特殊平行四边形与一次函数训练题
- 格式:doc
- 大小:534.50 KB
- 文档页数:8
《第1章 特殊平行四边形》一、选择题1.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A .AB=BCB .AC=BDC .AC ⊥BD D .AB ⊥BD2.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .()2014B .()2015C .()2015 D .()2014二、填空题 3.如图,▱ABCD 的对角线相交于点O ,请你添加一个条件 (只添一个即可),使▱ABCD 是矩形.4.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠BED 的度数是 .5.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形,再以对角线AE 为边作第三个正方形AEGH ,如此下去,第n 个正方形的边长为 .6.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E .若∠CBF=20°,则∠AED 等于 度.7.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC 的面积为 .8.如图,点E 在正方形ABCD 的边CD 上.若△ABE 的面积为8,CE=3,则线段BE 的长为 .9.正方形OA 1B 1C 1、A 1A 2B 2C 2、A 2A 3B 3C 3,按如图放置,其中点A 1、A 2、A 3在x 轴的正半轴上,点B 1、B 2、B 3在直线y=﹣x+2上,则点A 3的坐标为 .10.已知E 是正方形ABCD 的对角线AC 上一点,AE=AD ,过点E 作AC 的垂线,交边CD 于点F ,那么∠FAD= 度.11.如图,要使平行四边形ABCD 是矩形,则应添加的条件是 (只填一个).12.如图,正方形ABCD 的边长为a ,在AB 、BC 、CD 、DA 边上分别取点A 1、B 1、C 1、D 1,使AA 1=BB 1=CC 1=DD 1=a ,在边A 1B 1、B 1C 1、C 1D 1、D 1A 1上分别取点A 2、B 2、C 2、D 2,使A 1A 2=B 1B 2=C 1C 2=D 1D 2=A 1B 2,….依次规律继续下去,则正方形A n B n C n D n 的面积为 .13.如图,▱ABCD 中,AB >AD ,AE ,BE ,CM ,DM 分别为∠DAB ,∠ABC ,∠BCD ,∠CDA 的平分线,AE 与DM 相交于点F ,BE 与CM 相交于点N ,连接EM .若▱ABCD 的周长为42cm ,FM=3cm ,EF=4cm ,则EM= cm ,AB= cm .三、解答题14.如图,在△ABC 中,AB=BC ,BD 平分∠ABC .四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE .求证:四边形BECD 是矩形.15.如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB 的面积是2.求证:四边形ABCD是矩形.16.如图,在△ABC中,AB=AC,点D(不与点B重合)在BC上,点E是AB的中点,过点A作AF∥BC交DE延长线于点F,连接AD,BF.(1)求证:△AEF≌△BED.(2)若BD=CD,求证:四边形AFBD是矩形.17.正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.18.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:BE=CE.(2)求∠BEC的度数.19.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.20.在平面直角坐标系xOy中,直线y=﹣x+3与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,求正方形落在x轴正半轴的顶点坐标.21.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.22.已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.23.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.24.如图,在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.25.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE ⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.26.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.27.如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.28.如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E.若AD=1,AB=2,求CE的长.29.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.30.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.《第1章 特殊平行四边形》参考答案与试题解析一、选择题1.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A .AB=BCB .AC=BDC .AC ⊥BD D .AB ⊥BD【考点】矩形的判定;平行四边形的性质.【专题】证明题;压轴题.【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A 、是邻边相等,可得到平行四边形ABCD 是菱形,故不正确;B 、是对角线相等,可推出平行四边形ABCD 是矩形,故正确;C 、是对角线互相垂直,可得到平行四边形ABCD 是菱形,故不正确;D 、无法判断.故选B .【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.2.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .()2014B .()2015C .()2015D .()2014【考点】正方形的性质.【专题】压轴题;规律型.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】方法一:解:如图所示:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,∴D 1E 1=C 1D 1sin30°=,则B 2C 2=()1,同理可得:B 3C 3==()2,故正方形A n B n C n D n 的边长是:()n ﹣1.则正方形A 2015B 2015C 2015D 2015的边长是:()2014. 故选:D .方法二:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,∴D 1E 1=B 2E 2=,∵B 1C 1∥B 2C 2∥B 3C 3…∴∠E 2B 2C 2=60°,∴B 2C 2=, 同理:B 3C 3=×=…∴a 1=1,q=,∴正方形A 2015B 2015C 2015D 2015的边长=1×.【点评】此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.二、填空题3.如图,▱ABCD的对角线相交于点O,请你添加一个条件AC=BD (只添一个即可),使▱ABCD 是矩形.【考点】矩形的判定;平行四边形的性质.【专题】开放型.【分析】根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.【解答】解:添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.【点评】本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形,此题是一道开放型的题目,答案不唯一.4.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.5.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.【考点】正方形的性质.【专题】压轴题;规律型.【分析】首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【解答】解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…,=()n﹣1.∴第n个正方形的边长an故答案为()n﹣1.【点评】该题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.6.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于65 度.【考点】正方形的性质;全等三角形的判定与性质.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.7.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.【考点】正方形的性质;等边三角形的性质;含30度角的直角三角形.【分析】过点C作CD和CE垂直正方形的两个边长,再利用正方形和等边三角形的性质得出CE的长,进而得出△ABC的面积即可.【解答】解:过点C作CD和CE垂直正方形的两个边长,如图∵一个正方形和一个等边三角形的摆放,∴四边形DBEC是矩形,∴CE=DB=,∴△ABC的面积=AB•CE=×1×=,故答案为:.【点评】此题考查正方形的性质,关键是根据正方形和等边三角形的性质得出BE和CE的长.8.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为 5 .【考点】正方形的性质;三角形的面积;勾股定理.【分析】根据正方形性质得出AD=BC=CD=AB,根据面积求出EM,得出BC=4,根据勾股定理求出即可.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,故答案为:5.【点评】本题考查了三角形面积,正方形性质,勾股定理的应用,解此题的关键是求出BC 的长,难度适中.9.正方形OA 1B 1C 1、A 1A 2B 2C 2、A 2A 3B 3C 3,按如图放置,其中点A 1、A 2、A 3在x 轴的正半轴上,点B 1、B 2、B 3在直线y=﹣x+2上,则点A 3的坐标为 (,0) .【考点】正方形的性质;一次函数图象上点的坐标特征.【专题】压轴题;规律型.【分析】设正方形OA 1B 1C 1的边长为t ,则B 1(t ,t ),根据t 一次函数图象上点的坐标特征得到t=﹣t+2,解得t=1,得到B 1(1,1),然后利用同样的方法可求得B 2(,),B 3(,),则A 3(,0).【解答】解:设正方形OA 1B 1C 1的边长为t ,则B 1(t ,t ),所以t=﹣t+2,解得t=1,得到B 1(1,1);设正方形A 1A 2B 2C 2的边长为a ,则B 2(1+a ,a ),a=﹣(1+a )+2,解得a=,得到B 2(,);设正方形A 2A 3B 3C 3的边长为b ,则B 3(+b ,b ),b=﹣(+b )+2,解得b=,得到B 3(,),所以A 3(,0).故答案为(,0).【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角.也考查了一次函数图象上点的坐标特征.10.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD= 22.5 度.【考点】正方形的性质;全等三角形的判定与性质.【分析】根据正方形的性质可得∠DAC=45°,再由AD=AE易证△ADF≌△AEF,求出∠FAD.【解答】解:如图,在Rt△AEF和Rt△ADF中,∴Rt△AEF≌Rt△ADF,∴∠DAF=∠EAF,∵四边形ABCD为正方形,∴∠CAD=45°,∴∠FAD=22.5°.故答案为:22.5.【点评】本题考查了正方形的性质,全等三角形的判定与性质,求证Rt△AEF≌Rt△ADF是解本题的关键.11.如图,要使平行四边形ABCD是矩形,则应添加的条件是∠ABC=90°或AC=BD(不唯一)(只填一个).【考点】矩形的判定;平行四边形的性质.【专题】开放型.【分析】根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可.【解答】解:根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD .故答案为:∠ABC=90°或AC=BD .【点评】本题主要应用的知识点为:矩形的判定. ①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.12.如图,正方形ABCD 的边长为a ,在AB 、BC 、CD 、DA 边上分别取点A 1、B 1、C 1、D 1,使AA 1=BB 1=CC 1=DD 1=a ,在边A 1B 1、B 1C 1、C 1D 1、D 1A 1上分别取点A 2、B 2、C 2、D 2,使A 1A 2=B 1B 2=C 1C 2=D 1D 2=A 1B 2,….依次规律继续下去,则正方形A n B n C n D n 的面积为 .【考点】正方形的性质.【专题】压轴题;规律型.【分析】首先在Rt △A 1BB 1中,由勾股定理可求得正方形A 1B 1C 1D 1的面积=,然后再在Rt △A 2B 1B 2中,由勾股定理求得正方形A 2B 2C 2D 2的面积=,然后找出其中的规律根据发现的规律即可得出结论.【解答】解:在Rt △A 1BB 1中,由勾股定理可知; ==,即正方形A 1B 1C 1D 1的面积=;在Rt △A 2B 1B 2中,由勾股定理可知:==;即正方形A 2B 2C 2D 2的面积= …∴正方形A n B n C n D n 的面积=.故答案为:.【点评】本题主要考查的是正方形的性质和勾股定理的应用,通过计算发现其中的规律是解题的关键.13.如图,▱ABCD 中,AB >AD ,AE ,BE ,CM ,DM 分别为∠DAB ,∠ABC ,∠BCD ,∠CDA 的平分线,AE 与DM 相交于点F ,BE 与CM 相交于点N ,连接EM .若▱ABCD 的周长为42cm ,FM=3cm ,EF=4cm ,则EM= 5 cm ,AB= 13 cm .【考点】矩形的判定与性质;勾股定理的应用;平行四边形的性质;相似三角形的应用.【专题】综合题;压轴题.【分析】由条件易证∠AEB=∠AFD=∠DMC=90°.进而可证到四边形EFMN 是矩形及∠EFM=90°,由FM=3cm ,EF=4cm 可求出EM .易证△ADF ≌△CBN ,从而得到DF=BN ;易证△AFD ∽△AEB ,从而得到4DF=3AF .设DF=3k ,则AF=4k .AE=4(k+1),BE=3(k+1),从而有AD=5k ,AB=5(k+1).由▱ABCD 的周长为42cm 可求出k ,从而求出AB 长.【解答】解:∵AE 为∠DAB 的平分线,∴∠DAE=∠EAB=∠DAB ,同理:∠ABE=∠CBE=∠ABC ,∠BCM=∠DCM=∠BCD ,∠CDM=∠ADM=∠ADC .∵四边形ABCD 是平行四边形,∴∠DAB=∠BCD ,∠ABC=∠ADC ,AD=BC .∴∠DAF=∠BCN ,∠ADF=∠CBN .在△ADF 和△CBN 中,.∴△ADF≌△CBN(ASA).∴DF=BN.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∴∠EAB+∠EBA=90°.∴∠AEB=90°.同理可得:∠AFD=∠DMC=90°.∴∠EFM=90°.∵FM=3,EF=4,∴ME==5(cm).∵∠EFM=∠FMN=∠FEN=90°.∴四边形EFMN是矩形.∴EN=FM=3.∵∠DAF=∠EAB,∠AFD=∠AEB,∴△AFD∽△AEB.∴=.∴=.∴4DF=3AF.设DF=3k,则AF=4k.∵∠AFD=90°,∴AD=5k.∵∠AEB=90°,AE=4(k+1),BE=3(k+1),∴AB=5(k+1).∵2(AB+AD)=42,∴AB+AD=21.∴5(k+1)+5k=21.∴k=1.6.∴AB=13(cm).故答案为:5;13.【点评】本题考查了平行四边形的性质、平行线的性质、矩形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,综合性较强.三、解答题14.(2015•聊城)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC 于点F,连接CE.求证:四边形BECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.15.如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB 的面积是2.求证:四边形ABCD是矩形.【考点】矩形的判定;一次函数图象上点的坐标特征.【专题】证明题.【分析】首先利用对角线互相平分的四边形是平行四边形判定该四边形为平行四边形,然后根据△ABE的面积得到整个四边形的面积和AD的长,根据平行四边形的面积计算方法得当DA⊥AB即可判定矩形.【解答】证明:作EF⊥AB于点F,∵AB∥CD,∴∠1=∠2,∠3=∠4,在△ABE和△CDE中,,∴△ABE≌△CDE,∴AE=CE,∴四边形ABCD是平行四边形,∵A(2,n),B(m,n),易知A,B两点纵坐标相同,∴AB∥CD∥x轴,∴m﹣2=4,m=6,将B(6,n)代入直线y=x+1得n=4,∴B(6,4),∵CD=4=AB,△AEB的面积是2,∴EF=1,∵D(p,q),∴E(,),F(,4),∴+1=4,∴q=2,p=2,∴DA⊥AB,∴四边形ABCD是矩形.【点评】本题考查了矩形的判定,解题的关键是了解有一个角是直角的平行四边形是矩形,难度不大.16.如图,在△ABC中,AB=AC,点D(不与点B重合)在BC上,点E是AB的中点,过点A作AF∥BC交DE延长线于点F,连接AD,BF.(1)求证:△AEF≌△BED.(2)若BD=CD,求证:四边形AFBD是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)AAS或ASA证全等;(2)根据对角线互相平分的证明四边形AFBD是平行四边形,再根据等腰三角形三线合一证明∠ADB=90°,进而根据有一个角是直角的平行四边形是矩形得证.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠EDB,∵E为AB的中点,∴EA=EB,在△AEF和△BED中,,∴△AEF≌△BED(ASA);(2)∵△AEF≌△BED,∴AF=BD,∵AF∥BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴AD⊥BD,∴四边形AFBD是矩形.【点评】本题考查了矩形的判定,三角形全等的判定及性质,能够了解矩形的判定定理是解答本题的关键,难度不大.17.(2015•义乌市)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.【考点】正方形的性质;全等三角形的判定与性质;命题与定理;旋转的性质.【专题】压轴题.【分析】(1)利用正方形的性质证明△DGF≌△BEF即可;(2)当α=180°时,DF=BF.(3)利用正方形的性质和△DGF≌△BEF的性质即可证得是真命题.【解答】(1)证明:如图1,∵四边形ABCD和四边形AEFG为正方形,∴AG=AE,AD=AB,GF=EF,∠DGF=∠BEF=90°,∴DG=BE,在△DGF和△BEF中,,∴△DGF≌△BEF(SAS),∴DF=BF;(2)解:图形(即反例)如图2,(3)解:补充一个条件为:点F在正方形ABCD内;即:若点F在正方形ABCD内,DF=BF,则旋转角α=0°.