2.2整式的加减练习题及答案初一数学
- 格式:doc
- 大小:122.00 KB
- 文档页数:4
七年级数学整式的加减练习题及答案七年级数学整式的加减练习题及答案一、选择题1.下列说法中正确的是. A.单项式?2xy32的系数是-2,次数是2B.单项式a的系数是0,次数也是0C.25ab3c的系数是1,次数是10D.单项式ab72的系数是?217,次数是32.若单项式a4b?2m?1与?2ambm?7是同类项,则m的值为. A.4B.2或-2C.D.-2.计算-的结果是.A.a2-5a+6B.7a2-5a- C.a2+a- D.a2+a+6.当a?A.62329,b?32时,代数式2[3?1]?a的值为.1B.11 C.12323D.135.如果长方形周长为4a,一边长为a+b,,则另一边长为.A.3a-b B.2a-2b C.a-b D.a-3b.一个两位数,十位数字是a,个位数字是b,则这个两位数可表示为.A.ab B.10a +b C.10b +a D.a +b7.观察右图给出的四个点阵,s表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数s为..A.3n- B.3n-1 C.4n+1D.4n-. 长方形的一边长为2a+b,另一边比它大a-b,则周长为A.10a+2b B.5a+b C.7a+bD.10a-b. 两个同类项的和是A.单项式B.多项式C.可能是单项式也可能是多项式D.以上都不对10、如果A是3次多项式,B也是3次多项式,那么A+B一定是次多项式。
次数不低于3次的多项式。
3次多项式。
次数不高于3次的整式。
二、填空题 1.单项式?3xyz523的系数是___________,次数是___________.2.2a4+a3b2-5a2b3+a-1是____次____项式.它的第三项是_________.把它按a的升幂排列是____________________________.. 计算5ab?4a2b2?的结果为______________.4.一个三角形的第一条边长为cm,第二条边比第一条边的2倍长bcm.则第三条边x的取值范围是________________________________..如下图是小明用火柴搭的1条、2条、3条“金鱼”??,则搭n条“金鱼”需要火柴______根.1条条条6. 观察下列等式9-1=8,16-4=12,25-9=16,36-16=20??这些等式反映自然数间的某种规律,设n表示自然数,用关于n 的等式表示这个规律为_______________________________.7.如下图,阴影部分的面积用整式表示为________________________.8. 若:?2axbx?y与5ab的和仍是单项式,则x?y?259.若3a2bn与5amb4所得的差是单项式,则m= ______ n= ______. 10.当k=______时,多项式2x2-7kxy+3y2+7xy+5y 中不含xy 项.三、解答题1.请写出同时含有字母a、b、c,且系数为-1的所有五次单项式?2.计算: xy215xy26x?10x212x25xx2y?3xy22yx2y2xa2b?[2ab2?3]2?3?43.先化简再求值9y-{159-[4y--10x]+2y},其中x=-3,y=2.x2?y2??,其中x??1,y?2.4.一个四边形的周长是48厘米,已知第一条边长a 厘米,第二条边比第一条边的2倍长3厘米,第三条边等于第一、二两条边的和,写出表示第四条边长的整式.5.大客车上原有人,中途下去一半人,又上车若干人,使车上共有乘客人,问中途上车乘客是多少人?当a=10,b =8时,上车乘客是多少人?6.若多项式4x2-6xy+2x-3y与ax2+bxy+3ax-2by的和不含二次项,求a、b的值。
