随机信号分析基础课后练习题含答案
- 格式:docx
- 大小:17.80 KB
- 文档页数:3
1. 有四批零件,第一批有2000个零件,其中5%是次品。
第二批有500个零件,其中40%是次品。
第三批和第四批各有1000个零件,次品约占10%。
我们随机地选择一个批次,并随机地取出一个零件。
(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少? 解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。
()()()()123414P B P B P B P B ====()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ========()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()2220.250.40.6150.1625P B P D B P B D P D ⨯===2. 设随机试验X求X 的概率密度和分布函数,并给出图形。
解:()()()()0.210.520.33f x x x x δδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-3. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。
解:(1)由()1f x dx ∞-∞=⎰()()2xxx f x dx ae dx ae dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩4.求:(1)X 与的联合分布函数与密度函数;(2)与的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。
(北P181,T3) 解:(1)()()()()()()(),0.07,10.18,0.15,10.081,10.321,0.201,1F x y u x y u x y u x y u x y u x y u x y =+++-+-++-+--()()()()()()(),0.07,10.18,0.15,10.081,10.321,0.201,1f x y x y x y x y x y x y x y δδδδδδ=+++-+-++-+--(2) X 的分布律为()()00.070.180.150.4010.080.320.200.60P X P X ==++===++=Y 的分布律为()()()10.070.080.1500.180.320.5010.150.200.35P Y P Y P Y =-=+===+===+= (3)Z XY =的分布律为()()()()()()()()()()111,10.080001,00.400.320.72111,10.20P Z P XY P X Y P Z P XY P X P X Y P Z P XY P X Y =-==-===-======+===+======== (4)因为()()()00.4010.600.6010.1500.5010.350.20E X E Y =⨯+⨯==-⨯+⨯+⨯=()()10.0800.7210.200.12E XY =-⨯+⨯+⨯=则()()()()ov ,0.120.600.200C X Y E XY E X E Y =-=-⨯=X 与Y 的相关系数0XY ρ=,可见它们无关。
由于百度文库格式转换的原因,不能整理在一个word 文档里面,下面是三四章的答案。
给大家造成的不便,敬请谅解 随机信号分析 第三章习题答案、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2?)上均匀分布的随机变量,且A 和B 独立。
求(1)证明X(t)是平稳过程。
(2)X(t)是各态历经过程吗?给出理由。
(3)画出该随机过程的一个样本函数。
(1)(2) 3-1 已知平稳过程()X t 的功率谱密度为232()(16)X G ωω=+,求:①该过程的平均功率?②ω取值在(4,4)-范围内的平均功率?解()()()21521()lim 2T T T E X t X t X t X t dt A T -→∞⎡⎤=<∞⇒⎣⎦==⎰是平稳过程3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。
证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=-3-9 已知平稳过程()X t 和()Y t 相互独立,它们的均值至少有一个为零,功率谱密度分别为令新的随机过程 ①证明()X t 和()Y t 联合平稳;②求()Z t 的功率谱密度()Z G ω?③求()X t 和()Y t 的互谱密度()XY G ω?④求()X t 和()Z t 的互相关函数()XZ R τ?