均匀分红 4 5份,每份是多少。
(二)分数除法的计算:分数除法的计算法例:甲数除以乙数( 0 除外),等于甲数乘乙数的倒数。
(三)比和比的应用:1.比的意义:两个数相除又叫做两个数的比。
比的后项不可以为 0。
2.比值的意义:比的前项除此后项所得的商,叫做比值。
3.比值的表示方式:往常用分数、小数和整数表示。
4.比同除法的关系:比的前项相当于被除数,后项相当于除数,比值相当于商.5.比同分数的关系:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
6.比的基天性质:比的前项和后项同时乘上或许同时除以同样的数( 0 除外),比值不变。
7.化简比的方法:依据比的基天性质,把两个数的比化成最简单的整数比,叫做化简比,比的前项和后项一定是互质的整数。
比如:(1) 16 ﹕20=(16÷4)﹕( 20÷4)=4﹕55 3 5 3(2)6 ﹕4 =( 6 ×12) ﹕( 4 ×12)=10﹕9(3)﹕ = (× 100)﹕(× 100)=180﹕9=20﹕18.在工农业生产中和平时生活中,经常需要把一个数目依据必定的比来进行分派。
这类方法往常叫做按比率分派。
9.按比率分派的解题方法:(1)先求出总的份数,再求出各部分数目占总数的几分之几。
(2)用总数乘各部分的分率求出各部分的数目。
10.分数除法中,被除数与商的大小关系:一个数( 0 除外)除以一个真分数,所得的商大于它自己。
一个数( 0 除外)除以一个假分数,所得的商小于或等于它自己。
一个数( 0 除外)除以一个带分数,所得的商小于它自己。
(四)解分数应用题注意事项:1.找单位“ 1”的方法:从含有分率的句子中找,“的”前或“比”后的规则。
当句子中的单位“1”不显然时,把本来的量看做单位“1”。
2.找到单位“1”后,剖析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“ 1”是最后一步用除法,其余计算应在前)。
数目关系:单位“ 1”×对应分率=对应数目;对应量÷对应分率 =单位“ 1”的量3.单位“ 1”不一样的两个分率不可以相加减,解应用题时应把题中的不变量做为单位“1”,一致分率的单位“ 1”,而后再相加减。
4.单位“ 1”的特色:①单位“ 1”为分母;②单位“ 1”为不变量。
5.“已知一个数的几分之几是多少,求这个数” 的解题方法:(1)设单位“ 1”的量为 x,列方程解答。
(2)对应数目÷对应分率 =单位“ 1”的总数目。
6.工程问题:把工作总量看作单位“1”,工作效率 =1工作时间工作时间 = 1 ÷工作效率合作时间=工作总量÷工作效率之和第四单元比1、两个数相除又叫做两个数的比。
在两个数的比中,比号前面的数叫做比的前项,比号后边的数叫做比的后项。
比的前项除此后项所得的商,叫做比值。
比的后项不可以为0。
比如 15 :10 = 15÷10=3/2( 比值往常用分数表示,也能够用小数或整数表示)2、比能够表示两个同样量的关系,即倍数关系。
也能够表示两个不一样量的比,获得一个新量。
例:行程÷速度 =时间。
3、划分比和比值比:表示两个数的关系,能够写成比的形式,也能够用分数表示。
比值:相当于商,是一个数,能够是整数,分数,也能够是小数。
4、比和除法、分数的联系与差别:(差别)除法是一种运算,分数是一个数,比表示两个数的关系。
比的前项相当与除法中的被除数,分数中的分子;比的后项相当与除法中的除数,分数中的分母;比号相当于除法中的除号,分数中的分数线;比值相当于除法的商,分数的分数值。
注意:体育竞赛中出现两队的分是 2:0 等,这不过一种记分的形式,不表示两个数相除的关系。
5、比的基天性质(1)依据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以同样的数(0 除外 ) ,商不变。
分数的基天性质:分数的分子和分母同时乘或除以同样的数时 (0 除外 ) ,分数值不变。
比的基天性质:比的前项和后项同时乘或除以同样的数 (0 除外 ) ,比值不变。
(2)比的前项和后项都是整数,而且是互质数,这样的比就是最简整数比。
依据比的基天性质,把比化成最简整数比。
(3)化简比:用求比值的方法。
注意:最后结果要写成比的形式。
如: 15∶10=15 ÷10=3/2=3 ∶2 5 。
按比率分派:把一个数目依据必定的比来进行分派。
这类方法往常叫做按比率分派。
第五单元圆1、圆心:圆中心一点叫做圆心。
用字母“O”来表示。
半径:连结圆心和圆上随意一点的线段叫做半径,用字母“ r ”来表示。
直径:经过圆心而且两头都在圆上的线段叫做直径,用字母“ d”表示。
2、圆心确立圆的地点,半径确立圆的大小。
3、在同一个圆内,全部的半径都相等,全部的直径都相等。
在同一个圆内,有无数条半径,有无数条直径。
在同一个圆内,直径的长度是半径的 2 倍,半径的长度是直径的一半。
用字母表示为:d=2 r1r=2 d4、圆的周长:围成圆的曲线的长度叫做圆的周长。
5、圆的周长老是直径的 3 倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母表示。
圆周率是一个无穷不循环小数。
在计算时,取。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
6、圆的周长公式: C= d 或 C=2 r7、圆的面积:圆所占平面的大小叫圆的面积。
8、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,由于长方形面积 =长×宽,因此圆的面积= r ×r=r29、圆的面积公式:S=r2或许S=(d 2)2或许 S= (C 2)210、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。