【点评】本题主要考查正方形的性质及全等三角形的判定和性质,旋转的性质,命题和定理,掌握全等三角形的对应边相等是解题的关键,注意利用正方形的性质找三角形全等的条件.18.(2015•鄂州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:BE=CE.(2)求∠BEC的度数.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)根据正方形的性质,可得AB=AD=CD,∠BAD=∠ADC=90°,根据正三角形的性质,可得AE=AD=DE,∠EAD=∠EDA=60°,根据全等三角形的判定与性质,可得答案;(2)根据等腰三角形的性质,∠ABE=∠AEB,根据三角形的内角和定理,可得∠AEB,根据角的和差,可得答案.【解答】(1)证明:∵四边形ABCD为正方形∴AB=AD=CD,∠BAD=∠ADC=90°∵三角形ADE为正三角形∴AE=AD=DE,∠EAD=∠EDA=60°∴∠BAE=∠CDE=150°在△BAE和△CDE中,∴△BAE≌△CDE∴BE=CE;(2)∵AB=AD,AD=AE,∴AB=AE,∴∠ABE=∠AEB,又∵∠BAE=150°,∴∠ABE=∠AEB=15°,同理:∠CED=15°∴∠BEC=60°﹣15°×2=30°.【点评】本题考查了正方形的性质,(1)利用了正方形的性质,等腰三角形的性质,全等三角形的判定与性质;(2)利用了等腰三角形的判定与性质,角的和差.19.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【考点】正方形的性质;全等三角形的判定与性质;菱形的性质.【专题】证明题.【分析】(1)先证出△ABP≌△CBP,得PA=PC,由于PA=PE,得PC=PE;(2)由△ABP≌△CBP,得∠BAP=∠BCP,进而得∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;(3)借助(1)和(2)的证明方法容易证明结论.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,【点评】本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等边对等角的性质,熟记正方形的性质确定出∠ABP=∠CBP是解题的关键.20.在平面直角坐标系xOy中,直线y=﹣x+3与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,求正方形落在x轴正半轴的顶点坐标.【考点】正方形的性质;一次函数图象上点的坐标特征.【分析】分两种情况:①如图1,令x=0,则y=3,令y=0,则x=3,得到OA=OB=3,∠BAO=45°,根据DE⊥OA,推出DE=AE,由于四边形COED是正方形,得到OE=DE,等量代换得到OE=AE,即可得到结论;②如图2,由(1)知△OFC,△EFA是等腰直角三角形,由四边形CDEF是正方形,得到EF=CF,于是得到AF=OF=2OF,求出OA=OF+2OF=3,即可得到结论.【解答】解:分两种情况;①如图1,令x=0,则y=3,令y=0,则x=3,∴OA=OB=3,∴∠BAO=45°,∵DE⊥OA,∴DE=AE,∵四边形COED是正方形,∴OE=DE,∴OE=AE,∴OE=OA=,∴E(,0);②如图2,由①知△OFC,△EFA是等腰直角三角形,∴CF=OF,AF=EF,∵四边形CDEF是正方形,∴EF=CF,∴AF=OF=2OF,∴OA=OF+2OF=3,∴OF=1,∴F(1,0).【点评】本题考查了正方形的性质,一次函数图象上点的坐标特征,等腰直角三角形的性质,正确的画出图形是解题的关键.21.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.【点评】本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.22.已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.【考点】矩形的判定与性质;勾股定理;平行四边形的性质.【分析】(1)利用三线合一定理可以证得∠ADB=90°,根据矩形的定义即可证得;(2)利用勾股定理求得BD的长,然后利用矩形的面积公式即可求解.【解答】解:(1)∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠ADB=90°,∵四边形ADBE是平行四边形.∴平行四边形ADBE是矩形;(2)∵AB=AC=5,BC=6,AD是BC的中线,∴BD=DC=6×=3,在直角△ACD中,AD===4,∴S=BD•AD=3×4=12.矩形ADBE【点评】本题考查了三线合一定理以及矩形的判定,理解三线合一定理是关键.23.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.【解答】解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.【点评】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.24.(2014•宁德)如图,在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】先判断四边形AECD为平行四边形,然后由∠AEC=90°即可判断出四边形AECD是矩形.【解答】证明:∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形.∴AD=BE.∵点E是BC的中点,∴EC=BE=AD.∴四边形AECD是平行四边形.∵AB=AC,点E是BC的中点,∴AE⊥BC,即∠AEC=90°.∴▱AECD是矩形.【点评】本题考查了梯形和矩形的判定,难度适中,解题关键是掌握平行四边形和矩形的判定定理.25.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE ⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.【考点】矩形的判定;角平分线的性质;等腰三角形的性质;正方形的判定.【专题】证明题;开放型.(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,【分析】可以证明四边形ADCE为矩形.(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.【解答】(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.理由:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.【点评】本题是以开放型试题,主要考查了对矩形的判定,正方形的判定,等腰三角形的性质,及角平分线的性质等知识点的综合运用.26.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.【考点】矩形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.【解答】证明:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,。
特殊的平行四边形知识点名师点晴矩形1.矩形的性质会从边、角、对角线方面通过合情推理提出性质猜想,并用演绎推理加以证明;能运用矩形的性质解决相关问题.2.矩形的判定会用判定定理判定平行四边形是否是矩形及一般四边形是否是矩形菱形1.菱形性质能应用这些性质计算线段的长度2.菱形的判别能利用定理解决一些简单的问题正方形1.正方形的性质了解平行四边形、矩形、菱形、正方形及梯形之间的相互关系,能够熟练运用正方形的性质解决具体问题2.正方形判定掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题,发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断,并能对自己的猜想进行证明☞2年中考1.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形.B.对角线互相垂直的矩形是正方形.C.对角线相等的菱形是正方形.D.对角线互相垂直平分的四边形是正方形.【答案】D.考点:1.正方形的判定;2.平行四边形的判定;3.菱形的判定;4.矩形的判定.2.(连云港)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形【答案】B.【解析】试题分析:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选B.考点:1.平行四边形的判定;2.矩形的判定;3.正方形的判定.3.(徐州)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.14【答案】A.【解析】试题分析:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE 是△ABD的中位线,∴OE=12AB=12×7=3.5.故选A.考点:菱形的性质.4.(柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=12GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH 其中,正确的结论有()A.1个B.2个C.3个D.4个【答案】B.考点:1.全等三角形的判定与性质;2.正方形的性质;3.相似三角形的判定与性质;4.综合题.5.(内江)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.3B.23C.26D.6【答案】B.考点:1.轴对称-最短路线问题;2.最值问题;3.正方形的性质.6.(南充)如图,菱形ABCD的周长为8cm,高AE长为3cm,则对角线AC长和BD长之比为()A.1:2 B.1:3 C.1:2D.1:3【答案】D.【解析】试题分析:如图,设AC,BD相较于点O,∵菱形ABCD的周长为8cm,∴AB=BC=2cm,∵高AE长为3cm,∴BE=22AB AE-=1(cm),∴CE=BE=1cm,∴AC=AB=2cm,∵OA=1cm,AC⊥BD,∴OB=22AB OA-=3(cm),∴BD=2OB=23cm,∴AC:BD=1:3.故选D.考点:菱形的性质.7.(安徽省)如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.25B.35C.5 D.6【答案】C.考点:1.菱形的性质;2.矩形的性质.8.(十堰)如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=53,且∠ECF=45°,则CF的长为()A.102B.53C5103D1053【答案】A.考点:1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质;4.综合题;5.压轴题.9.(鄂州)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.201421)(B.201521)(C.201533)(D.201433)(【答案】D.考点:1.正方形的性质;2.规律型;3.综合题.10.(广安)如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH的面积为cm2.【答案】93.【解析】试题分析:连接AC,BD,相交于点O,如图所示,∵E、F、G、H分别是菱形四边上的中点,∴EH=12BD=FG,EH∥BD∥FG,EF=12AC=HG,∴四边形EHGF是平行四边形,∵菱形ABCD中,AC⊥BD,∴EF⊥EH,∴四边形EFGH是矩形,∵四边形ABCD是菱形,∠ABC=60°,∴∠ABO=30°,∵AC⊥BD,∴∠AOB=90°,∴AO=12AB=3,∴AC=6,在Rt△AOB中,由勾股定理得:OB=22AB OA=33,∴BD=63,∵EH=12BD,EF=12AC,∴EH=33,EF=3,∴矩形EFGH的面积=EF•FG=93cm2.故答案为:93.考点:1.中点四边形;2.菱形的性质.11.(凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.【答案】(233-,23-).的交点,∴点P的坐标为方程组3(13)1y xy x⎧=⎪⎨⎪=-⎩的解,解方程组得:3323xy⎧=⎪⎨=⎪⎩,所以点P的坐标为(33,23-),故答案为:(233-,23).考点:1.菱形的性质;2.坐标与图形性质;3.轴对称-最短路线问题;4.动点型;5.压轴题;6.综合题.12.(潜江)菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(03),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2015秒时,点P的坐标为.【答案】(0.5,32.考点:1.菱形的性质;2.坐标与图形性质;3.规律型;4.综合题.13.(北海)如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= .【答案】8.【解析】试题分析:∵正方形ABCD的边长为4,对角线AC与BD相交于点O,∴∠BAC=45°,AB∥DC,∠ADC=90°,∵∠CAE=15°,∴∠E=∠BAE=∠BAC﹣∠CAE=45°﹣15°=30°.∵在Rt△ADE中,∠ADE=90°,∠E=30°,∴AE=2AD=8.故答案为:8.考点:1.含30度角的直角三角形;2.正方形的性质.14.(南宁)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.【答案】45°.考点:1.正方形的性质;2.等边三角形的性质.15.(玉林防城港)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.【答案】9 2.【解析】试题分析:如图1所示,作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=12AE′=2;CQ=DC﹣CQ=3﹣2=1,∵BP∥AA′,∴△BE′P∽△AE′A′,∴'''BP BEAA AE=,即164BP=,BP=32,CP=BC﹣BP=332-=32,S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣SBEP=9﹣12AD•DQ﹣12CQ•CP﹣12BE•BP=9﹣12×3×2﹣12×1×32﹣12×1×32=92,故答案为:92.考点:1.轴对称-最短路线问题;2.正方形的性质.16.(达州)在直角坐标系中,直线1y x =+与y 轴交于点A ,按如图方式作正方形A1B1C1O 、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线1y x =+上,点C1、C2、C3…在x 轴上,图中阴影部分三角形的面积从左到游依次记为1S 、2S、3S 、…n S ,则n S 的值为(用含n 的代数式表示,n 为正整数).【答案】232n -.故答案为:232n .考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型;4.综合题.17.(齐齐哈尔)如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3D4,…,依此规律,则A2014A2015= .【答案】20142(3).考点:1.相似三角形的判定与性质;2.正方形的性质;3.规律型;4.综合题.18.(梧州)如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.【答案】(1)证明见试题解析;(21010.【解析】考点:1.正方形的性质;2.全等三角形的判定与性质;3.勾股定理;4.综合题.19.(恩施州)如图,四边形ABCD、BEFG均为正方形,连接AG、CE.(1)求证:AG=CE;(2)求证:AG⊥CE.【答案】(1)证明见试题解析;(2)证明见试题解析.【解析】试题分析:(1)由ABCD、BEFG均为正方形,得出AB=CB,∠ABC=∠GBE=90°,BG=BE,得出∠ABG=∠CBE,从而得到△ABG≌△CBE,即可得到结论;(2)由△ABG≌△CBE,得出∠BAG=∠BCE,由∠BAG+∠AMB=90°,对顶角∠AMB=∠CMN,得出∠BCE+∠CMN=90°,证出∠CNM=90°即可.试题解析:(1)∵四边形ABCD、BEFG均为正方形,∴AB=CB,∠ABC=∠GBE=90°,BG=BE,∴∠ABG=∠CBE,在△ABG和△CBE中,∵AB=CB,∠ABG=∠CBE,BG=BE,∴△ABG ≌△CBE(SAS),∴AG=CE;(2)如图所示:∵△ABG≌△CBE,∴∠BAG=∠BCE,∵∠ABC=90°,∴∠BAG+∠AMB=90°,∵∠AMB=∠CMN,∴∠BCE+∠CMN=90°,∴∠CNM=90°,∴AG⊥CE.考点:1.全等三角形的判定与性质;2.正方形的性质.20.(武汉)已知锐角△ABC中,边BC长为12,高AD长为8.(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K.①求EFAK的值;②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值;(2)若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC 的另两边上,直接写出正方形PQMN的边长.【答案】(1)①32;②3(8)2S x x=-,S的最大值是24;(2)245或24049.试题解析:(1)①∵EF∥BC,∴AK EFAD BC=,∴EF BCAK AD==128=32,即EFAK的值是32;考点:1.相似三角形的判定与性质;2.二次函数的最值;3.矩形的性质;4.正方形的性质;5.分类讨论;6.综合题;7.压轴题.21.(荆州)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见试题解析;(2)90°;(3)AP=CE.【解析】试题分析:(1)先证出△ABP≌△CBP,得到PA=PC,由PA=PE,得到PC=PE;(2)由△ABP≌△CBP,得到∠BAP=∠BCP,进而得到∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;(3)借助(1)和(2)的证明方法容易证明结论.考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的性质;4.探究型;5.综合题;6.压轴题.1.(宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.(14)n﹣1 D.14n【答案】B.【解析】试题分析:由题意可得一个阴影部分面积等于正方形面积的14,即是14×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选B.考点:1.正方形的性质2.全等三角形的判定与性质.2.(山东省淄博市)如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A. 1 B.2C.3D. 2【答案】C.考点:1.勾股定理;2.线段垂直平分线的性质;3.矩形的性质.3.(山东省聊城市)如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为()A.3B. 3 3C.3D93【答案】B.【解析】试题分析:∵四边形ABCD是矩形,∴∠A=90°,即BA⊥BF,∵四边形BEDF是菱形,∴EF⊥BD,∠EBO=∠DBF,∴AB=BO=3,∠ABE=∠EBO,∴∠ABE=∠EBD=∠DBC=30°,∴BE=23cos30BO=︒,∴BF=BE=23,∵EF=AE+FC,AE=CF,EO=FO∴CF=AE=3,∴BC=BF+CF=33,故选B.考点:1.矩形的性质;2.菱形的性质.4.(广西来宾市)顺次连接菱形各边的中点所形成的四边形是()A.等腰梯形B.矩形C.菱形D.正方形【答案】B.考点:1.正方形的判定;2.