⑤求()V t 和()Z t 的互相关函数()VZ R τ解:()()4124(1)()()()2[()]()0[()]0()2[()]0()()(,)[()][()]0()()(2)()()()()[()()][()()][()X X X Y XY Z X t Y t R F G eE X t R E X t R e E Y t X t Y t R t t E X t E Y t X t Y t Z t X t Y t R E Z t Z t E X t Y t X t τττωτδττττττ---==∞=⇒=⎡⎤⎣⎦=-⇒=∴+=⋅+=⇒=+=+=++、都平稳=与与联合独平立稳[][]{}2214||()]()()()()()0()()()16()()()116(3)()0()0(4)()[()()]()()()()()()[()]2(5)(X YX XY Y XY Z X Y Z X Y XY XY XZ X XY X X VZ Y t R R R R R R R R G G G R G R E X t Z t E X t X t Y t R R R F G e R ττττττττττωωωωωτωτττττττωτ--++=+++=∴=++∴=+==+=→==+=+++=+==={}4||)[()()][()()][()()]()()()4X Y E V t Z t E X t Y t X t Y t R R e ττττττδτ-=+=-+++=-=+-3-11 已知可微平稳过程()X t 的自相关函数为2()2exp[]X R ττ=-,其导数为()()Y t X t '=。
随机信号分析(第3版)课后习题解答《随机信号分析》课程(32学时)—— 2007年教学内容建议1 概率论基础 1.12 随机信号2.1 两条样本函数为:0)(0=t X 、wt t X cos 21)(1=;1)0,(=x f X 、2)4,(=w x f X π;)(0-)2,(x wx f X δπ= 2.2 3103532)2,(=++=X E 、)()()(5-313-312-31)2,(x x x x F X εεε++= 2.3 )()(1-2121)21,(x x x F X εε+=、)()(2-21121)1,(x x x F X εε++=;)()()()(2-,1411,1412-,411,41)1,21,,(21x x x x x x x x x x F X -++-+++=εεεε2.4 略2.5 )()(1-1.09.0)5,(x x x F X εε+=;)()(y x y x y x F ,11.0,9.0)0025.0,0,,(-+=εε;0因为其概率为0.9;1的概率为1(样本函数),它是可预测的,就是样本函数。
2.6 略 2.7 略 2.8 )()(121121),(-++=x x n x f X δδ、0121)1(21)(=?+-?=n X E 、{})()]()([)]()()][()([),(2121221121n n n X n X E n m n X n m n X En n Cov X X -==--=δ;不可预测2.9 (2.19)10103523)()(),(2111=?==t t t t Cov σσρ、所以(X,Y )满足10103;5,2;2,2的高斯分布。
其概率密度函数为:-+--?--?-=-+--?----=5)2(5)2)(2(32)2(5exp215)2(10)2)(2(1010322)2()10/91(21exp 21),(2222y y x x y y x x y x f XY ππ;特征函数为:++-+=)6)(5)(2(21)22(exp ),(21222121v v v v v v j y x XY φ3 平稳性与功率谱密度3.1 kk k u t t u u f-=)4exp(2*21),,;,,(211π ;因为k 阶概率密度函数与绝对时间无关,所以为严格平稳过程。
完美 WORD 格式1-9 已知随机变量X的分布函数为0 , x 02F (x) kx , 0 x 1X1 , x 1求:①系数 k;②X落在区间(0.3,0.7) 内的概率;③随机变量X的概率密度。
解:第①问利用F X (x) 右连续的性质k =1P 0.3 X 0.7 P 0.3 X 0.7 P X 0.7 第②问F 0.7 F 0.3第③问f (x)Xd F(x)Xdx2x 0 x 10 else专业知识分享完美 WORD 格式x1-10 已知随机变量X 的概率密度为( ) ( )f x ke xX(拉普拉斯分布),求:①系数k ②X落在区间 (0,1)内的概率③随机变量 X的分布函数解:第①问f x dx 1 k12第②问x2P x X x F x F x f x dx1 2 2 1x1随机变量 X落在区间( x1 , x2 ] 的概率 P{ x1 X x2} 就是曲线y f x 下的曲边梯形的面积。