三角形中位线定理;3.菱形的性质.5.(贵州铜仁市)如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=26,则MF的长是()A15B15C.1 D.15【答案】D.考点:1.相似三角形的判定与性质;2.角平分线的性质;3.勾股定理;4.矩形的性质.6.(襄阳)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④【答案】D.【解析】试题分析:∵AE=13AB,∴BE=2AE.由翻折的性质得,PE=BE,∴∠APE=30°.∴∠AEP=90°﹣30°=60°,∴∠BEF=12(180°﹣∠AEP)=12(180°﹣60°)=60°.∴∠EFB=90°﹣60°=30°.∴EF=2BE.故①正确.∵BE=PE,∴EF=2PE.∵EF>PF,∴PF>2PE.故②错误.由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°.∴BE=2EQ,EF=2BE.∴FQ=3EQ.故③错误.由翻折的性质,∠EFB=∠BFP=30°,∴∠BFP=30°+30°=60°.∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°.∴△PBF是等边三角形.故④正确;综上所述,结论正确的是①④.故选D.考点:1.矩形的性质;2.含30度角直角三角形的判定和性质;3.等边三角形的判定.7.(宁夏)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB= cm.【答案】5.考点:1.菱形的性质;2.勾股定理.8.(山东省聊城市)如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE 与G点,交DF与F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.【答案】证明见解析.考点:1.平行四边形的性质;2.全等三角形的判定.9.(梅州)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【答案】(1)证明见解析;(2)GE=BE+GD成立,理由见解析.【解析】试题分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.试题解析:(1)在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF (SAS).∴CE=CF.(2)GE=BE+GD成立.理由是:考点:1.正方形的性质;2.全等三角形的判定和性质;3.等腰直角三角形的性质.☞考点归纳归纳1:矩形基础知识归纳:1、矩形的概念有一个角是直角的平行四边形叫做矩形.2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形基本方法归纳:关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.注意问题归纳:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.【例1】如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB 的大小为()A、30°B、60°C、90°D、120°【答案】B.考点:矩形的性质.归纳2:菱形基础知识归纳:1、菱形的概念有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半注意问题归纳:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.【例2】如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.【答案】B.考点:菱形的性质.归纳3:正方形基础知识归纳:1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等.注意问题归纳:正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定.【例3】如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E ﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙B.甲丙乙C.乙丙甲D.丙甲乙【答案】B.考点:正方形的性质.☞1年模拟1.(山东省潍坊市昌乐县中考一模)下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形【答案】D.【解析】试题分析:根据平行四边形的菱形的性质得到A、B、C选项均正确,而D不正确,因为对角线互相垂直的四边形也可能是梯形.故选D.考点:1.菱形的判定与性质;2.平行四边形的判定与性质.2.(广东省广州市中考模拟)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°【答案】B.考点:矩形的性质.3.(山东省日照市中考模拟)如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积为()A.0.7 B.0.9 C.2−2 D2【答案】C.【解析】试题分析:如图,∵∠B=45°,AE⊥BC,∴∠BAE=∠B=45°,∴AE=BE,由勾股定理得:BE2+AE2=22,解得:2,由题意得:△ABE≌△AB1E,∴∠BAB1=2∠BAE=90°,2,∴2,2-2,∵四边形ABCD为菱形,∴∠FCB1=∠B=45°,∠CFB1=∠BAB1=90°,∴∠CB1F=45°,CF=B1F,∵CF∥AB,∴△CFB1∽△BAB1,∴11B CCFAB BB=,解得:2,∴△AEB1、△CFB1的面积分别为:12212=,21(22)3222⨯=-,∴△AB1E与四边形AECD重叠部分的面积=1(322)222--=.故选C.考点:1.菱形的性质;2.翻折变换(折叠问题).4.(山东省济南市平阴县中考二模)如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(-2,2)B.(2,-2)C.(2,-2)D.(3,-3)【答案】B.考点:1.菱形的性质;2.坐标与图形变化-旋转.5.(山东省青岛市李沧区中考一模)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④【答案】D.综上所述,结论正确的是①④.故选D.考点:1.翻折变换(折叠问题);2.矩形的性质.6.(山东省日照市中考一模)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④【答案】B.考点:正方形的判定.7.(山东省青岛市李沧区中考一模)如图,在矩形ABCD中,AB=3,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是.34π-.考点:1.旋转的性质;2.矩形的性质;3.扇形面积的计算.8.(河北省中考模拟二)如图,在矩形ABCD中,AB=3,⊙O与边BC,CD相切,现有一条过点B的直线与⊙O相切于点E,连接BE,△ABE恰为等边三角形,则⊙O的半径为.【答案】3【解析】试题分析:过O点作GH⊥BC于G,交BE于H,连接OB、OE,∴G是BC的切点,OE ⊥BH,∴BG=BE,∵△ABE为等边三角形,∴BE=AB=3,∴BG=BE=3,∵∠HBG=30°,∴3,BH=23,设OG=OE=x,则3-3,3-x,在RT△OEH中,EH2+OE2=OH2,即(3-3)2+x2=3-x)2,解得3,∴⊙O的半径为3.故答案为:3考点:1.切线的性质;2.矩形的性质.9.(山东省日照市中考一模)边长为1的一个正方形和一个等边三角形如图摆放,则△ABC 的面积为.【答案】14.考点:1.正方形的性质;2.等边三角形的性质;3.含30度角的直角三角形.10.(山东省青岛市李沧区中考一模)如图,正方形ABCD和正方形CEFG中,点D在CG 上,BC=1,CE=3,H是AF的中点,那么CH的长是.5考点:1.正方形的性质;2.直角三角形斜边上的中线;3.勾股定理.11.(山西省晋中市平遥县九年级下学期4月中考模拟)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.【答案】(1)FG⊥ED.理由见解析;(2)证明见解析.【解析】考点:1.旋转的性质;2.正方形的判定;3.平移的性质;4.探究型.12.(北京市平谷区中考二模)如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.【答案】(1)见解析(22532【解析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=CE=12BC.同理,AF=CF=12AD.∴AF=CE.∴四边形AECF是平行四边形.∴平行四边形AECF是菱形.考点:1.菱形的性质;2.平行四边形的性质;3.解直角三角形.13.(山东省日照市中考模拟)如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.(1)求sin∠ABC的值;(2)若E为x轴上的点,且S△AOE=163,求经过D、E两点的直线的解析式,并判断△AOE 与△DAO是否相似?(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.【答案】(1)45.(2)△AOE∽△DAO.(3)F1(3,8);F2(-3,0);F3(4751-,722-),F4(-4225,4425).【解析】试题分析:(1)求得一元二次方程的两个根后,判断出OA、OB长度,根据勾股定理求得AB长,那么就能求得sin∠ABC的值;(2)易得到点D的坐标为(6,4),还需求得点E的坐标,OA之间的距离是一定的,那么点E的坐标可能在点O的左边,也有可能在点O的右边.根据所给的面积可求得点E的坐标,把A、E代入一次函数解析式即可.然后看所求的两个三角形的对应边是否成比例,成比例就是相似三角形;(3)根据菱形的性质,分AC与AF是邻边并且点F在射线AB上与射线BA上两种情况,以及AC与AF分别是对角线的情况分别进行求解计算.试题解析:(1)解x2-7x+12=0,得x1=4,x2=3.∵OA>OB ,∴OA=4,OB=3.在Rt△AOB中,由勾股定理有AB=225OA OB+=,∴sin∠ABC=54OAAB=;(3)根据计算的数据,OB=OC=3,∴AO平分∠BAC,①AC、AF是邻边,点F在射线AB上时,AF=AC=5,所以点F与B重合,即F(-3,0);②AC、AF是邻边,点F在射线BA上时,M应在直线AD上,且FC垂直平分AM,点F (3,8);③AC是对角线时,做AC垂直平分线L,AC解析式为y=-43x+4,直线L过(32,2),且k值为34(平面内互相垂直的两条直线k值乘积为-1),L解析式为y=34x+78,联立直线L 与直线AB求交点,∴F(4751-,722-);④AF是对角线时,过C做AB垂线,垂足为N,根据等积法求出CN=245,勾股定理得出,AN=75,做A关于N的对称点即为F,AF=145,过F做y轴垂线,垂足为G,FG=145×35=4225,∴F(-4225,4425).综上所述,满足条件的点有四个:F1(3,8);F2(-3,0);F3(4751-,722-),F4(-4225,4425).考点:1.相似三角形的判定;2.解一元二次方程-因式分解法;3.待定系数法求一次函数解析式;4.平行四边形的性质;5.菱形的判定;6.分类讨论;7.存在型;8.探究型.14.(河北省中考模拟二)如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF、EF,恰有BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B 作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求证:BE=2CF;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.【答案】(1)证明见解析.(2)四边形BFGN为菱形,证明见解析.(2)解:四边形BFGN为菱形,证明如下:考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的判定;4.旋转的性质;5.和差倍分.15.(广东省广州市中考模拟)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为CC',则图中阴影部分的面积为.【答案】33 42π+.【解析】试题分析:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A、D′、C及A、B、C′分别共线∴AC=3,∴扇形ACC′230(3)3604ππ⨯⨯=.∵AC=AC′,AD′=AB,∴在△OCD′和△OC'B中,CD BCACO AC DCOD C OB''=⎧⎪''∠=∠⎨⎪''∠=∠⎩,∴△OCD′≌△OC′B (AAS),∴OB=OD′,CO=C′O.∵∠CBC′=60°,∠BC′O=30°,∴∠COD′=90°.∵CD′=AC-AD′=3-1,OB+C′O=1,∴在Rt△BOC′中,BO2+(1-BO)2=(3-1)2,解得BO=3122-,3322C O'=-,∴考点:1.菱形的性质;2.全等三角形的判定与性质;3.扇形面积的计算;4.旋转的性质.。
八年级数学下册平行四边形的性质练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.在平行四边形ABCD 中,AB =3,BC =4,则平行四边形ABCD 的周长等于 _____.2.如图,等腰△ABC 中,△BAC =120°,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转30°后,点D 落在边AB 上,点E 落在边AC 上,若AE =2cm ,则四边形ABDE 的面积是__________.3.定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为______.4.如图,已知DG △BC ,AC △BC ,CD △AB ,EF △AB ,则DG 与AC 间的距离是线段________的长,CD 与EF 间的距离是线段________的长.5.如图,平行四边形的中心在原点,AD BC ∥,D (3,2),C (1,﹣2),则A 点的坐标为________,B 点的坐标为________.6.如图,在平面直角坐标系中,点()1,2A -,4OC =,将平行四边形OABC 绕点O 旋转90°后,点B 的对应点B '坐标是______.7.如图,菱形ABCD 中,∠ABD=30°,AC=4,则BD的长为_______.8.如图,在直角坐标系中,平行四边形ABCD的BC边在x轴上,点A(0,3),B(−1,0),若直线y=−2x+4恰好平分平行四边形ABCD的面积,则点D的坐标是______.二、单选题9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE中点,且△ABC的面积等于4cm2,则阴影部分图形面积等于().A.1cm2B.2cm2C.0.5cm2D.1.5cm210.已知三角形的三边长分别为2、x、8,则x的值可能是()A.4B.6C.9D.1011.已知A、B、C三点不在同一条直线上,则以这三点为顶点的平行四边形共有()A .1个B .2个C .3个D .4个12.已知某点阵的第△△△个图如图所示,按此规律第( )个点阵图中,点的个数为2022个.A .1009B .2018C .2022D .2048三、解答题13.如图,PBD △和PAC △都是直角三角形,90DBP CAP ∠=∠=︒.(1)如图1,PA ,PB 与直线MN 重合,若45BDP ∠=︒,30ACP ∠=︒,求DPC ∠的度数;(2)如图2,若45BDP ∠=︒,30ACP ∠=︒,PBD △保持不动,PAC △绕点P 逆时针旋转一周.在旋转过程中,当PC BD ∥时,求APN ∠的度数;(3)如图3,()90180BPA a α∠=︒<<︒,点E 、F 分别是线段BD 、AC 上一动点,当PEF 周长最小时,直接写出EPF ∠的度数(用含α的代数式表示).14.在四边形ABCD 中,BAD ∠的平分线AF 交BC 于F ,延长AB 到E 使BE FC =,G 是AF 的中点,GE 交BC 于O ,连接GD .(1)当四边形ABCD 是矩形时,如图,求证:△GE GD =;△BO GD GO FC ⋅=⋅.(2)当四边形ABCD 是平行四边形时,如图,(1)中的结论都成立,请给出结论△的证明.15.如图,已知,AF DE AE FD ==,点B 、C 在AD 上,AB CD =,BF CE =.(1)图中共有__________对全等三角形;分别是__________;(2)我会说明__________≌△__________.(写出证明过程)参考答案:1.14【分析】由平行四边形的对边相等即可求得其周长.【详解】解:△四边形ABCD是平行四边形,△AB=CD,BC=AD,△平行四边形的周长为=2(AB+BC)=2×(3+4)=14,故答案为:14.【点睛】本题考查平行四边形的性质,熟知平行四边形的对边相等是解答的关键.22.【分析】如图,作AH△BC于H.证明四边形ABDE是平行四边形即可解决问题.【详解】解:如图,作AH△BC于H.由题意得:△EAD=△BAC=120°,△EAC=△C=30°,△AE△BC,△△ADH=△B+△BAD,△B=△BAD=30°,△△ADH=60°,BD=AD=AE=2cm,△AHcm),△BD=AE,BD△AE,△四边形ABDE是平行四边形,△SABCD=BD•AH cm2).2.故答案为【点睛】本题考查旋转变换,等腰三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.3.6【分析】分类讨论:AB =AC =2BC 或BC =2AB =2AC ,然后根据三角形三边关系即可得出结果.【详解】解:△△ABC 是等腰三角形,底边BC =3△AB =AC当AB =AC =2BC 时,△ABC 是“倍长三角形”;当BC =2AB =2AC 时,AB +AC =BC ,根据三角形三边关系,此时A 、B 、C 不构成三角形,不符合题意; 所以当等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为6.故答案为6.【点睛】本题考查等腰三角形,三角形的三边关系,涉及分类讨论思想,结合三角形三边关系,灵活运用分类讨论思想是解题的关键.4. CG DE【分析】根据平行线间的距离等于平行线间任意一条垂线段的长度即可解题.【详解】解:由题可知:DG△AC,CD△EF,△DG 与AC 间的距离是线段CG ,CD 与EF 间的距离是线段DE.【点睛】本题考查了平行线之间的距离,属于简单题,找到平行线之间的垂线段是解题关键.5. (﹣1,2) (﹣3,﹣2)【分析】根据“关于原点对称的点横坐标互为相反数,纵坐标也互为相反数”即可解答.【详解】解:因为平行四边形是中心对称图形,而平行四边形的中心在原点,则A 点的坐标为(﹣1,2),B 点的坐标为(﹣3,﹣2).故答案为:(﹣1,2),(﹣3,﹣2).【点睛】本题主要考查了关于原点对称的点的坐标特征,熟练掌握关于原点对称的点横坐标互为相反数,纵坐标也互为相反数是解题的关键.6.()2,3-或()2,3-【分析】根据旋转可得: BM = B 1M 1 = B 2M 2 = 3,△AOA 1 =△AOA 2 = 90°,可得B 1和B 2的坐标,即是B '的坐标.【详解】解:△A (-1,2), OC = 4,△ C (4,0),B (3,2),M (0,2), BM = 3,AB//x轴,BM= 3.将平行四边形OABC绕点O分别顺时针、逆时针旋转90°后,由旋转得:OM=OM1=OM2=2,△AOA1=△AOA2=90°BM=B1M1=B2M2=3,A1B1△x轴,A2B2△x轴,△B1和B2的坐标分别为:(-2,3),(2,-3),△B'即是图中的B1和B2,坐标就是,B' (-2,3),(2,-3),故答案为:(-2,3)或(2,-3).【点睛】本题考查了平行四边形的性质,坐标与图形的性质,旋转的性质,正确的识别图形是解题的关键.7.【分析】根据菱形的性质可得△ABO=30°,AO=12AC=2,根据含30°角的直角三角形的性质及勾股定理即可求得BO的长,从而得到结果.【详解】如图:在菱形ABCD中,AC、BD是对角线,设相交于O点,△ABD=30°,AC=4,△AC△BD,AO=12AC=2,△AB=2AO=4,△BO,22BD BO∴==⨯=故答案为:【点睛】本题考查的是菱形的性质,解答本题的关键是熟练掌握菱形的对角线互相垂直平分,对角线平分对角.8.(72,3)【分析】连接BD,设D(m,3),BD的中点为T.求出点T的坐标,利用的待定系数法,可得结论.【详解】解:连接BD,设D(m,3),BD的中点为T.△B(−1,0),△T(12m-,32),△直线y=−2x+4平分平行四边形ABCD的面积,△直线y=−2x+4经过点T,△32=−2×12m-+4,△m=72,△D(72,3),故答案为:(72,3).【点睛】本题考查中心对称,平行四边形的性质,一次函数的性质等知识,解题关键是理解题意,灵活运用所学知识解决问题.9.A【分析】根据三角形中线的性质可得S△EBC=12S△ABC,1124BEF BEC ABCS S S==,结合已知条件即可求解.【详解】解:△点D ,E 分别为边BC , AD 中点, 111,,222ABD ABC BED ABD CED ABD SS S S S S ∴===, 12BED DEC BEC ABC S S S S ∴+==,△F 是EC 的中点, 12BEF BEC S S =, 14BEF ABCS S ∴=, △ABC 的面积等于4cm 2,△S △BEF =1cm 2,即阴影部分的面积为1cm 2,故选:A .【点睛】本题主要考查了三角形的中线的性质,掌握三角形的中线的性质是解题的关键.10.C【分析】根据三角形任意两边的和大于第三边,进而得出答案.【详解】解:三角形三边长分别为2,8,x ,8282x ∴-<<+,即:610x <<,只有9符合,故选:C .【点睛】此题主要考查了三角形三边关系,解题的关键是正确把握三角形三边关系定理.11.C【详解】分析:由已知条件可知,顺次连接A 、B 、C 三点可得△ABC ,在分别以AB 、BC 和AC 为对角线各作出一个以点A 、B 、C 为顶点的平行四边形,如下图,由此即可得到本题答案了.详解:△点A 、B 、C 不在同一条直线上时,△顺次连接A 、B 、C 三点可得△ABC ,△分别以AB 、BC 和AC 为对角线各作出一个以点A 、B 、C 为顶点的平行四边形,如下图所示:△当A 、B 、C 三点不在同一条直线上,则以这三点为顶点的平行四边形共有3个.故选C.点睛:知道以三角形的每一条边为一条对角线都可以画出一个以该三角形的三个顶点为顶点的平行四边形,是解答本题的关键.12.A【分析】仔细观察图形变化,找到图形变化的规律,利用规律求解.【详解】解:第1个图里有6个点,6=4+2;第2个图有8个点,8=4+2×2;第3个有10个点,10=4+3×2;…则第n 个图中点的个数为4+2n ,令4+2n =2022, 解得n =1009.故选:A .【点睛】本题主要考查图形的变化规律,解题的关键是根据图形得出每往后一个图形,点的个数相应增加2个.13.(1)75DPC ∠=︒(2)30APN ∠=︒或150︒(3)2180α-︒【分析】(1)先算出9045DPB BDP ∠=︒-∠=︒,9060CPA ACP ∠=︒-∠=︒,然后根据平角的定义,求出75DPC ∠=︒即可;(2)分点C 在MN 上方和点C 在MN 下方两种情况进行讨论,根据平行线的性质,求出结果即可;(3)延长PB 截取BG =PB ,在MN 上截取AH =AP ,连接GH ,交BD 于点E ,交AC 于点F ,连接PE 、PF ,此时△PEF 的周长最小,根据三角形外角的性质和垂直平分线的性质,求出EPF ∠的度数即可.(1)解:△90DBP CAP ∠=∠=︒,45BDP ∠=︒,30ACP ∠=︒,△9045DPB BDP ∠=︒-∠=︒,9060CPA ACP ∠=︒-∠=︒,△PA ,PB 与直线MN 重合,△18075DPC DPB CPA ∠=︒-∠-∠=︒.(2)当点C 在MN 上方时,如图所示:PC BD ∥,45BDP ∠=︒,△45CDP BDP ∠=∠=︒,△45DPB ∠=︒,60CPA ∠=︒,△18030APN BPD CPD CPA ∠=︒-∠-∠-∠=︒;当点C 在MN 下方时,如图所示:△PC BD ∥,90DBP ∠=︒,△90BPC DBP ∠=∠=︒,18090CPN BPC ∴∠=︒-∠=︒,△6090150APN APC CPN ∠=∠+∠=︒+︒=︒;综上分析可知,30APN ∠=︒或150︒.(3)延长PB 截取BG =PB ,在MN 上截取AH =AP ,连接GH ,交BD 于点E ,交AC 于点F ,连接PE 、PF ,此时△PEF 的周长最小,如图所示:△90DBP CAP ∠=∠=︒,△DB GP ⊥,CA PH ⊥,△DB 垂直平分PG ,CA 垂直平分PH ,△EG =EP ,FP =FH ,△EGP EPG ∠=∠,PHF HPF ∠=∠,△△MPG 是△PGH 的外角,△MPG EGP PHF EPG FPH ∠=∠+∠=∠+∠,180MPG α∠=︒-,△180EPG FPH MPG α∠+∠=∠=︒-,△()EPF APB EPG FPH ∠=∠-∠+∠()180αα=-︒-2180α=-︒【点睛】本题主要考查了平行线的性质,垂直平分线的性质,等腰三角形的性质,直角三角形两锐角互余,根据题意作出图形,并进行分类讨论,是解题的关键.14.(1)证明见详解(2)证明见详解【分析】(1)△证明ADG AEG ≌△即可;△连接BG ,CG ,证明ADG BCG ≌△,BOE GOC ∽△△即可证明;(2)△的结论和(1)中证明一样,证明ADG AEG ≌△即可;△的结论,作DM BC GM ⊥,连接,证明BOE GOM ∽△△即可.(1)证明:△证明过程:四边形ABCD 为矩形,90ABC BAD ∴∠=∠=︒AF 平分BAD ∠45BAF DAF ∴∠=∠=︒ABF ∴为等腰直角三角形AB BF ∴=BE FC =AB BE BF CF AE BC AD ∴+=+==,即AG AG =∴ADG AEG ≌△∴GE GD =△证明:连接BG ,CG ,G 为AF 的中点,四边形ABCD 为矩形,90ABC BAD AD BC ∴∠=∠=︒=,BG AG FG ∴==AF 平分BAD ABF ∠,为等腰直角三角形,45BAF DAF ABG CBG ∴∠=∠=︒=∠=∠∴ADG BCG ≌△∴ADG BCG ∠=∠ADG AEG ≌△E ADG ∴∠=∠E BCG ∴∠=∠BOE GOC ∠=∠BOE GOC ∴∽△△BO GO GO BOBE GC GD CF ∴===∴BO GD GO FC ⋅=⋅(2)作DM BC BC M GM GN DM DM N ⊥⊥交于,连接,作交于点,如图所示90DMB GNM GND DMC ∴∠=︒=∠=∠=∠由(1)同理可证:ADG AEG ≌△E ADG ∴∠=∠四边形ABCD 为平行四边形AD BC ∴∥90ADM DMC ∴∠=∠=︒BC GN AD ∴∥∥G 为AF 的中点,由平行线分线段成比例可得DN MN =DG MG ∴=,,GDM GMDADG BMG EBOE GOM ∠=∠BOE GOM ∴∽△△BO GO GO BO BE GM GD CF∴=== ∴BO GD GO FC ⋅=⋅【点睛】本题考查了以矩形与平行四边形为桥梁,涉及全等三角形的证明,相似三角形的证明,正确作出辅助线并由此得到相应的全等三角形和相似三角形是解题的关键.15.(1)3对;,,AED DFA AEC DFB AFB DEC ≌≌≌;(2)AED DFA ≌,证明见解析.【分析】根据已知条件,结合三角形全等的判定定理,推理即可得到正确答案.【详解】解:(1)3对;,,AED DFA AEC DFB AFB DEC ≌≌≌;(2)我会说明AED DFA ≌.证明:在AED 和DFA 中,△,,,DE AF DA AD AE DF =⎧⎪=⎨⎪=⎩△()AED DFA SSS ≌.【点睛】本题考查三角形全等的判定定理,根据定理内容找到全等条件是解题关键.。
八年级数学下册第十八章平行四边形综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,平行四边形OABC 的顶点A 在x 轴上,顶点B 的坐标为(8,6).若直线l 经过点(2,0),且直线l 将平行四边形OABC 分割成面积相等的两部分,则直线l 对应的函数解析式是( )A .y =x -2B .y =3x -6C .332y x =-D .2433y x =- 2、下列条件中,不能判定一个四边形是平行四边形的是( )A .一组对边平行且相等B .对角线互相平分C .两组对角分别相等D .一组对边平行,另一组对边相等3、如图,在ABCD 中,连接AC ,若60ABC CAD ∠=∠=︒,3AB =,则AD 的长是( )A .3B .6C .9D .184、如图,已知AOBC 的顶点O (0,0),点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .若G 的坐标为(2,4),则点A 的坐标是( )A .(﹣3,4)B .(﹣2,4)C .(24)-D .4,4)5、某街区街道如图所示,其中CE 垂直平分,//,//AF AB CD BC DF .从B 站到E 站有两条公交线路;线路1是B D A E →→→,线路2是B C F E →→→,则两条线路的长度关系为( )A .路线1较短B .路线2较短C.两条路线长度相等D.两条线路长度不确定6、如图,在▱ABCD中,∠B=60°,AB=BC,AE⊥BC于点E,连接DE,交AC于点G.以DE为边作等边△DEF,连接AF,交DE于点N,交DC于点M,且M为AF的中点.在下列说法中:①∠EAN=AE,③S△AGE=S△DGC,④AF⊥DE.正确的个数有()45°,②12A.1个B.2个C.3个D.4个7、平行四边形的一组对角的平分线()A.一定相互平行B.一定相交C.可能平行也可能相交D.平行或共线8、如图,ABCD的周长为36,对角线AC,BD交于点O,OF AC,垂足为O,OF交AD于点F,则CDF的周长为()A.12 B.18 C.24 D.269、如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,且AE=3,AF=4,若▱ABCD的周长为56,则BC的长为()A.14 B.16 C.28 D.3210、如图所示,平行四边形ABCD 的对角线交于点O ,下列结论错误的是( )A .平行四边形ABCD 是中心对称图形B .AOB COD ∆≅∆C .AOB BOC ∆≅∆D .AOB ∆与BOC ∆的面积相等第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、如图,在△ABC 中,90ACB ∠=︒,3BC =,6AC =.点D 在AC 边上,连结BD ,将△ABD 沿直线BD 翻折得△A BD ',连结A C '.当四边形A DBC '为平行四边形时,该四边形的周长是____.2、两组对边分别________的四边形叫做平行四边形.3、在平行四边形ABCD 中,若∠A =130°,则∠B =______,∠C =______,∠D =______.4、平行四边形的性质:平行四边形的两组对边分别________;平行四边形的两组对角分别________;平行四边形的对角线________.5、已知平行四边形ABCD 中,A (﹣9,0)、B (﹣3,0),C (0,4),反比例函数k y x=是经过线段CD 的中点,则反比例函数解析式为______.6、在ABCD 中,2BC AB =,若E 为BC 的中点,则AED =∠_______.7、平行四边形周长是40cm ,则每条对角线长不能超过_______cm .8、如图,在ABC 中,2AB AC ==,90BAC ∠=︒,M ,N 为BC 上的两个动点,且MN =的最小值是________.AM AN9、□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=_____,BC=_____.10、如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和___.三、解答题(5小题,每小题6分,共计30分)1、如图,▱ABCD的对角线AC,BD相交于点O,点E,点F在线段BD上,且DE=BF.求证:AE∥CF.2、在▱ABCD中,∠A=48°,BC=3cm,求∠B,∠C的度数及AD边的长度.3、如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成了一个四边形.线段AB和CD的长度有什么关系?4、已知平行四边形一个内角的度数,能确定其他内角的度数吗?说说你的理由.5、如图,四边形ABCD 中,AB CD ∥,AC AD =,过点A 作AE BC ⊥,垂足为E ,且AE BE =.连接BD ,交AE 于点F .(1)探究CAE ∠与DAE ∠的数量关系,并证明;(2)探究线段AF ,CE ,FE 的数量关系,并证明你的结论.-参考答案-一、单选题1、C【解析】【分析】根据直线l 将平行四边形OABC 分割成面积相等的两部分,可得直线l 过OB 的中点,又根据中点公式可得OB 的中点为()4,3,然后设直线l 的解析式为()0y kx b k =+≠,将点(2,0),()4,3 代入,即可求解.【详解】解:∵直线l 将平行四边形OABC 分割成面积相等的两部分,∴直线l 过平行四边形的对称中心,即过OB 的中点,∵顶点B 的坐标为(8,6), ∴86,22⎛⎫ ⎪⎝⎭,即()4,3, 设直线l 的解析式为()0y kx b k =+≠,将点(2,0),()4,3 代入,得:2043k b k b +=⎧⎨+=⎩, 解得:323k b ⎧=⎪⎨⎪=-⎩, ∴直线l 的解析式为332y x =-, 故选:C .【点睛】 本题主要考查了求一次函数解析式,平行四边形的性质,明确题意,得到直线l 过平行四边形的对称中心是解题的关键.2、D【解析】【分析】根据平行四边形的判定方法一一判断即可;【详解】解:A 、一组对边平行且相等的四边形是平行四边形,故本选项不符合题意;B 、对角线互相平分的四边形是平行四边形,故本选项不符合题意;C 、两组对角分别相等的四边形是平行四边形,故本选项不符合题意;D 、一组对边平行,另一组对边相等的四边形还可能是等腰梯形,本选项符合题意;故选:D .【点睛】本题考查平行四边形的判定方法,解题的关键是熟练掌握平行四边形的判定方法.3、A【解析】【分析】根据ABCD ,可得AD∥BC ,AD =BC ,可证△ABC 为等边三角形,求出BC 即可.【详解】解:在ABCD 中,AD∥BC ,AD =BC ,∴∠DAC =∠BCA =60°,∵60ABC ∠=︒∴△ABC 为等边三角形∴BC =AB =3,∴AD =3.故选择A .【点睛】本题考查平行四边形性质,平行线性质,等边三角形判定与性质,本题难度不大,掌握平行四边形性质,平行线性质,等边三角形判定与性质是解题关键.4、A【解析】首先证明AO AG =,设AO AG x ==,则2AT x =-,在Rt AOT △中,2224(2)x x =+-,求出x ,可得结论.【详解】解:如图,设AC 交y 轴于T .(2,4)G ,2TG ∴=.4OT =,四边形AOBC 是平行四边形,//AC OB ∴,AGO GOB ∴∠=∠,AOG GOB ∠=∠,AOG AGO ∴∠=∠,AO AG ∴=,设AO AG x ==,则2AT x =-,在Rt AOT △中,2224(2)x x =+-,5x ∴=,523AT ∴=-=,故选:A.【点睛】本题考查作图-基本作图,平行四边形的性质,等腰三角形的判定和性质,勾股定理等知识,解题的=,学会利用参数解决问题.关键是证明AO AG5、C【解析】【分析】由于路线1的路程为BD+DA+AE,路线2的路程为BC+CF+FE,将问题变为比较它们的大小这一数学问题.【详解】解:这两条路线路程的长度一样.理由如下:延长FD交AB于点G.∵BC∥DF,AB∥DC,∴四边形BCDG是平行四边形,∴DG=CB.∵CE垂直平分AF,∴FE=AE,DE∥AG,∴FD =DG ,∴CB =FD .又∵BC ∥DF ,∴四边形BCFD 是平行四边形.∴CF =BD . ①∵CE 垂直平分AF ,∴AE =FE ,FD =DA . ②∴BC =DA . ③路线1的长度为:BD +DA +AE ,路线2的长度为:BC +CF +FE ,综合①②③,可知路线1路程长度与路线2路程长度相等.故选C .【点睛】本题是一个图形在交通方面的应用题,解此类图形应用题的关键是建立合理的数学模型,并利用图形知识来解决这一模型,从而解决实际问题.考查线段的垂直平分线的性质,平行四边形判定与性质,中位线等知识.6、B【解析】【分析】连接CF ,过点A 作AH ⊥DC 于点H ,首先通过SAS 证明△DAE ≌△DCF ,得AE =CF ,∠DAE =∠DCF =90°,则∠ACF =150°,由AC ≠CF ,则∠EAN ≠45°,故①错误;易证△AHM ≌△FCM (AAS ),得HM =CM =12a =12AE ,故②正确;因为AD //BC ,得S △AEC =S △DCE ,从而可证③正确;因为△EDF 是等边三角形,若AF ⊥DE ,则AF 垂直平分DE ,则AD =AE ,显然AD ≠AE ,故AF 与AD 不垂直,故④错误.【详解】解:连接CF,过点A作AH⊥DC于点H,∵四边形ABCD是平行四边形,∠B=60°,AB=BC,∴△ABC、△ADC都是等边三角形,AD//BC,∵AE⊥BC,∴BE=CE,∠BAE=∠CAE=30°,设BE=CE=a,则AB=BC=AC=2a,∴AE,∵∠ADC=∠EDF=60°,∴∠ADE=∠CDF,在△DAE和△DCF中,AD CDADE CDF ED FD=⎧⎪∠=∠⎨⎪=⎩,∴△DAE≌△DCF(SAS),∴AE=CF,∠DAE=∠DCF,∴∠DCF=∠DAE=90°,∴∠ACF=150°,∵AC≠CF,∴∠CAF≠∠CFA≠15°,∴∠EAN≠45°,故①错误;∵∠AHM=∠FCM=90°,MA=MF,∠AMH=∠FMC,∴△AHM≌△FCM(AAS),a,∴HM=CM=12AE,故②正确;=12∵AD//BC,∴S△AEC=S△DCE,∴S△AEC−S△GCE=S△DCE−S△GCE,即S△AGE=S△DGC,故③正确;∵△EDF是等边三角形,若AF⊥DE,则AF垂直平分DE,则AD=AE,显然AD≠AE,故AF与AD不垂直,故④错误;∴正确的是②③,一共2个,故选:B.【点睛】本题是四边形的综合题,主要考查了等边三角形的判定与性质、三角形全等的判定与性质,以及线段垂直平分线的性质等知识,通过作辅助线,构造出△DAE≌△DCF是解题的关键.7、D【解析】【分析】分两种情况:如果平行四边形的邻边不相等,那么它的一组对角的平分线互相平行;如果平行四边形的邻边相等,那么它的一组对角的平分线共线.【详解】解:如图,ABCD中,AE、CF分别平分∠BAD、∠BCD,∵四边形ABCD是平行四边形,AD∥BC,∴∠BAD=∠BCD,∠2=∠3,∵AE、CF分别平分∠BAD、∠BCD,∴112,422BAD BCD ∠=∠∠=∠,∴∠2=∠4,∴∠3=∠4,∴AE∥CF;当ABCD是菱形时,AE与CF共线.故选:D.【点睛】本题主要考查了平行四边形的性质,角平分线的定义,平行线的判定,将平行四边形分类讨论是解决本题的关键.8、B【解析】【分析】由平行四边形ABCD的对角线相交于点O,OF AC⊥,根据线段垂直平分线的性质,可得AF CF=,又由平行四边形ABCD的周长为36,可得AD+CD的长,继而可得CDF的周长等于AD+CD,从而可得答案.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵平行四边形ABCD的周长为36,∴AD+CD=18,∵OF AC⊥,∴AF CF=,∴CDF的周长=18.CD DF CF CD DF AF CD AD++=++=+=故选B.【点睛】本题考查了平行四边形的性质以及线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.9、B【解析】【分析】根据平行四边形的周长求出BC+CD=28,再根据平行四边形的两种面积计算方法求出BC=43CD,由此可以求出CD的值,进而具体求得平行四边形的面积.