1P 0 X 1 P 0 X 1 f x dx1 2 1 e1第③问12 f x12xe xxe xxF x f ( x)dx1 1x x xe dx x 0 e x 02 20 1 1 1xx x xe dx e dx x 0 1 e x 02 0 2 2专业知识分享完美 WORD 格式1-11 某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000 辆汽车进出汽车站,问汽车站出事故的次数不小于 2 的概率是多少?n=1- 分布 (0 1)n ,p 0,np=二项分布泊松分布n 成立,0不成立, p q高斯分布实际计算中,只需满足,二项分布就趋近于泊松分布n 10 p 0.1P X kk e==np k!汽车站出事故的次数不小于 2 的概率P(k 2) 1 P k 0 P k 10.1P(k 2) 1 1.1e 答案专业知识分享完美 WORD 格式1-12 已知随机变量 (X,Y)的概率密度为f (x, y) XY(3 x 4 y),ke x 0, y 0, 其它0求:①系数k?②( X ,Y)的分布函数?③P{0 X 1,0 X 2} ?第③问方法一:联合分布函数F XY (x, y) 性质:若任意四个实数 a ab b ,满足1, 2, 1, 2a a bb ,满足a1 a2,b1 b2 ,则P{a X a ,b Y b}F XY(a ,b ) F XY(a ,b) F XY(a ,b ) F XY(a ,b)1 2 1 2 2 2 1 1 1 2 2 1P{0X 1,0 Y 2} F XY(1,2) F XY(0,0) F XY(1,0) F XY(0,2)方法二:利用P{( x, y) D } f XY u,v dudvD2 1P{0X 1,0 Y 2} f XY x,y dxdy0 0专业知识分享完美 WORD 格式1-13 已知随机变量(X,Y) 的概率密度为f (x, y)1, 0 x 1, y x0 , 其它①求条件概率密度 f X (x| y)和f Y ( y | x) ?②判断X 和Y 是否独立?给出理由。
随机信号分析习题一1. 设函数⎩⎨⎧≤>-=-0 ,0 ,1)(x x e x F x ,试证明)(x F 是某个随机变量ξ的分布函数.并求下列概率:)1(<ξP ,)21(≤≤ξP 。
2. 设),(Y X 的联合密度函数为(), 0, 0(,)0 , otherx y XY e x y f x y -+⎧≥≥=⎨⎩, 求{}10,10<<<<Y X P 。
3. 设二维随机变量),(Y X 的联合密度函数为⎥⎦⎤⎢⎣⎡++-=)52(21exp 1),(22y xy x y x f XY π 求:(1)边沿密度)(x f X ,)(y f Y(2)条件概率密度|(|)Y X f y x ,|(|)X Y f x y4. 设离散型随机变量X 的可能取值为{}2,1,0,1-,取每个值的概率都为4/1,又设随机变量3()Y g X X X ==-。
(1)求Y 的可能取值 (2)确定Y 的分布. (3)求][Y E 。
5. 设两个离散随机变量X ,Y 的联合概率密度为:)()(31)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ试求:(1)X 与Y 不相关时的所有A 值。
(2)X 与Y 统计独立时所有A 值。
6. 二维随机变量(X ,Y )满足:ϕϕsin cos ==Y Xϕ为在[0,2π]上均匀分布的随机变量,讨论X ,Y 的独立性与相关性。
7. 已知随机变量X 的概率密度为)(x f ,求2bX Y =的概率密度)(y f .8. 两个随机变量1X ,2X ,已知其联合概率密度为12(,)f x x ,求12X X +的概率密度?9. 设X 是零均值,单位方差的高斯随机变量,()y g x =如图,求()y g x =的概率密度()Y f y\10. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数222W X Y Z X⎧=+⎨=⎩ 设X ,Y 是相互独立的高斯变量。
1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。
解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()112f x dx k ∞-∞==⎰ 第②问{}()()()211221x x P x X x F x F x f x dx <≤=-=⎰随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。
{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。
由于百度文库格式转换的原因,不能整理在一个word 文档里面,下面是三四章的答案。
给大家造成的不便,敬请谅解随机信号分析 第三章习题答案、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。
求(1)证明X(t)是平稳过程。
(2)X(t)是各态历经过程吗?给出理由。
(3)画出该随机过程的一个样本函数。
(1)(2)3-1 已知平稳过程()X t 的功率谱密度为232()(16)X G ωω=+,求:①该过程的平均功率?②ω取值在(4,4)-范围内的平均功率?解[][]()[]2()cos 211,cos 5cos 22X E X t E A E t B A B R t t EA τττ=++=⎡⎤⎣⎦+=+=+与相互独立()()()21521()lim2TT T E X t X t X t X t dt AT-→∞⎡⎤=<∞⇒⎣⎦==⎰是平稳过程()()[]()()4112211222222242'4(1)24()()444(0)41132(1)224414414(2)121tan 13224X X XE X t G d RFG F e R G d d d arc x x ττωωωωωππωωπωωπωπωω∞----∞∞-∞-∞∞--∞∞⎡⎤⨯⎡⎤==⋅=⋅⎢⎥+⎣⎦====+==⎛⎫+ ⎪==⎣⎦=++⎝⎭=⎰⎰⎰⎰⎰P P P P 方法一()方:时域法取值范围为法二-4,4内(频域的平均率法功)2d ω=3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。