【详解】解:∵▱ABCD的周长=2(BC+CD)=56,∴BC+CD=28①,∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,∴S▱ABCD=3BC=4CD,整理得,BC =43CD ②, 联立①②解得,CD =12,∴BC =28-12=16.故选:D .【点睛】本题考查平行四边形的面积计算,利用方程的思想方法求得平行四边形的底是解题关键.10、C【解析】【分析】根据中心对称图形的定义可得A 说法正确;根据平行四边形的性质可得C 错误,B 正确;根据等底同高的三角形的面积相等可得D 正确.【详解】解:A .平行四边形ABCD 是中心对称图形,说法正确,故本选项不合题意;B .四边形ABCD 是平行四边形,AB CD ∴=,AO CO =,BO DO =,在AOB ∆和COD ∆中,AO CO BO DO AB CD =⎧⎪=⎨⎪=⎩, ()AOB COD SSS ,故说法正确;C .AOB BOC ∆≅∆,说法错误,故本选项符合题意;D .过B 作BH AC ⊥,12ABO S AO BH ∆=⋅,1,2BOC S CO BH OA OC ∆=⋅=, AOB ∴∆与BOC ∆的面积相等,说法正确;故选:C .【点睛】本题主要考查了平行四边形的性质,解题关键是掌握平行四边形的对角线互相平分,平行四边形的对边相等.二、填空题1、6+【解析】【分析】由平行四边形的性质得A ′C =BD ,A ′D =BC =3,再由翻折的性质得AD =A ′D =3,则CD =AC -AD =3,然后证△BCD 是等腰直角三角形,得BD BC =【详解】解:∵四边形A 'DBC 为平行四边形,∴A ′C =BD ,A ′D =BC =3,由翻折的性质得:AD =A ′D =3,∴CD =AC -AD =6-3=3,∴CD =BC ,∵∠ACB =90°,∴△BCD是等腰直角三角形,∴BD=)=6+∴四边形A'DBC的周长=2(BD+BC)=2×(故答案为:6+【点睛】本题考查了翻折变换的性质、平行四边形的性质、等腰直角三角形的判定与性质等知识;熟练掌握翻折变换和平行四边形的性质,证明△BCD为等腰直角三角形是解题的关键.2、平行【解析】略3、50︒130︒50︒【解析】【分析】利用平行四边形的性质:邻角互补,对角相等,即可求得答案.【详解】解:在平行四边形ABCD中,B、D∠是A∠的对角,∠的邻角,C∠是A∴50∠=∠=︒B D,130∠=︒,C故答案为:50︒,130︒,50︒.【点睛】本题主要是考查了平行四边形的性质:对角相等,邻角互补,熟练掌握平行四边形的性质,求解决本题的关键.4、相等相等互相平分【解析】略5、12y x-=##12y x =- 【解析】【分析】根据平行四边形的性质求得点D 的坐标,即可求解.【详解】解:平行四边形ABCD 中,A (﹣9,0)、B (﹣3,0),C (0,4),B 向左平移了6个单位得到点A ,则C 向左平移6个单位得到点D则(6,4)D -,线段CD 的中点坐标为()3,4- 则反比例函数解析式为:12y x -=故答案为:12y x -=【点睛】此题考查了反比例函数的解析式,涉及了平行四边形的性质,解题的关键是根据平行四边形的性质求得点D 的坐标.6、90︒【解析】【分析】根据平行四边形的性质和已知推出AB =BE =AF =DF ,AF =BE ,AF∥BE ,得到平行四边形AFEB ,推出AF =DF =EF ,然后推出∠AEB =∠AEF ,∠FED =∠CED ,由此即可求解.【详解】解:取AD 的中点F ,连接EF ,∵平行四边形ABCD,BC=2AB,E为BC的中点,∴AD∥BC,AD=BC=2AB=2BE=2AF=2DF,∴AB=BE=AF=DF,∴AF=BE,AF∥BE,∴∠EAF=∠AEB,四边形AFEB是平行四边形,∴EF=AB=AF=DF,∴∠AEF=∠EAF,∴∠AEB=∠AEF,同理可得∠FED=∠CED,∵∠AEB+∠AEF+∠FED+∠CED=180°,∴∠AEF+∠FED=∠AED=90°故答案为:90°.【点睛】本题考查了平行四边形的性质和判定,等腰三角形的性质与判定,能求出AF=DF=EF是解此题的关键.7、20【解析】【分析】根据平行四边形的性质和三角形三边关系进行求解即可.【详解】解:如图所示,平行四边形ABCD中,+=÷=,40220cmAB AD在△ABD中,由三边关系知:BD AB AD<+,BD<,∴20cmAC<,同理可得20cm即:每条对角线长不能超过20cm,故答案为:20.【点睛】本题考查平行四边形的性质以及三角形的三边关系,理解基本性质以及熟练综合运用基本结论是解题关键.8【解析】【分析】过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A′,连接AA′交BC于点O,连接A′M,三点D、M、A′共线时,AM AN+最小为A′D的长,利用勾股定理求A′D的长度即可解决问题.【详解】解:过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN 是平行四边形,∴MD =AN ,AD =MN ,作点A 关于BC 的对称点A ′,连接A A ′交BC 于点O ,连接A ′M ,则AM =A ′M ,∴AM +AN =A ′M +DM ,∴三点D 、M 、A ′共线时,A ′M +DM 最小为A ′D 的长,∵AD //BC ,AO ⊥BC ,∴∠DA A '=90°,∵2AB AC ==,90BAC ∠=︒,,∴BC=BO=CO =AO∴AA '=在Rt△AD A '中,由勾股定理得:A 'D =∴AM AN +本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键.9、 20cm 10cm【解析】【分析】根据平行四边形的性质可知,平行四边形的对边相等,平行四边形的对角线互相平分.已知周长为60cm,可以求出一组邻边的和为30cm,△AOB的周长比△BOC的周长多10cm,则AB比BC的值多10cm,则进一步可求出AB,BC的长.【详解】解:∵□ABCD的周长为60cm,AB+BC=30,∵△AOB的周长比△BOC的周长多10cm,∴AB-BC=10,∴3010 AB BCAB BC+=⎧⎨-=⎩解得2010 ABBC=⎧⎨=⎩故答案为:①20cm②10cm.【点睛】本题考察了平行四边形的性质,平行四边形的对边相等,平行四边形的对角线互相平分,做题的关键是由一组邻边的和为30cm,△AOB的周长比△BOC的周长多10cm,列出方程解方程即可.【解析】【分析】首先由平行四边形的性质可求出CD的长,由条件△OCD的周长为23,即可求出OD+OC的长,再根据平行四边的对角线互相平分即可求出平行四边形的两条对角线的和.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=5,∵△OCD的周长为23,∴OD+OC=23﹣5=18,∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36,故答案为:36.【点睛】本题主要考查了平行四边形的基本性质,解题关键是熟记平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三、解答题1、见解析【解析】【分析】首先根据平行四边形的性质推出AD=CB,AD∥BC,得到∠ADE=∠CBF,从而证明△ADE≌△CBF,得到∠AED=∠CFB,即可证明结论.【详解】证:∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥BC ,∴∠ADE =∠CBF ,在△ADE 和△CBF 中,B A ADEC F F B E BD C D =⎧⎪⎨⎪∠==⎩∠ ∴△ADE ≌△CBF (SAS ),∴∠AED =∠CFB ,∴AE ∥CF .【点睛】本题考查平行四边形的性质,以及全等三角形的判定与性质等,掌握平行四边形的基本性质,准确证明全等三角形并利用其性质是解题关键.2、∠B =132°,∠C =48°,AD =3cm .【解析】【分析】根据平行四边形的对边相等及平行四边形的邻角互补可分别得出答案.【详解】解:∵AD ∥BC ,∴∠A +∠B =180°,∠A =∠C ,∵∠A=48°,∴∠B=132°,∠C=48°,又∵平行四边形的对边相等,∴AD=BC=3cm.答:∠B=132°,∠C=48°,AD=3cm.【点睛】本题考查了平行四边形的性质,解答本题的关键是掌握平行四边形的对边相等及平行四边形的邻角互补的性质.=3、AB CD【解析】【分析】根据题意可证明四边形ABCD是平行四边形,再由平行四边形的性质即可得到AD=BC.【详解】解:AB DC=.理由如下:如图,∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∴AB=DC.【点睛】本题主要考查了平行四边形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.4、能,理由见解析【解析】【分析】根据平行四边形的性质即可得到结论.【详解】解:能确定其他内角的度数,理由:∵设一个平行四边形的一个内角是α,∴相邻的内角为:180°-α,∵平行四边形的对角相等,邻角互补,∴它的四个内角的度数分别是α,180°-α,α,180°-α.【点睛】本题考查了平行四边形的性质.注意掌握平行四边形的对角相等,邻角互补.5、(1)∠DAE+∠CAE=90°,理由见解析;(2)AF=EF+CE,理由见解析.【解析】【分析】(1)设∠CAE=α,先证∠EAB=∠EBA=45°,再证∠DAC=180°-∠DCA-∠ADC=90°-2α,最后由∠DAE+∠CAE=∠DAC+∠CAE+∠CAE得出结论;(2)延长DC交AE延长线于G,连接BG,先证△CEA≌△GEB,再证四边形ABGD是平行四边形,最后根据平行四边形的性质解答即可.【详解】解:(1)∠DAE+∠CAE=90°,理由:设∠CAE=α,∵AE⊥BE,∴∠AEB=90°,∵AE=BE,∴∠EAB=∠EBA=45°,∵CD∥AB,∴∠DCA=∠CAB=45°+α,∵AC=AD,∴∠DCA=∠ADC=45°+α,∴∠DAC=180°-∠DCA-∠ADC=90°-2α,∴∠DAE+∠CAE=∠DAC+∠CAE+∠CAE=90°-2α+α+α=90°;(2)AF=EF+CE,理由:延长DC交AE延长线于G,连接BG,∵CD∥AB,∴∠ECG=∠EBA=∠EAB=∠CGE=45°,∴CE=EG,AE=BE,又∵∠CEA=∠GEB=90°,∴△CEA≌△GEB,∴AC=GB=AD,∠ACE=∠BGE,∴∠CAE=∠GBE,∵∠GEB=90°,∴∠AGB+∠GBE=90°,∵由(1)知∠DAE+∠CA E=90°,∴∠DAE=∠AGB,∴AD∥BG,∵DG∥AB,∴四边形ABGD是平行四边形,∴AF=GF,∵GF=EF+GE=EF+CE,∴AF=EF+CE.【点睛】本题考查了全等三角形的判定与性质,直角三角形的性质及平行四边形的判定与性质,正确作出辅助线是解题的关键.。
一次函数与反比例函数的综合四边形1,如图12,四边形ABCD 是平行四边形,点(10)(31)(33)A B C ,,,,,.反比例函数(0)my x x=>的图象经过点D ,点P 是一次函数33(0)y kx k k =+-≠的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数33(0)y kx k k =+-≠的图象一定过点C ;(3)对于一次函数33(0)y kx k k =+-≠,当y x 随的增大而增大时,确定点P 横坐标的取值范围(不必写出过程). 2,看图说故事。
请你编一个故事,使故事情境中出现的一对变量x 、y 满足图示的函数关系式,要求:①指出x 和y 的含义;②利用图中数据说明这对变量变化过程的实际意义,其中需设计“速度”这个量3,如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,点E (4,n )在边AB 上,反比例函数(k ≠0)在第一象限内的图象经过点D 、E ,且tan ∠BOA=.(1)求边AB 的长;(2)求反比例函数的解析式和n 的值;(3)若反比例函数的图象与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x 、y 轴正半轴交于点H 、G ,求线段OG 的长.4.如图5,双曲线)0(>=k xky 与⊙O 在第一象限内交于P 、Q 两点,分别过P 、Q 两点向x 轴和y 轴作垂线,已知点P 坐标为(1,3),则图中阴影部分的面积为 .5,如图9,在平面直角坐标系中,直线l :y =-2x +b (b ≥0)的位置随b 的不同取值而变化. (1)已知⊙M 的圆心坐标为(4,2),半径为2.当b = 时,直线l :y =-2x +b (b ≥0)经过圆心M : 当b = 时,直线l :y = -2x +b (b ≥0)与OM 相切:(2)若把⊙M 换成矩形ABCD ,其三个顶点坐标分别为:A (2,0)、BC 6,O )、C (6,2). 设直线l 扫过矩形ABCD 的面积为S ,当b 由小到大变化时,请求出S 与b 的函数关系式,6,如图,在平面直角坐标系中有Rt △ABC ,∠A =90°,AB =AC ,A (-2,0)、B (0,1)、C (d ,2)。
2023年中考数学一轮专题练习——点、直线、圆的位置关系2(解答题部分)一、解答题(本大题共22小题)1. (辽宁省大连市2022年)AB是O的直径,C是O上一点,OD BC,垂足为D,过点A作O的切线,与DO的延长线相交于点E.(1)如图1,求证B E∠=∠;(2)如图2,连接AD,若O的半径为2,3OE=,求AD的长.2. (辽宁省抚顺本溪辽阳市2022年)如图,在Rt ABC中,90ACB∠=︒,ODEF的顶点O,D在斜边AB上,顶点E,F分别在边,BC AC上,以点O为圆心,OA长为半径的O恰好经过点D和点E.(1)求证:BC与O相切;(2)若3sin,65BAC CE∠==,求OF的长.3. (江苏省扬州市2022年)如图,AB为O的弦,OC OA⊥交AB于点P,交过点B的直线于点C,且CB CP=.(1)试判断直线BC与O的位置关系,并说明理由;(2)若sin 8A OA ==,求CB 的长. 4. (湖北省荆州市2022年)如图1,在矩形ABCD 中,AB =4,AD =3,点O 是边AB 上一个动点(不与点A 重合),连接OD ,将△OAD 沿OD 折叠,得到△OED ;再以O 为圆心,OA 的长为半径作半圆,交射线AB 于G ,连接AE 并延长交射线BC 于F ,连接EG ,设OA =x .(1)求证:DE 是半圆O 的切线;(2)当点E 落在BD 上时,求x 的值;(3)当点E 落在BD 下方时,设△AGE 与△AFB 面积的比值为y ,确定y 与x 之间的函数关系式;(4)直接写出....:当半圆O 与△BCD 的边有两个交点时,x 的取值范围. 5. (湖北省恩施州2022年)如图,P 为⊙O 外一点,PA 、PB 为⊙O 的切线,切点分别为A 、B ,直线PO 交⊙O 于点D 、E ,交AB 于点C .(1)求证:∠ADE =∠PAE .(2)若∠ADE =30°,求证:AE =PE .(3)若PE =4,CD =6,求CE 的长.6. (湖南省湘潭市2022年)已知()3,0A 、()0,4B 是平面直角坐标系中两点,连接AB .(1)如图①,点P在线段AB上,以点P为圆心的圆与两条坐标轴都相切,求过点P的反比例函数表达式;(2)如图②,点N是线段OB上一点,连接AN,将AON沿AN翻折,使得点O与线段AB上的点M重合,求经过A、N两点的一次函数表达式.7. (湖南省娄底市2022年)如图,已知BD是Rt ABC的角平分线,点O是斜边AB上的动点,以点O为圆心,OB长为半径的O经过点D,与OA相交于点E.(1)判定AC与O的位置关系,为什么?(2)若3BC=,32 CD=,①求sin DBC∠、sin ABC∠的值;②试用sin DBC∠和cos DBC∠表示sin ABC∠,猜测sin2α与sinα,cosα的关系,并用30α=︒给予验证.8. (湖南省郴州市2022年)如图,在ABC中,AB AC=.以AB为直径的O与线段BC交于点D,过点D作DE AC⊥,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是O的切线;(2)若O的半径为6,30P∠=︒,求CE的长.9. (湖南省衡阳市2022年)如图,AB为⊙O的直径,过圆上一点D作⊙O的切线CD 交BA的延长线与点C,过点O作//OE AD交CD于点E,连接BE.(1)直线BE与⊙O相切吗?并说明理由;(2)若2CA=,4CD=,求DE的长.10. (四川省雅安市2022年)如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线,以O为圆心,OC为半径作⊙O与直线AO交于点E和点D.(1)求证:AB是⊙O的切线;(2)连接CE,求证:△ACE∽△ADC;(3)若AEAC=12,⊙O的半径为6,求tan∠OAC.11. (天津市2022年)已知AB为O的直径,6AB=,C为O上一点,连接,CA CB.(1)如图①,若C为AB的中点,求CAB∠的大小和AC的长;(2)如图②,若2,AC OD=为O的半径,且OD CB⊥,垂足为E,过点D作O的切线,与AC的延长线相交于点F,求FD的长.12. (湖北省十堰市2022年)如图,ABC中,AB AC=,D为AC上一点,以CD为直⊥,垂足为G.径的O与AB相切于点E,交BC于点F,FG AB(1)求证:FG是O的切线;(2)若1BG=,3BF=,求CF的长.13. (四川省遂宁市2022年)如图,O是ABC的外接圆,点O在BC上,BAC∠的角平分线交O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是O的切线;(2)求证:ABD△∽DCP;(3)若6AC=,求点O到AD的距离.AB=,814. (四川省内江市2022年)如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;AC的长;(2)若⊙O的半径为6,AF=(3)在(2)的条件下,求阴影部分的面积.15. (湖北省黄冈市、孝感市、咸宁市2022年)如图,O是ABC的外接圆,AD是O的直径,BC与过点A的切线EF平行,BC,AD相交于点G.(1)求证:AB AC=;(2)若16DG BC==,求AB的长.16. (四川省南充市2022年)如图,AB为O的直径,点C是O上一点,点D是O外一点,BCD BAC∠=∠,连接OD交BC于点E.(1)求证:CD是O的切线.(2)若4,sin5CE OA BAC=∠=,求tan CEO∠的值.17. (四川省眉山市2022年)如图,AB为O的直径,点C是O上一点,CD与O相切于点C,过点B作BD DC⊥,连接AC,BC.(1)求证:BC是ABD∠的角平分线;(2)若3BD=,4AB=,求BC的长;(3)在(2)的条件下,求阴影部分的面积.18. (四川省泸州市2022年)如图,点C在以AB为直径的O上,CD平分ACB∠交O 于点D,交AB于点E,过点D作O的切线交CO的延长线于点F.(1)求证:FD AB∥;(2)若AC=BC FD的长.19. (2022年四川省乐山市)如图,线段AC为⊙O的直径,点D、E在⊙O上,CD= DE,过点D作DF⊥AC,垂足为点F.连结CE交DF于点G.(1)求证:CG=DG;(2)已知⊙O的半径为6,3sin5ACE∠=,延长AC至点B,使4BC=.求证:BD是⊙O的切线.20. (湖北省鄂州市2022年)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tan A=12,求△OCD的面积.21. (四川省凉山州2022年)如图,已知半径为5的⊙M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分∠OAM,AO+CO=6(1)判断⊙M 与x 轴的位置关系,并说明理由;(2)求AB 的长;(3)连接BM 并延长交圆M 于点D ,连接CD ,求直线CD 的解析式.22. (湖南省株洲市2022年)如图所示,ABC 的顶点A 、B 在⊙O 上,顶点C 在⊙O 外,边AC 与⊙O 相交于点D ,45BAC ∠=︒,连接OB 、OD ,已知∥OD BC .(1)求证:直线BC 是⊙O 的切线;(2)若线段OD 与线段AB 相交于点E ,连接BD .①求证:ABD DBE ∽;②若6AB BE ⋅=,求⊙O 的半径的长度.参考答案1. 【答案】(1)见解析(2)【分析】(1)证明90ODB OAE ∠=∠=︒,DOB AOE ∠=∠,即可得出B E ∠=∠; (2)证明ODB∆OAE ∆,求出OD ,由勾股定理求出DB ,由垂径定理求出BC ,进而利用勾股定理求出AC ,AD .(1)解:∵ OD BC ,∴90ODB ∠=︒,∵ AE 是O 的切线,∴90OAE ∠=︒,在ODB ∆和OAE ∆中,90ODB OAE ∠=∠=︒,DOB AOE ∠=∠,∴B E ∠=∠;(2)解:如图,连接AC .∵ O 的半径为2,∴2OA OB ==,4AB =,∵ 在ODB ∆和OAE ∆中,90ODB OAE ∠=∠=︒,DOB AOE ∠=∠,∴ODB∆OAE ∆, ∴OD OB OA OE=,即223OD =, ∴43OD =, 在Rt ODB ∆中,由勾股定理得:222OD DB OB +=,∴DB ==∵ OD BC ,OD 经过O 的圆心, ∴253CD DB ,∴2BC DB ==. ∵AB 是O 的直径,C 是O 上一点,∴90ACB ∠=︒,在Rt ACB ∆中,由勾股定理得:222AC BC AB +=,∴83AC ==. 在Rt ACD ∆中,由勾股定理得:222AC CD AD +=,∴AD == 2. 【答案】(1)见解析(2)【分析】(1)连接OE ,先证明四边形AOEF 是平行四边形,得到OE AC ∥,即可证明∠OEB =∠ACB =90°,由此即可证明结论;(2)过点F 作FH OA 于点H ,先解直角△CEF 求出EF 的长,再证明四边形AOEF 是菱形,得到OA ,AF 的长,再解直角△AHF ,求出AH ,FH ,进而求出OH ,即可利用勾股定理求出OF .(1)证明:连接OE ,∵四边形ODEF 是平行四边形,∴EF OD ∥;EF OD =,∵OA OD =,∴EF OD ∥;EF OA =,∴四边形AOEF 是平行四边形,∴OE AC ∥,∴OEB ACB ∠=∠,∵90ACB ∠=︒∴90OEB ∠=︒,∴OE BC ⊥,∵OE 是O 的半径,∴BC 与O 相切;(2)解:过点F 作FH OA 于点H , ∵四边形AOEF 是平行四边形∴EF OA ∥,∴CFE CAB ∠=∠,∴3sin sin 5CFE CAB ∠=∠=, 在Rt CEF 中,90ACB ∠=︒, ∵6,sin CE CE CFE EF =∠=, ∴6103sin 5CE EF CFE ===∠, ∵四边形AOEF 是平行四边形,且OA OE =,∴AOEF 是菱形,∴10AF AO EF ===,在Rt AFH 中,90AHF ∠=︒, ∵10,sin FH AF CAB AF=∠=, ∴3sin 1065FH AF CAB =⋅∠=⨯=, ∵222AH AF FH =-,∴8AH ,∴1082OH AO AH =-=-=,在Rt OFH 中,90FHO ∠=︒,∵222OF OH FH =+,∴OF3. 【答案】(1)相切,证明见详解(2)6【分析】(1)连接OB ,根据等腰三角形的性质得出A OBA ∠=∠,CPB CBP ∠=∠,从而求出90AOC OBC ∠=∠=︒,再根据切线的判定得出结论;(2)分别作OM AB ⊥交AB 于点M ,CN AB ⊥交AB 于N ,根据sin 8A OA ==求出OP ,AP 的长,利用垂径定理求出AB 的长,进而求出BP 的长,然后在等腰三角形CPB 中求解CB 即可.(1)证明:连接OB ,如图所示:CP CB OA OB ==,,∴A OBA ∠=∠,CPB CBP ∠=∠,APO CPB ∠=∠,APO CBP ∴∠=∠,OC OA ⊥,即90AOP ︒=∠,90A APO OBA CBP OBC ∴∠+∠=︒=∠+∠=∠,OB BC ∴⊥, OB 为半径,经过点O ,∴直线BC 与O 的位置关系是相切.(2)分别作OM AB ⊥交AB 于点M ,CN AB ⊥交AB 于N ,如图所示:AM BM ∴=,CP CB AO CO =⊥,,A APO PCN CPN ∴∠+∠=∠+∠,PN BN =,PCN BCN ∠=∠A PCN BCN ∴∠=∠=∠sin A =,8OA =,sin OM OP A OA AP ∴===4OM AM OP AP ∴====,2AB AM ∴==111()222PN BN PB AB AP ∴===-=⨯=sin sin BN A BCN CB ∴=∠==,6CB ∴===. 4. 【答案】(1)见详解(2)32 (3)2293(0)4362x y x x =<<+ (4)332x <≤或2548x <≤ 【分析】(1)根据切线的判定定理求解即可;(2)如图,在Rt OEB ∆,根据勾股定理列方程求解即可;(3)先证DAO AEG ∆∆∽,求出AE ,然后证明AEG ABF ∆∆∽,根据相似三角形面积比等于相似比的平方即可求解;(4)结合图形,分情况讨论即可求出x 的取值范围.(1)证明:在矩形ABCD 中,90DAB ∠=︒,△OED 是△OAD 沿OD 折叠得到的,90OED DAB ∴∠=∠=︒,即OE DE ⊥,∴ DE 是半圆O 的切线;(2)解:△OED 是△OAD 沿OD 折叠得到的,3,DE AD OA OE x ∴====,4OB AB OA x ∴=-=-,在Rt DAB ∆中,5DB ,532EB DB DE ∴=-=-=,在Rt OEB ∆中,222OE EB OB +=,()22224x x ∴+=-,解得32x =, 答:x 的值为32.(3)解:在Rt DAO ∆中,DO△OED 是△OAD 沿OD 折叠得到的,AE OD ∴⊥, AG 是O 的直径,90AEG ∴∠=︒,即AE EG ⊥,OD EG ∴∥,90DAO AEG ∠=∠=︒AOD EGA ∴∠=∠,DAO AEG ∴∆∆∽,DO DA AG AE∴= ,3,AE AE ==, 90,AEG ABC EAG BAF ∠=∠=︒∠=∠,AEG ABF ∴∆∆∽,2AGEAFB S AE S AB ∆∆⎛⎫∴= ⎪⎝⎭,即()222949x y x ==+ ⎪⎝⎭, 229436x y x ∴=+ (302x <<)(4)解:由(2)知,当E 在DB 上时, 32x =, 如图,当点E 在DC 上时, 3x = ,∴当332x <≤时,半圆O 与△BCD 的边有两个交点; 当半圆O 经过点C 时,半圆O 与△BCD 的边有两个交点,连接OC ,在Rt OBC ∆中,4,,3OB x OC x BC =-==,222OB BC OC +=,()22243x x ∴-+= ,解得258x =, ∴当2548x ≤≤时,半圆O 与△BCD 的边有两个交点;综上所述,当半圆O 与△BCD 的边有两个交点时,x 的取值范围为:332x <≤或2548x <≤. 5. 【答案】(1)见解析(2)见解析(3)CE 的长为2.【分析】(1)连接OA,根据切线的性质得到∠OAE+∠PAE=90°,根据圆周角定理得到∠OAE+∠DAO=90°,据此即可证明∠ADE=∠PAE;(2)由(1)得∠ADE=∠PAE =30°,∠AED =60°,利用三角形外角的性质得到∠APE=∠AED-∠PAE =30°,再根据等角对等边即可证明AE=PE;(3)证明Rt△EAC∽Rt△ADC,Rt△OAC∽Rt△APC,推出DC×CE=OC×PC,设CE=x,据此列方程求解即可.(1)证明:连接OA,∵PA为⊙O的切线,∴OA⊥PA,即∠OAP=90°,∴∠OAE+∠PAE=90°,∵DE为⊙O的直径,∴∠DAE=90°,即∠OAE+∠DAO=90°,∴∠DAO=∠PAE,∵OA=OD,∴∠DAO=∠ADE,∴∠ADE=∠PAE;(2)证明:∵∠ADE=30°,由(1)得∠ADE=∠PAE =30°,∠AED=90°-∠ADE=60°,∴∠APE=∠AED-∠PAE =30°,∴∠APE=∠PAE =30°,∴AE=PE;(3)解:∵PA、PB为⊙O的切线,切点分别为A、B,直线PO交AB于点C.∴AB⊥PD,∵∠DAE=90°,∠OAP=90°,∴∠DAC+∠CAE=90°,∠OAC+∠PAC=90°,∵∠DAC+∠D=90°,∠OAC+∠AOC=90°,∴∠CAE=∠D,∠PAC=∠AOC,∴Rt△EAC∽Rt△ADC,Rt△OAC∽Rt△APC,∴AC2=DC×CE,AC2=OC×PC,即DC ×CE =OC ×PC ,设CE =x ,则DE =6+x ,OE =3+2x ,OC =3+2x -x =3-2x ,PC =4+x , ∴6x =(3-2x )( 4+x ), 整理得:x 2+10x -24=0,解得:x =2(负值已舍).∴CE 的长为2.6. 【答案】(1)14449y x= (2)1322y x =-+ 【分析】(1)根据,A B 的坐标,可得直线AB 的解析式,根据题意点P 为y x =与AB 的交点,求得交点P 的坐标,即可求解;(2)设()0,N n ,04n ≤≤,根据题意求得5AB =,根据轴对称的性质结合图形求得,,BM MN BN ,在Rt BMN △中,222BN BM NM =+即可求得n 的值,进而待定系数法求解析式即可求解.(1)()3,0A 、()0,4B设直线AB 的解析式为y kx b =+,则304k b b +=⎧⎨=⎩, 解得434k b ⎧=-⎪⎨⎪=⎩, 则直线AB 的解析式为443y x =-+, 以点P 为圆心的圆与两条坐标轴都相切,则P P x y =,∴点P 为y x =与AB 的交点,443y x y x⎧=-+⎪∴⎨⎪=⎩, 解得127127x y ⎧=⎪⎪⎨⎪=⎪⎩, 则1212,77P ⎛⎫ ⎪⎝⎭, 设点P 的反比例函数表达式为2k y x =,则214449k =,∴14449y x=; (2) 设()0,N n ,04n ≤≤将AON 沿AN 翻折,使得点O 与线段AB 上的点M 重合,ON OM ∴=,OA AM =()3,0A 、()0,4B3,4OA OB ∴==Rt AOB △中,5AB2BM AB AM AB AO ∴=-=-=,MN ON n ==,4BN n =-在Rt BMN △中,222BN BM NM =+即()22242n n -=+ 解得32n = 则30,2N ⎛⎫ ⎪⎝⎭设直线AN 的解析式为y sx t =+ 则3032s t t +=⎧⎪⎨=⎪⎩ 解得1232s t ⎧=-⎪⎪⎨⎪=⎪⎩ ∴直线AN 的解析式为1322y x =-+. 7. 【答案】(1)相切,原因见解析(2)①sin DBC ∠=4sin 5ABC ∠=;②sin 22sin cos ααα=,验证见解析 【分析】(1)连接OD ,根据角之间的关系可推断出//OD BC ,即可求得ODA ∠的角度,故可求出圆与边的位置关系为相切;(2)①构造直角三角形,根据角之间的关系以及边长可求出sin DBC ∠,sin ABC ∠的值;②先表示出来sin DBC ∠、cos DBC ∠和sin ABC ∠的关系,进而猜测sin 2α与sin α,cos α的关系,然后将30α=︒代入进去加以验证. (1)解:连接OD ,如图所示∵BD 为ABC ∠的角平分线∴ABD CBD ∠=∠又∵O 过点B 、D ,设O 半径为r∴OB =OD =r∴ODB OBD CBD ∠=∠=∠∴//OD BC (内错角相等,两直线平行)∵OD AC ⊥∴AC 与O 的位置关系为相切.(2)①∵BC =3,32CD =∴BD ==∴sin CD DBC BD ∠== 过点D 作DF AB ⊥交于一点F ,如图所示∴CD =DF (角平分线的性质定理)∴BF =BC =3∴OF =BF -OB =3-r ,32OF CD == ∴222OD OF DF =+即2223(3)()2r r =-+ ∴158r = ∵//OD BC∴ABC FOD ∠=∠∴4sin sin 5DF ABC FOD OD ∠=∠==∴4sin 5DBC ABC ∠=∠=;②cos CB DBC BD ∠==∴2sin cos 5DBC DBC ∠⨯∠== ∴sin 2sin cos ABC DBC DBC ∠=∠⨯∠猜测sin 22sin cos ααα=当30α=︒时260α=︒∴sin 2sin 60α=︒=1sin sin 302α=︒=cos cos30α=︒=∴1sin 22sin cos 2sin 22αααα==⨯== ∴sin 22sin cos ααα=.8. 【答案】(1)见解析(2)3【分析】(1)连接AD 、OD ,根据等腰三角形的性质可证得2C ∠=∠,根据平行线的判定与性质可证得PE OD ⊥,然后根据切线的判定即可证得结论;(2)根据含30°角的直角三角形的性质求得CD 、CE 即可.(1)证明:连接AD 、OD ,记1ABD ∠=∠,2ODB ∠=∠,∵DE AC ⊥,∴90CED ∠=︒.∵AB AC =,∴1C ∠=∠.∵OB OD =,∴12∠=∠,∴2C ∠=∠,∴OD AC ∥,∴90ODE CED ∠=∠=︒,∴PE OD ⊥,又∵OD 是⊙O 的半径,∴直线PE 是⊙O 的切线.(2)连接AD ,∵AB 是直径,∴90ADB ∠=︒,∴AD BC ⊥.又∵AB AC =, ∴12CD BC =, ∵30P ∠=︒,90PEA ∠=︒,∴60PAE ∠=︒,又∵AB AC =,∴ABC 为等边三角形,∴60C ∠=°,12==BC AB , ∴126CD BC ==, 在Rt CDE △中,∵cos CE C CD =, ∴1cos60632CE CD =︒=⨯=.9. 【答案】(1)相切,见解析(2)6DE =【分析】(1)先证得:90ODC ODE ∠=∠=︒,再证ODE OBE ≌,得到90OBE ODE ∠=∠=︒,即可求出答案;(2)设半径为r ;则:2224(2)r r +=+,即可求得半径,再在直角三角形CBE 中,利用勾股定理222BC BE CE +=,求解即可.(1)证明:连接OD .∵CD 为O 切线,∴90ODC ODE ∠=∠=︒,又∵OE AD ∥,∴DAO EOB ∠=∠,ADO EOD ∠=∠,且ADO DAO ∠=∠,∴EOD EOB ∠=∠,在ODE 与OBE △中;∵OD OB EOD EOB OE OE =⎧⎪∠=∠⎨⎪=⎩,∴ODE OBE ≌,∴90OBE ODE ∠=∠=︒,∴直线BE 与O 相切.(2)设半径为r ;则:2224(2)r r +=+,得3r =;在直角三角形CBE 中,222BC BE CE +=,222(233)(4)DE DE +++=+,解得6DE = 10. 【答案】(1)证明见解析(2)证明见解析(3)tan ∠OAC 34=【分析】(1)如图,过O 作OH AB ⊥于,H 证明,OC OH 即可得到结论;(2)证明,ACE OCD ODC 再结合,CAE DAC 从而可得结论;(3)由相似三角形的性质可得1,2AE AC AC AD == 设,AE x = 则2,4,AC x AD x 而12,ADAE DE x 从而建立方程求解x ,从而可得答案.(1) 证明:如图,过O 作OH AB ⊥于,H∠ACB =90°,AO 是△ABC 的角平分线,,OC OHO 为圆心,OC 为半径,AB ∴是⊙O 的切线.(2)如图,连结CE ,DE 为O 的直径,90,DCE DCO OCE 90,ACB ACE BCE ,DCO ACE ,OD OC =,ODC OCD ∴∠=∠,ACE ADC ,CAE DAC .ACE ADC ∽(3) ,ACE ADC ∽1,2AE AC =1,2AE AC AC AD 设,AE x = 则2,4,AC x AD x 而12,AD AE DE x412,x x 解得4,x =4,8,16,AE AC AD∴ tan ∠OAC 63=.84OCAC11. 【答案】(1)45CAB ∠=︒,AC =(2)FD =【分析】(1)由圆周角定理得90ACB ∠=︒,由C 为AB 的中点,得AC BC =,从而AC BC =,即可求得CAB ∠的度数,通过勾股定理即可求得AC 的长度; (2)证明四边形ECFD 为矩形,FD =CE =12CB ,由勾股定理求得BC 的长,即可得出答案.(1)∵AB 为O 的直径,∴90ACB ∠=︒,由C 为AB 的中点,得AC BC =,∴AC BC =,得ABC CAB ∠=∠,在Rt ABC 中,90ABC CAB ∠+∠=︒,∴45CAB ∠=︒;根据勾股定理,有222AC BC AB +=,又6AB =,得2236AC =,∴AC =(2)∵FD 是O 的切线,∴OD FD ⊥,即90ODF ∠=︒, ∵OD CB ⊥,垂足为E ,∴190,2CED CE CB ∠=︒=,同(1)可得90ACB ∠=︒,有90FCE ∠=︒,∴90FCE CED ODF ∠=∠=∠=︒,∴四边形ECFD 为矩形,∴FD CE =,于是12FD CB =,在Rt ABC 中,由6,2AB AC ==,得CB =,∴FD =12. 【答案】(1)见解析(2) 【分析】(1)连接,DF OF ,设ODF OFD ∠=∠β=,OFC α∠=,根据已知条件以及直径所对的圆周角相等,证明90αβ+=︒,进而求得,DFG DFO αβ∠=∠=,即可证明FG 是O 的切线;(2)根据已知条件结合(1)的结论可得四边形GEOF 是正方形,进而求得DC 的长,根据BFG FDC β∠=∠=,sin GB FC BF DCβ==,即可求解. (1)如图,连接,DF OF , OF OD =,则ODF OFD ∠=∠,设ODF OFD ∠=∠β=,OFC α∠=,OF OC =,OFC OCF α∴∠=∠=, DC 为O 的直径,90DFC ∴∠=︒,90DFO OFC DFC ∴∠+=∠=︒,即90αβ+=︒,AB AC =,B ACB α∴∠=∠=,FG AB ⊥,9090GFB B αβ∴∠=︒-∠=︒-=,90DFB DFC ∠=∠=︒,9090DFG GFB βα∴∠=︒-∠=︒-=,90GFO GFD DFO αβ∴∠=+=+=︒, OF 为O 的半径,FG ∴是O 的切线; (2)如图,连接OE ,AB 是O 的切线,则OE AB ⊥,又,OF FG FG AB ⊥⊥,∴四边形GEOF 是矩形,OE OF =,∴四边形GEOF 是正方形,12GF OF DC ∴==, 在Rt GFB △中,1BG =,3BF =,FG ∴DC ∴=由(1)可得BFG FDC β∠=∠=,,FG AB DF FC ⊥⊥,sin GB FC BF DC β∴==, ∴13解得FC =. 13. 【答案】(1)见解析(2)见解析(3)点O 到AD 的距离为【分析】(1)连接OD ,证明OD BC ,则OD DP ⊥,即可得证;(2)由BC DP ∥,ACB ADB ∠=∠,可得P ADB ∠=∠,根据四边形ABDC 为圆内接四边形,又180∠+∠=︒DCP ACD ,可得ABD DCP ∠=∠,即可证明ABD △∽DCP ;(3)过点O 作OE AD ⊥于点E ,由ABD △∽DCP ,根据相似三角形的性质可求得CP ,证明BAD ∽DAP ,继而求得,AD ED ,在Rt OED 中,利用勾股定理即可求解.(1)证明:连接OD ,∵AD 平分BAC ∠,∴BAD DAC =∠,∴BD DC =.又∵BC 为直径,∴O 为BC 中点,∴OD BC .∵BC DP ∥,∴OD DP ⊥.又∵OD 为半径,∴PD 是O 的切线; (2)证明:∵BC DP ∥,∴ACB P ∠=∠.∵ACB ADB ∠=∠,∴P ADB ∠=∠.∵四边形ABDC 为圆内接四边形,∴180ABD ACD ∠+∠=︒.又∵180∠+∠=︒DCP ACD ,∴ABD DCP ∠=∠,∴ABD △∽DCP .(3)过点O 作OE AD ⊥于点E ,∵BC 为直径,∴90BAC ∠=︒.∵6AB =,8AC =,∴10BC =.又∵BD DC =,∴22222BD DC BD BC +==,∴BD DC ==由(2)知ABD △∽DCP , ∴AB BD DC CP=, ∴502563BD DC CP AB ⋅===, ∴2549833AP AC CP =+=+=. 又∵ADB ACB P ∠=∠=∠,BAD DAP ∠=∠,∴BAD ∽DAP , ∴AB AD AD AP=, ∴298AD AB AP =⋅=,∴AD =∵OE AD ⊥,∴12ED AD ==.在Rt OED 中,OE =,∴点O 到AD 的距离为.14. 【答案】(1)直线AF 与⊙O 相切.理由见解析(2)66π.【分析】(1)连接OC ,证明△AOF ≌△COF (SAS ),由全等三角形的判定与性质得出∠OAF =∠OCF =90°,由切线的判定可得出结论;(2)由直角三角形的性质求出∠AOF =30°,可得出AE =12OA =3,则可求出答案;(3)证明△AOC 是等边三角形,求出∠AOC =60°,OC =6,由三角形面积公式和扇形的面积公式可得出答案.(1)直线AF 与⊙O 相切.