证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=-[][]:()[()()]{()()}{()(}2()()()()()()()()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-⇒⇒=+=--+-+-=--=+=-⇔⇔∴=-+-=已知平稳过程的表达式利用定义求利用傅解系统输入输出立叶平变稳换的延时特性2()2()22()(1cos )j T j T X X X e e G G G T ωωωωωω-⎡⎤+-⎢⎥⎣⎦=-此文档来源于网络,如有侵权请联系网站删除3-9 已知平稳过程()X t 和()Y t 相互独立,它们的均值至少有一个为零,功率谱密度分别为216()16X G ωω=+22()16Y G ωωω=+令新的随机过程()()()()()()Z t X t Y t V t X t Y t =+⎧⎨=-⎩ ①证明()X t 和()Y t 联合平稳; ②求()Z t 的功率谱密度()Z G ω? ③求()X t 和()Y t 的互谱密度()XY G ω? ④求()X t 和()Z t 的互相关函数()XZ R τ? ⑤求()V t 和()Z t 的互相关函数()VZ R τ 解:()()4124(1)()()()2[()]()0[()]0()2[()]0()()(,)[()][()]0()()(2)()()()()[()()][()()][()X X X Y XY Z X t Y t R F G e E X t R E X t R eE Y t X t Y t R t t E X t E Y t X t Y t Z t X t Y t R E Z t Z t E X t Y t X t τττωτδττττττ---==∞=⇒=⎡⎤⎣⎦=-⇒=∴+=⋅+=⇒=+=+=++Q 、都平稳=与与联合独平立稳[][]{}2214||()]()()()()()0()()()16()()()116(3)()0()0(4)()[()()]()()()()()()[()]2(5)(X YX XY Y XY Z X Y Z X Y XY XY XZ X XY X X VZ Y t R R R R R R R R G G G R G R E X t Z t E X t X t Y t R R R F G e R ττττττττττωωωωωτωτττττττωτ--++=+++=∴=++∴=+==+=→==+=+++=+===Q {}4||)[()()][()()][()()]()()()4X Y E V t Z t E X t Y t X t Y t R R e ττττττδτ-=+=-+++=-=+-3-11 已知可微平稳过程()X t 的自相关函数为2()2exp[]X R ττ=-,其导数为()()Y t X t '=。
、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。
求(1)证明X(t)是平稳过程。
(2)X(t)是各态历经过程吗?给出理由。
(3)画出该随机过程的一个样本函数。
(1)(2)3-1 已知平稳过程()X t 的功率谱密度为232()(16)X G ωω=+,求:①该过程的平均功率? ②ω取值在(4,4)-范围内的平均功率?解[][]()[]2()cos 211,cos 5cos 22X E X t E A E t B A B R t t EA τττ=++=⎡⎤⎣⎦+=+=+与相互独立()()()21521()lim2TT T E X t X t X t X t dt AT-→∞⎡⎤=<∞⇒⎣⎦==⎰是平稳过程()()[]()()4112211222222242'4(1)24()()444(0)41132(1)224414414(2)121tan 13224X X XE X t G d RFG F e R G d d d arc x x ττωωωωωππωωπωωπωπωω∞----∞∞-∞-∞∞--∞∞⎡⎤⨯⎡⎤==⋅=⋅⎢⎥+⎣⎦====+==⎛⎫+ ⎪==⎣⎦=++⎝⎭=⎰⎰⎰⎰⎰P P P P 方法一()方:时域法取值范围为法二-4,4内(频域的平均率法功)2d ω=3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。