理由如下:连接OC ,∵PC 为圆O 切线,∴CP ⊥OC ,∴∠OCP =90°,∵OF ∥BC ,∴∠AOF =∠B ,∠COF =∠OCB ,∵OC =OB ,∴∠OCB =∠B ,∴∠AOF =∠COF ,∵在△AOF 和△COF 中,OA OC AOF COF OF OF =⎧⎪∠=∠⎨⎪=⎩,∴△AOF ≌△COF (SAS ),∴∠OAF =∠OCF =90°,∴AF ⊥OA ,又∵OA 为圆O 的半径,∴AF 为圆O 的切线;(2)∵△AOF ≌△COF ,∴∠AOF =∠COF ,∵OA =OC ,∴E 为AC 中点, 即1,2AE CE AC OE AC ==⊥,∵∠90,6,OAF OA AF ︒===∴tan AF AOF OA ∠===, ∴∠AOF =30°, ∴132AE OA ==,∴26AC AE ==;(3)∵AC =OA =6,OC =OA ,∴△AOC 是等边三角形,∴∠AOC =60°,OC =6,∵∠OCP =90°,∴CP ==∴S △OCP=2116066622360AOC OC CP S ππ⋅⨯⋅=⨯⨯==扇形, ∴阴影部分的面积=S △OCP ﹣S 扇形AOC=6π.15. 【答案】(1)证明见解析(2)【分析】(1)由切线的性质和BC EF ∥可得AD BC ⊥,由垂径定理可得BG CG =,从而得到AD 垂直平分BC ,最后利用垂直平分线的性质即可得证;(2)先利用勾股定理得到BD =AGB BGD △∽△,从而得到AB BG BD DG =,代入数据计算即可. (1)证明:∵直线EF 切O 于点A ,AD 是O 的直径, ∴AD EF ⊥,∴90DAE DAF ∠=∠=︒,∵BC EF ∥,∴90DGB DAE ∠=∠=︒,∴AD BC ⊥,∴BG CG =,∴AD 垂直平分BC ,∴AB AC =;(2)如图,连接BD ,由(1)知:AD BC ⊥,BG CG =,∴90DGB AGB ∠=∠=︒,∵16DG BC ==, ∴182BG BC ==,在Rt DGB 中,BD == ∵AD 是O 的直径,∴90ABD ∠=︒, ∴90ABG DBG ∠+∠=︒,又∵90BDG DBG ,∴ABG BDG ∠=∠,又∵90DGB AGB ∠=∠=︒∴AGB BGD △∽△, ∴AB BG BD DG =, 即816,∴AB =即AB 的长为16. 【答案】(1)见解析;(2)3【分析】(1)连接OC ,根据圆周角定理得到∠ACB =90°,根据OA =OC 推出∠BCD =∠ACO ,即可得到∠BCD +∠OCB =90°,由此得到结论;(2)过点O 作OF ⊥BC 于F ,设BC =4x ,则AB =5x ,OA =CE =2.5x ,BE =1.5x ,勾股定理求出AC ,根据OF ∥AC ,得到1BF OB CF OA==,证得OF 为△ABC 的中位线,求出OF 及EF ,即可求出tan CEO ∠的值.(1)证明:连接OC ,∵AB 为O 的直径,∴∠ACB =90°,∴∠ACO +∠OCB =90°,∵OA =OC ,∴∠A =∠ACO ,∵BCD BAC ∠=∠,∴∠BCD =∠ACO ,∴∠BCD +∠OCB =90°,∴OC ⊥CD ,∴CD 是O 的切线. (2)解:过点O 作OF ⊥BC 于F , ∵4,sin 5CE OA BAC =∠=, ∴设BC =4x ,则AB =5x ,OA =CE =2.5x ,∴BE =BC -CE =1.5x ,∵∠C =90°,∴AC3x =,∵OA =OB ,OF ∥AC , ∴1BF OB CF OA==, ∴CF =BF =2x ,EF =CE -CF =0.5x ,∴OF 为△ABC 的中位线,∴OF =1 1.52AC x =, ∴tan CEO ∠=1.530.5OF x EF x ==.17. 【答案】(1)见解析(2)BC =(3)23π【分析】(1)连接OC ,先证明OC BD ∥,然后由平行线的性质和等腰三角形的性质,即可证明结论成立;(2)证明△ABC ∽△CBD 即可,根据题目中的条件,可以得到∠ABC =∠CBD ,∠ACB =∠D ,从而可以得到△ABC ∽△CBD ,即可求出BC 的长度;.(3)先证明△AOC 是等边三角形,然后求出扇形AOC 和△AOC 的面积,即可得到答案(1)证明:连接OC ,如图∵CD 与O 相切于点C ,∴OC CD ⊥∵BD CD ⊥,∴OC BD ∥∴OCB DBC ∠=∠.又∵OC OB =,∴OCB OBC ∠=∠,∴DBC OBC ∠=∠,∴BC 平分ABD ∠.(2)解:根据题意,∵线段AB 是直径,∴90ACB D ∠=︒=∠,∵BC 平分ABD ∠,∴∠ABC =∠CBD ,∴△ABC ∽△CBD , ∴AB BC CB BD=, ∵3BD =,4AB =,∴23412BC =⨯=,∴BC =(3)解:作CE ⊥AO 于E ,如图:在直角△ABC 中,2AC ==,∴2AO AC CO ===,∴△AOC 是等边三角形,∴60AOC ∠=︒,1OE =, ∴CE∴阴影部分的面积为:260212236023S ππ⨯⨯=-⨯= 18. 【答案】(1)见解析(2)15 8【分析】(1)连接OD,由CD平分∠ACB,可知AD BD=,得∠AOD=∠BOD=90°,由DF是切线可知∠ODF=90°=∠AOD,可证结论;(2)过C作CM⊥AB于M,已求出CM、BM、OM的值,再证明△DOF∽△MCO,得CM OMOD FD,代入可求.(1)证明:连接OD,如图,∵CD平分∠ACB,∴AD BD=,∴∠AOD=∠BOD=90°,∵DF是⊙O的切线,∴∠ODF=90°∴∠ODF=∠BOD,∴DF∥AB.(2)解:过C作CM⊥AB于M,如图,∵AB是直径,∴∠ACB=90°,∴AB2222(25)(5)5BC.∴1122AB CM AC BC=,即115255 22CM,∴CM=2,∴2222(5)21BM BC CM,∴OM=OB-BM=135122,∵DF∥AB,∴∠OFD=∠COM,又∵∠ODF=∠CMO=90°,∴△DOF∽△MCO,∴CM OM OD FD,即32252FD,∴FD=158.19. 【答案】(1)见解析(2)见解析【分析】(1)连接AD,得到∠ADF+∠FDC=90°,由DF⊥AC,得到∠ADF+∠DAF=90°,再由CD=DE,可推出∠DCE=∠FDC,即可证明CG=DG;(2)要证明BD是⊙O的切线,只要证明OD⊥BD,只要证明BD∥CE,通过计算求得sin∠B=35,即可证明结论.(1)证明:连接AD,∵AC为⊙O的直径,∴∠ADC=90°,则∠ADF+∠FDC=90°,∵DF⊥AC,∴∠AFD=90°,则∠ADF+∠DAF=90°,∴∠FDC=∠DAF,∵CD=DE,∴∠DCE=∠DAC,∴∠DCE=∠FDC,∴CG=DG;(2)证明:连接OD,设OD与CE相交于点H,∵CD=DE,∴OD⊥EC,∵DF⊥AC,∴∠ODF=∠OCH=∠ACE,∵3 sin5ACE∠=,∴sin∠ODF=sin∠OCH=35,即OF OHOD OC==35,∴OF=185,由勾股定理得DF=245,FC=OC-OF=125,∴FB= FC+BC=325,由勾股定理得DB=405=8,∴sin∠B=2458DFBD==35,∴∠B=∠ACE,∴BD∥CE,∵OD⊥EC,∴OD⊥BD,∵OD是半径,∴BD是⊙O的切线.20. 【答案】(1)PC与⊙O相切,理由见解析(2)9【分析】(1)先证明∠ACB=90°,然后推出∠PCB=∠OCA,即可证明∠PCO=90°即可;(2)先证明12BC AC =,再证明△PBC ∽△PCA ,从而求出=41PA PB =,,AB =3,32OC OB ==,52OP =,最后证明△PBC ∽△POD ,求出10PD =,则CD =6,由此求解即可.(1)解:PC 与⊙O 相切,理由如下:∵AB 是圆O 的直径,∴∠ACB =90°,∴∠OCB +∠OCA =90°,∵OA =OC ,∴∠OCA =∠OAC ,∵∠PCB =∠OAC ,∴∠PCB =∠OCA ,∴∠PCB +∠OCB =∠OCA +∠OCB =90°,即∠PCO =90°,∴PC 与⊙O 相切;(2)解:∵∠ACB =90°,1tan =2A , ∴12BC AC =, ∵∠PCB =∠OAC ,∠P =∠P ,∴△PBC ∽△PCA , ∴1=2PC PB BC PA PC CA ==, ∴=82PA PB =,,∴AB =6,∴3OC OB ==,∴5OP =,∵BC OD ∥,∴△PBC ∽△POD , ∴PB PC OP PD =,即245PD=, ∴10PD =,∴CD =6, ∴192OCD S OC CD =⋅=. 21. 【答案】(1)⊙M 与x 轴相切,理由见解析(2)6(3)122y x=-+【分析】(1)连接CM,证CM⊥x即可得出结论;(2)过点M作MN⊥AB于N,证四边形OCMN是矩形,得MN=OC,ON=OM=5,设AN=x,则OA=5-x,MN=OC=6-(5-x)=1+x,利用勾股定理求出x值,即可求得AN 值,再由垂径定理得AB=2AN即可求解;(3)连接BC,CM,过点D作DP⊥CM于P,得直角三角形BCD,由(2)知:AB=6,OA=2,OC=4,所以OB=8,C(4,0),在Rt△BOC中,∠BOC=90°,由勾股定理,求得BC=Rt△BCD中,∠BCD=90°,由勾股定理,即可求得CD,在Rt△CPD和在Rt△MPD中,由勾股定理,求得CP=2,PD=4,从而得出点D坐标,然后用待定系数法求出直线CD解析式即可.(1)解:⊙M与x轴相切,理由如下:连接CM,如图,∵MC=MA,∴∠MCA=∠MAC,∵AC平分∠OAM,∴∠MAC=∠OAC,∴∠MCA=∠OAC,∵∠OAC+∠ACO=90°,∴∠MCO=∠MCA+∠ACO=∠OAC+∠ACO=90°,∵MC是⊙M的半径,点C在x轴上,∴⊙M与x轴相切;(2)解:如图,过点M作MN⊥AB于N,由(1)知,∠MCO=90°,∵MN⊥AB于N,∴∠MNO=90°,AB=2AN,∵∠CON=90°,∴∠CMN=90°,∴四边形OCMN是矩形,∴MN=OC,ON=C M=5,∵OA+OC=6,设AN=x,∴OA=5-x,MN=OC=6-(5-x)=1+x,在Rt△MNA中,∠MNA=90°,由勾股定理,得x2+(1+x)2=52,解得:x1=3,x2=-4(不符合题意,舍去),∴AN=3,∴AB=2AN=6;(3)解:如图,连接BC,CM,过点D作DP⊥CM于P,由(2)知:AB=6,OA=2,OC=4,∴OB=8,C(4,0)在Rt△BOC中,∠BOC=90°,由勾股定理,得BC===∵BD是⊙M的直径,∴∠BCD =90°,BD =10,在Rt △BCD 中,∠BCD =90°,由勾股定理,得CD=CD 2=20,在Rt △CPD 中,由勾股定理,得PD 2=CD 2-CP 2=20-CP 2,在Rt △MPD 中,由勾股定理,得PD 2=MD 2-MP 2=MD 2-(MC -CP )2=52-(5-CP )2=10CP -CP 2,∴20-CP 2=10CP -CP 2,∴CP =2,∴PD 2=20-CP 2=20-4=16,∴PD =4,即D 点横坐标为OC +PD =4+4=8,∴D (8,-2),设直线CD 解析式为y =kx +b ,把C (4,0),D (8,-2)代入,得4082k b k b +=⎧⎨+=-⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴直线CD 的解析式为:122y x =-+. 22. 【答案】(1)见解析(2)①见解析;【分析】 (1)根据圆周角定理可得∠BOD =2∠BAC =90°,再由OD ∥BC ,可得CB ⊥OB ,即可求证;(2)①根据∠BOD =2∠BAC =90°,OB =OD ,可得∠BAC =∠ODB ,即可求证;②根据ABD DBE ∽,可得2BD AB BE =⋅,即26BD =,再由勾股定理,即可求解. (1)证明∶∵∠BAC =45°,∴∠BOD =2∠BAC =90°,∴OD ⊥OB ,∵OD ∥BC ,∴CB ⊥OB ,∵OB 为半径,∴直线BC 是⊙O 的切线;(2)解:①∵∠BAC =45°,∴∠BOD =2∠BAC =90°,OB =OD ,∴∠ODB =45°,∴∠BAC =∠ODB ,∵∠ABD =∠DBE ,∴ABD DBE ∽; ②∵ABD DBE ∽, ∴AB BD BD BE =, ∴2BD AB BE =⋅, ∵6AB BE ⋅=, ∴26BD =, ∵22222OD OB OB BD +==, ∴23=OB ,∴OB =即⊙O 的半径的长为。
中考数学模拟题汇总《平行四边形的判定与证明》专项练习(附答案解析)一、综合题1.如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、BC的中点,点F在AC的延长线上,∠FEC=∠B.(1)求证:DE=CF;(2)若AC=6cm,AB=10cm,求四边形DCFE的面积.2.已知△ABC内接于⊙O,AB是⊙O的直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平行四边形;(2)若AD与⊙O相切,求∠B.3.已知:如图,点D在ΔABC的边AB上,CF//AB,DF交AC于E,EA=EC.(1)如图1,求证:CD=AF;(2)如图2,若AD=BD,请直接写出和ΔBDC面积相等的三角形.4.如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF//BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=25,∠CBG=45°,BC=4√2,则▱ABCD的面积是.5.已知,如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1)求证:△AFD≌△CEB;(2)四边形ABCD是平行四边形吗?请说明理由.6.如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.(1)求证:BE=DF;(2)设ACBD=k,当k为何值时,四边形DEBF是矩形?请说明理由.7.如图,在ΔABC中,点D、E、F分别在AB、AC、BC上,DE // BC,EF // AB.(1)求证:ΔADE∽ΔEFC;(2)如果AB=6,AD=4,求SΔADESΔEFC的值.8.如图,已知平行四边形ABCD,过A点作AM⊥BC于M,交BD于E,过C点作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当AECF为菱形,M点为BC的中点时,求AB:AE的值.BC,9.如图,等边△ABC的边长是4,D、E分别为AB、AC的中点,延长BC至点F,使CF=12连接CD和EF .(1)求证:DE=CF;(2)求EF的长.10.如图,在四边形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD交于点H.(1)求证:四边形DEBC是平行四边形;(2)若BD=9,求DH的长.11.已知锐角△ABC内接于⊙O,AD⊥BC于点D,连接AO.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,CE⊥AB于点E,交AD于点F,过点O作OH⊥BC于点H,求证:AF=2OH;,BC=2√15,求AC的长.(3)如图3,在(2)的条件下,若AF=AO,tan∠BAO=1312.如图,抛物线y=x2+bx+c与x轴交于点A(−1,0),B(5,0),与y轴交于点C.(1)求抛物线的解析式和顶点D的坐标.(2)连结AD,点E是对称轴与x轴的交点,过E作EF∥AD交抛物线于点F(F在E的右侧),过点F作FG∥x轴交ED于点H,交AD于点G,求HF的长.13.如图,CD是⊙O的直径,点A是⊙O外一点,AD与⊙O相切于点D,点B是⊙O上一点(点B不与点C,D重合),连接AO,AB,BC .(1)当BC与AO满足什么位置关系时,AB是⊙O的切线?请说明理由;(2)在(1)的条件下,当∠DAO=度时,四边形AOCB是平行四边形.(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足14.如图,已知函数y= kx为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点EOD,求a、b的值;(1)若AC= 32(2)若BC∥AE,求BC的长.15.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.16.如图.在一次数学研究性学习中,小华将两个全等的直角三角形纸片Rt△ABC和Rt△DEF拼在一起,使点A与点F重合,点C与点D重合(如图),其中∠ACB=∠DFE=90°,发现四边形ABDE是平行四边形.如图,小华继续将图中的纸片Rt△DEF沿AC方向平移,连结AE,BD,当点F与点C重合时停止平移.(1)请问:四边形ABDE是平行四边形吗?说明理由.cm时,请判断四边形ABDE的形(2)如图,若BC=EF=6cm,AC=DF=8cm,当AF=92状,并说明理由.参考答案与解析1.【答案】(1)证明:在△CDE 和△ECF 中,∵∠ACB=∠ECF=90°,点D 、E 是分别是AB 、BC 的中点.∴CD=BD=AD ,∴∠B=∠DCE ,∠CED=∠ECF=90°, 又∵∠FEC=∠B ..∠FEC=∠DCE ,又∵CE=EC .∴△CDE ≌△ECF (ASA ),∴DE=CF ;(2)解:在Rt △ABC 中,∵∠ACB=90°,∴BC=√AB 2−AC 2=√102−62=8cm , ∵点D 、E 分别是AB 、BC 的中点,∴DE ∥CF ,又DE=CF , ∴四边形DCFE 是平行四边形,∴DE=12AC=12×6=3cm ,CE=12BC=12×8=4cm , ∴S 四边形DCFE =DE ×CE=3×4=12cm . 2.【答案】(1)证明:∵OA =OC =AD , ∴∠OCA =∠OAC ,∠AOD =∠ADO , ∵OD ∥AC , ∴∠OAC =∠AOD ,∴180°﹣∠OCA ﹣∠OAC =180°﹣∠AOD ﹣∠ADO , 即∠AOC =∠OAD , ∴OC ∥AD , ∵OD ∥AC ,∴四边形OCAD 是平行四边形;(2)解:∵AD 与⊙O 相切,OA 是半径, ∴∠OAD =90°, ∵OA =OC =AD , ∴∠AOD =∠ADO =45°,∵OD∥AC,∴∠OAC=∠AOD=45°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B=45°.3.【答案】(1)证明:∵CF//AB∴∠DFC=∠ADF,∠DAC=∠ACF又∵EA=EC∴ΔADE≌ΔCFE(AAS)∴CF=AD又∵CF//AD∴四边形ADCF为平行四边形∴DC=AF(有一组对边平行且相等的四边形为平行四边形)(2)解:ΔADC,ΔADF,ΔCFD,ΔCFA∵AD=BD,∴SΔADC=SΔBDC (等底等高面积相等)∵四边形ADCF是平行四边形,∴SΔADC=SΔCDF=SΔADF=SΔACFF (等底等高面积相等) .故与ΔBDC面积相等的三角形为:ΔADC,ΔADF,ΔCFD,ΔCFA.4.【答案】(1)证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DF//BE,∴∠DFA=∠BEC,∵DF=BE,∴ΔADF≅ΔCBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD//CB,四边形ABCD是平行四边形(2)245.【答案】(1)证明:∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中{DF=BE∠DFA=∠BECAF=CE,∴△AFD≌△CEB(SAS).(2)解:四边形ABCD是平行四边形,理由如下:∵△AFD≌△CEB,∴AD=CB,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.6.【答案】(1)证明:如图,连接DE,BF,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F分别是OA,OC的中点,∴OE=12OA=12OC=OF,∴四边形DEBF是平行四边形,∴BE=DF .(2)解:由(1)已证:四边形DEBF是平行四边形,要使平行四边形DEBF是矩形,则BD=EF,∵OE=12OA=12OC=OF,∴EF=OE+OF=12OA+12OC=OA=12AC,即AC=2EF,∴k=ACBD =2EFEF=2,故当k=2时,四边形DEBF是矩形. 7.【答案】(1)证明:∵DE//BC,EF//AB,∴∠A=∠CEF,∠AED=∠C,∴△ADE∽△EFC.(2)解:∵AB=6,AD=4,∴DB=6-4=2,∵DE//BC,EF//AB,∴四边形DBFE是平行四边形,∴EF=DB=2,∵△ADE∽△EFC,SΔADE SΔEFC =(ADEF)2=(42)2=4.8.【答案】(1)证明∵四边形ABCD是平行四边形(已知),∴BC∥AD(平行四边形的对边相互平行)。
BDCAO图1FEDCBA图2F E D CBA HG FEOAB C DOM ABCD图1FE DCB A4321图3F ED CBA H G 图2F E DCB A八年级数学下册平行四边形的判定练习题识记知识1)定义:两组对边分别平行的四边形是平行四边形.∵ , ∴四边形ABCD 是平行四边形.2)定理:两组对边分别相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.3)定理:一组对边平行且相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.4)定理:对角线互相平分的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.5)定理:两组对角分别相等的四边形是平行四边形∵∴四边形ABCD 是平行四边形. 二、平行四边形性质与判定的综合应用例1: 如图, 已知:E 、F 是平行四边形ABCD 对角线AC 上的两点,并且AE=CF 。
求证:四边形BFDE 是平行四边形变式一:在□ABCD 中,E ,F 为AC 上两点,BE//DF .求证:四边形BEDF 为平行四边形.变式二:在□ABCD 中,E,F 分别是AC 上两点,BE ⊥AC 于E ,DF ⊥AC 于F.求证:四边形BEDF 为平行四边形想一想:在□ABCD 中, E ,F 为AC 上两点, BE =DF .那么可以证明四边形 BEDF 是平行四边形吗?例2:如图,平行四边形ABCD 中,AF =CH ,DE =BG 。
求证:EG 和HF 互相平分。
练习1、如图所示,在四边形ABCD 中,M 是BC 中点,AM 、BD 互相平分于点O ,那么请说明AM=DC 且AM ∥DC:1、以不在同一直线上的三点为顶点作平行四边形,最多能作( )A 、4个B 、3个C 、2个D 、1个 2、如图,在□ABCD 中,已知两条对角线相交于点O ,E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点,以图中的点为顶点,尽可能多地画出平行四边形在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC = 6cm ,P ,Q 分别从A ,C 同时出发,P 以1厘米/秒的速度由A 向D 运动,Q 以2厘米/秒的速度由C 向B 运动,几秒后四边形ABQP 成为平行四边形?1、下列条件中,能判定四边形是平行四边形的是( )A 、一组对边相等,另一组对边平行;C 、一组对角相等,一组邻角互补;B 、一组对边平行,一组对角互补;D 、一组对角互补,另一组对角相等。
中考数学第一轮总复习典例精讲考点聚集查漏补缺拓展提升第五单元 四边形专题5.2 特殊平行四边形知识点矩 形01菱 形02正 方 形03中点四边形04拓展训练05【例1-1】如图,在□ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF.求证:四边形ABFC是矩形.A EFD CB利用对角线相等的平行四边形是矩形证明方法一:利用△ABE≌△FCE证平行四边形;证法二:利用△ABE∽△FCE证平行四边形考点聚焦一个角为直角对角线相等平行四边形平行四边形直角证明四边形ABCD 是矩形的方法(三种)①先证明四边形ABCD为___________,再证明□ABCD的任意_____________;②先证明四边形ABCD为___________,再证明□ABCD的____________;【例1-2】如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为( ) A.1 B.1.5 C.2 D.4AHGECBD F C 考点聚焦对边平行且相等四角都是直角对角线互相平分且相等矩形的性质(1)边:________________;(2)角:________________;(3)对角线:______________________.1.已知□ABCD,下列条件中,不能判定这个平行四边形为矩形的是( ) A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC2.如图,矩形ABCD的对角线AC=10,P,Q分别为AO,AD的中点,则PQ=_____.3.如图,矩形ABCD中,AB=3,BC=4,则图中四个小矩形的周长之和为____.4.如图,矩形OCDE,矩形OFGH,矩形OMNP各有一边在半⊙O的直径AB上,D,G,N都在半⊙O上,比较EC,HF,MP的大小_________.B 2.514EC=HF=EP5.如图,在矩形ABCD中,AB=8,AD=4,E为CD边上一点,CE=5,点P从B点出发,以每秒1个单位的速度沿着BA边向终点A运动,设点P运动的时间为t秒,则当t=_______时,△PAE是以PE为腰的等腰三角形.6.如图,将矩形ABCD绕点B顺时针旋转,得到矩形EBFG,且点E落在CD上,过点C作FG的垂线,垂足为H,若FH=HG,则BC:AB的值为_______.7.如图,在Rt△ABC中,∠BAC=90º,BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小最为_____.M2.4知识点矩 形01菱 形02正 方 形03中点四边形04拓展训练05【例2-1】如图,在等腰△ABC中,AD平分顶角∠BAC,交底边BC于点H,点E在AD上,BE=BD,求证:四边形BDCE是菱形.考点聚焦证明四边形ABCD 是菱形的方法(三种)①先证明四边形ABCD为___________,再证明□ABCD的任意_____________;②先证明四边形ABCD为___________,再证明□ABCD的________________平行四边形一组邻边相等平行四边形对角线互相垂直四边相等AH E DCB利用“三线合一”得出AD 垂直平分BC,从而得出四边相等。
特殊平行四边形训练题1、(2013•包头)如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若矩形ABCD 和矩形AEFC 的面积分别是S 1、S 2的大小关系是( )2、(2013•内江)已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM+PN 的最小值= .3、(2013•钦州)如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 .4、(2013• 德州)如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75°;③BE+DF=EF ;④S 正方形ABCD =2+. 其中正确的序号是 (把你认为正确的都填上).5、(2013•绥化)已知,在△ABC 中,∠BAC=90°,∠ABC=45°,点D 为直线BC 上一动点(点D 不与点B ,C 重合).以AD 为边做正方形ADEF ,连接CF (1)如图1,当点D 在线段BC 上时.求证CF+CD=BC ; (2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请写出CF ,BC ,CD 三条线段之间的关系; (3)如图3,当点D 在线段BC 的反向延长线上时,且点A ,F 分别在直线BC 的两侧,其他条件不变; ①请直接写出CF ,BC ,CD 三条线段之间的关系; ②若正方形ADEF 的边长为2,对角线AE ,DF 相交于点O ,连接OC .求OC 的长度.6、(2013鞍山)如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE .(1)求证:CE=CF ;(2)若点G 在AD 上,且∠GCE=45°,则GE=BE+GD 成立吗?为什么?7. (2009年宜宾)已知:如图,四边形ABCD 是菱形,过AB 的中点E 作AC 的垂线EF ,交AD 于点M ,交CD 的延长线于点F .(1)求证:AM =DM ;(2)若DF =2,求菱形ABCD 的周长.第21题图A BCDEFM8.(2009年山东青岛市)已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △. (1)求证:BE DG =;(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.9.(2009年广东省)在菱形ABCD 中,对角线AC 与BD 相交于点O ,56AB AC ==,.过点D 作DE AC ∥交BC 的延长线于点E .A . S 1>S 2B . S 1=S 2C . S 1<S 2D . 3S 1=2S 2A DG CBFEAQ DOA BCDO F E 图12AB CDEF(第2题) (1)求BDE △的周长;(2)点P 为线段BC 上的点,连接PO 并延长交AD 于点Q . 求证:BP DQ =.10、(2013•毕节地区)四边形ABCD 是正方形,E 、F 分别是DC 和CB 的延长线上的点,且DE=BF ,连接AE 、AF 、EF .(1)求证:△ADE ≌△ABF ; (2)填空:△ABF 可以由△ADE 绕旋转中心 点,按顺时针方向旋转 度得到; (3)若BC=8,DE=6,求△AEF 的面积.11(2013重庆市10分)如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE =CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE =BF ,∠BEF =2∠BAC .(1)求证:OE =OF ; (2)若BC =23,求AB 的长.12、(08兰州)如图,平行四边形ABCD 中,AB AC ⊥,1AB =,5BC =.对角线AC BD ,相交于点O ,将直线AC 绕点O 顺时针旋转,分别交BC AD ,于点E F ,. (1)证明:当旋转角为90时,四边形ABEF 是平行四边形; (2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点O 顺时针旋转的度数.13、(2013泰安)如图,在四边形ABCD 中,AB=AD ,CB=CD ,E 是CD 上一点,BE 交AC 于F ,连接DF . (1)证明:∠BAC=∠DAC ,∠AFD=∠CFE . (2)若AB ∥CD ,试证明四边形ABCD 是菱形;(3)在(2)的条件下,试确定E 点的位置,∠EFD=∠BCD ,并说明理由.14、如图(1),在⊿ABC 和⊿EDC 中,AC=CE=CB=CD ,∠ACB=∠ECD=90°,AB 与CE 交于F ,ED 与AB 、BC 分别交于M 、H. (1)求证:CF=CH ; (2)如图(2),⊿ABC 不动,将⊿EDC 绕点C 旋转到∠BCE=45°时,试判断四边形ACDM 是什么四边形?并证明你的结论。
15、如图,将□ABCD 的边DC 延长到点E ,使CE=DC ,连接AE ,交BC 于点F . ⑴求证:△ABF ≌△ECF⑵若∠AFC=2∠D ,连接AC 、BE .求证:四边形ABEC 是矩形.A B C D H E F G (第3题图2) E B FG DH AC (第3题图3)(第3题图1) A B C D H E F G l 图A(B(E C(F D l 图 F E C B A H16、以四边形ABCD 的边AB 、BC 、CD 、DA 为斜边分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH .(1)如图1,当四边形ABCD 为正方形时,我们发现四边形EFGH 是正方形;如图2,当四边形ABCD 为矩形时,请判断:四边形EFGH 的形状(不要求证明);(2)如图3,当四边形ABCD 为一般平行四边形时,设∠ADC =α(0°<α<90°),① 试用含α的代数式表示∠HAE ;② 求证:HE =HG ; ③ 四边形EFGH 是什么四边形?并说明理由.17、 已知:如图1,O 为正方形ABCD 的中心,分别延长OA 到点F ,OD 到点E ,使OF =2OA ,OE =2OD ,连结EF ,将△FOE 绕点O 逆时针旋转α角得到△''F OE (如图2). (1) 探究AE ′与BF'的数量关系,并给予证明; (2) 当α=30°时,求证:△AOE ′为直角三角形.18、已知正方形ABCD 的边长为a ,两条对角线AC 、BD 相交于点O ,P 是射线AB 上任意一点,过P 点分别做直线AC 、BD 的垂线PE 、PF ,垂足为E 、F .(1)如图1,当P 点在线段AB 上时,求PE +PF 的值;(2)如图2,当P 点在线段AB 的延长线上时,求PE -PF 的值.19、两个全等的直角三角形重叠放在直线l 上,如图⑴,AB=6cm ,BC=8cm ,∠ABC=90°,将Rt △ABC 在直线l 上左右平移,如图⑵所示. ⑴ 是平行四边形;⑵ 怎样移动Rt △ABC ,使得四边形ACFD 为菱形; ⑶ 将Rt △ABC 向左平移cm 4,求四边形DHCF 的面积.20、如图1,在△ABC 中,AB=BC ,P 为AB 边上一点,连接CP ,以PA 、PC 为邻边作□APCD ,AC 与PD 相交于点E ,已知∠ABC=∠AEP=α(0°<α<90°). (1)求证:∠EAP=∠EPA ;(2)□APCD 是否为矩形?请说明理由;(3)如图2,F 为BC 中点,连接FP ,将∠AEP 绕点E 顺时针旋转适当的角度,得到∠MEN (点M 、N 分别是∠MEN 的两边与BA 、FP 延长线的交点).猜想线段EM 与EN 之间的数量关系,并证明你的结论.一次函数训练题1.(2012•丽水)甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l 甲、l 乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶 千米.2、(2013•十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.以下说法错误的是( )A . 加油前油箱中剩余油量y (升)与行驶时间t (小时)的函数关系是y=﹣8t+25B . 途中加油21升C . 汽车加油后还可行驶4小时D . 汽车到达乙地时油箱中还余油6升 3、(2013哈尔滨)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x (单位:千克)之间的函数关系如图所示.下列四种说法: ①一次购买种子数量不超过l0千克时,销售价格为5元/千克; ②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折: ④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是( ).(A)1个 (B)2个 (C)3个 (D) 4个4、(2013•鄂州)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA 表示货车离甲地距离y (千米)与时间x (小时)之间的函数关系;折线BCD 表示轿车离甲地距离y (千米)与x (小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米? (2)求线段CD 对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD 段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).5、(2013•株洲)某生物小组观察一植物生长,得到植物高度y (单位:厘米)与观察时间x (单位:天)的关系,并画出如图所示的图象(AC 是线段,直线CD 平行x 轴). (1)该植物从观察时起,多少天以后停止长高?(2)求直线AC 的解析式,并求该植物最高长多少厘米?图1AB DCE P图2ABDCEPMNF39t/小时y/升3025201510521第9题6.(2012义乌市)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.7.(2012•衢州)在社会主义新农村建设中,衢州某乡镇决定对A、B两村之间的公路进行改造,并有甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成? 8.(2012•连云港)我市某医药公司要把药品运往外地,现有两种运输方式可供选择,方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元,(1)请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x(公里)之间的函数关系式;(2)你认为选用哪种运输方式较好,为什么?9. (2011江苏南京,22,7分)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180 m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.⑴小亮行走的总路程是____________㎝,他途中休息了________min.⑵①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?30 501950300080 x/miny/mO(第22题)yO PDCxBA yxFOBA10. (2010湖北孝感,24,10分)健身运动已成为时尚,某公司计划组装A 、B 两种型号的健身器材共40套,捐赠给社区健身中心.组装一套A 型健身器材需甲种部件7个和乙种部件4个,组装一套B 型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个. (1)公司在组装A 、B 两种型号的健身器材时,共有多少种组装方案;(5分)(2)组装一套A 型健身器材需费用20元,组装一套B 型健身器材需费用18元.求总组装费用最少的组装方案,最少组装费用是多少?(5分)11. (2011浙江绍兴,12.(2012•德州)现从A ,B 向甲、乙两地运送蔬菜,A ,B 两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A 到甲地运费50元/吨,到乙地30元/吨;从B 地到甲运费60元/吨,到乙地45元/吨. (1)设A 地到甲地运送蔬菜x 吨,请完成下表: (3)怎样调运蔬菜才能使运费最少?12.(2012•湘潭)已知一次函数y=kx+b (k ≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,求此一次函数的解析式.13. (2011江苏泰州)在平面直角坐标系xoy 中,边长为a (a 为大于0的常数)的正方形ABCD 的对角线AC 、BD 相交于点P ,顶点A 在x 轴正半轴上运动,顶点B 在y 轴正半轴上运动(x 轴的正半轴、y 轴的正半轴都不包含原点O ),顶点C 、D 都在第一象限. (1)当∠BAO =45°时,求点P 的坐标; (2)求证:无论点A 在x 轴正半轴上、点B 在y 轴正半轴上怎样运动,点P 都在∠AOB 的平分线上; (3)设点P 到x 轴的距离为h ,试确定h 的取值范围,并说明理由.14.如图,一次函数2y=23x -+的图象分别与x 轴、y 轴交于点A 、B ,以线段AB 为边在第一象限内作等腰Rt △ABC ,∠BAC=90°.求过B 、C 两点直线的解析式. .15、在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P 分别作x 轴,y 轴的垂线,与坐标轴围成矩形OAPB 的周长与面积相等,则点P 是和谐点. (1)判断点(1,2),(4,4)M N 是否为和谐点,并说明理由;(2)若和谐点(,3)P a 在直线()y x b b =-+为常数上,求点,a b 的值.运往甲地(吨) 运往乙地(吨) A xBxOCABy16、已知长方形OABC 在直角坐标系中如图所示,B (12,6)。