证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=-[][]:()[()()]{()()}{()(}2()()()()()()()()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-⇒⇒=+=--+-+-=--=+=-⇔⇔∴=-+-=已知平稳过程的表达式利用定义求利用傅解系统输入输出立叶平变稳换的延时特性2()2()22()(1cos )j T j T X X X e e G G G T ωωωωωω-⎡⎤+-⎢⎥⎣⎦=-3-9 已知平稳过程()X t 和()Y t 相互独立,它们的均值至少有一个为零,功率谱密度分别为216()16X G ωω=+22()16Y G ωωω=+令新的随机过程()()()()()()Z t X t Y t V t X t Y t =+⎧⎨=-⎩ ①证明()X t 和()Y t 联合平稳; ②求()Z t 的功率谱密度()Z G ω? ③求()X t 和()Y t 的互谱密度()XY G ω? ④求()X t 和()Z t 的互相关函数()XZ R τ? ⑤求()V t 和()Z t 的互相关函数()VZ R τ 解:()()4124(1)()()()2[()]()0[()]0()2[()]0()()(,)[()][()]0()()(2)()()()()[()()][()()][()X X X Y XY Z X t Y t R F G e E X t R E X t R eE Y t X t Y t R t t E X t E Y t X t Y t Z t X t Y t R E Z t Z t E X t Y t X t τττωτδττττττ---==∞=⇒=⎡⎤⎣⎦=-⇒=∴+=⋅+=⇒=+=+=++、都平稳=与与联合独平立稳[][]{}2214||()]()()()()()0()()()16()()()116(3)()0()0(4)()[()()]()()()()()()[()]2(5)(X YX XY Y XY Z X Y Z X Y XY XY XZ X XY X X VZ Y t R R R R R R R R G G G R G R E X t Z t E X t X t Y t R R R F G e R ττττττττττωωωωωτωτττττττωτ--++=+++=∴=++∴=+==+=→==+=+++=+==={}4||)[()()][()()][()()]()()()4X Y E V t Z t E X t Y t X t Y t R R e ττττττδτ-=+=-+++=-=+-3-11 已知可微平稳过程()X t 的自相关函数为2()2exp[]X R ττ=-,其导数为()()Y t X t '=。
随机信号分析基础课后练习题含答案
第一部分随机变量和概率分布
练习题1
设离散随机变量X的概率分布函数为:
X0 1 2 3 4
P X0.05 0.15 0.35 0.30 0.15
求E(X)和D(X)。
答案1
根据概率分布函数的公式有:
$$E(X)=\\sum_{i=1}^n x_i P_X(x_i) = 0 \\times 0.05 + 1
\\times 0.15 + 2 \\times 0.35 + 3 \\times 0.30 + 4 \\times 0.15 = 2.25$$
$$D(X)=\\sum_{i=1}^n (x_i-E(X))^2P_X(x_i) = 0.710625$$ 练习题2
已知随机变量X的概率密度函数为:
$$f_X(x) = \\begin{cases} \\frac{1}{3}e^{-\\frac{x}{3}} & x \\geq 0 \\\\ 0 & x < 0 \\end{cases}$$
求E(X)和D(X)。
答案2
根据概率分布函数的公式有:
$$E(X)=\\int_{-\\infty}^{+\\infty}xf_X(x)dx =
\\int_{0}^{+\\infty}x\\frac{1}{3}e^{-\\frac{x}{3}}dx=3$$ $$D(X)=E(X^2)-(E(X))^2=\\int_{-
\\infty}^{+\\infty}x^2f_X(x)dx-
(E(X))^2=\\int_{0}^{+\\infty}x^2\\frac{1}{3}e^{-
\\frac{x}{3}}dx-9=\\frac{27}{4}$$
第二部分随机过程
练习题3
设二阶矩有限的离散时间随机过程X n的均值序列为m n,自相关
函数为R n(i,j)=E(X i−m i)(X j−m j),其中 $0 \\leq i,j \\leq N$。
若m n=n2,R n(i,j)=ij(i+j),求 $E(\\sum_{n=0}^N X_n)$。
答案3
利用积分和求和的交换性有:
$$E(\\sum_{n=0}^N X_n) = \\sum_{n=0}^N E(X_n) =
\\sum_{n=0}^N m_n = \\sum_{n=0}^N n^2 =
\\frac{N(N+1)(2N+1)}{6}$$
第三部分随机信号的描述和分析
练习题4
若随机过程X(t)的自相关函数为 $R_X(\\tau)$,证明
$R_X(\\tau)$ 为偶函数。
答案4
根据自相关函数的定义有:
$$R_X(\\tau) = E(X(t)X(t+\\tau))$$
因此有:
$$R_X(-\\tau) = E(X(t-\\tau)X(t)) = E(X(t)X(t-\\tau)) = R_X(\\tau)$$
因此 $R_X(\\tau)$ 是偶函数。
练习题5
已知内存存储器存储信号x(t),要求将其转换为数字信号x(n),计算采样间隔。
答案5
根据采样定理有:
$$T_s \\leq \\frac{1}{2B}$$
其中B为信号带宽,T s为采样间隔。
因此可以先确定信号极限频率B,然后计算采样间隔。