整式的加减综合练习 【例题精选】:例1:如果()m x y n +-1221是关于x y ,的五次单项式,那么m n ,应满足什么条件?分析:单项式的概念要清楚,(1)数字与字母的积是单项式,(2)单项式的次数是所有字母指数和,所以题目中关于x y ,是五次单项式则m n ,应满足:215+-=n ;()n m m =+≠≠-41012,,,解:∵()m +≠112 ∴m ≠-1 ()∵∴即∴,2121215414+-=+-+-==≠-=n n n n m n例2:将多项式a a b a b b a b ab 5423532431176---++重新排列:(1)按a 的降幂排列:(2)按b 的降幂排列:分析:(1)找到字母a 的最高次项,a 5依次是含a 4项-34a b ,含a 3项,+732a b ,含a 2项,-1123a b ,含a 项,+64ab ,不含a 的项,-b 5。
(2)同上。
解:(1)按a 的降幂排列原式=a a b a b a b ab b 5432234537116-+-+-;(2)按b 的降幂排列是:原式=-+-+-+b ab a b a b a b a 5423324561173。
例3:合并下列各多项式中的同类项。
(1)436574101223333xy x x y xy x x +--++--2 (2)3512534223x x x x x ---+-+分析:1、首先要找出各题中的同类项,并且标出。
注意:两相同,即所含字母同,相同字母的指数也相同,2、合并系数相加,两不变,(字母和字母的指数不变),3、没有同类项的不可丢掉,4、某项系数若是带分数应化成假分数。
解:原式=()()4534127106233-++-⎛⎝ ⎫⎭⎪+--xy x x y=-+--xy x x y 23313236()()()原式=-+--+-++=-++3352154744233x x x x x例4:化简:()[]1035104p p p -+--解:方法一:原式[]=-+--1035104p p p[]=--=-+=+1081410814214p p p p p方法二:原式()=---+1035104p p p =--++=+1035104214p p p p 说明:该题化简时,显然要用到去括号法则,如遇到多层括号时,常由里向外顺序去括号,并且去一层后就可合并一次同类项,以减少下一步去括号时的麻烦。
《2.2 整式的加减》试题(3)一、选择题1.下列运算中,正确的是()A.﹣(a﹣b)=﹣a﹣b B.﹣2(x﹣3y)=﹣2x+3yC.2(a+b)=2a+b D.5x2﹣2x2=3x22.下列各组单项式中,不是同类项的是()A.4a2y与B.xy3与﹣xy3C.2abx2与x2ba D.7a2n与﹣9an23.下列运算正确的是()A.3a+2a=5a2B.3a﹣a=3C.2a3+3a2=5a5D.﹣0.25ab+ab=04.下列各式中,计算正确的是()A.2x+3x=5x2B.4a2b﹣5ba2=﹣a2bC.2a+2b=4ab D.x3﹣x2=x5.如果单项式x a+b y3与5x2y b的和仍是单项式,则|a﹣b|的值为()A.4B.3C.2D.16.若4xy2与xy m是同类项,则m的值为()A.1B.2C.3D.47.不改变式子a﹣(2b﹣4c)的值,去掉括号后结果正确的是()A.a﹣2b+4c B.a+2b+4c C.a﹣2b﹣4c D.a+2b﹣4c 8.下列运算正确的是()A.3a+2b=5ab B.﹣y2﹣y=﹣y3C.5a2b﹣3ba2=2a2b D.﹣(6x+2y)=﹣6x+2y9.当m=﹣1时,代数式8m2﹣[4m2﹣2m﹣(2m2﹣5m)]的值是()A.0B.6C.﹣6D.9 10.下列各组计算中正确的是()A.3a2﹣4a2=﹣1B.2a+3b=5abC.3x2﹣x2=2x2D.﹣3x2+5y2=﹣8y2第1页(共2页)第2页(共2页)二、填空题11.若x +y =3,xy =2,则(x +2)+(y ﹣2xy )= .12.有理数a 、b 、c 在数轴上的位置如图,则|a +c |+|c ﹣b |﹣|a +b |= .13.去括号并按x 的降幂排列:9﹣3(x 2﹣2x ﹣x 3)= . 14.化简2x 2+3x 2﹣6x 2的结果为 . 15.若a 2n +1b 2与﹣5b 2a 3n﹣2是同类项,则n=.三、解答题16.化简:5a 2b ﹣2(a 2b ﹣2ab 2)﹣3(2ab 2﹣a 2b ). 17.已知:①单项式x m y 3与﹣xy n (其中m 、n 为常数)是同类项,②多项式x 2+ax +b(其中a 、b 为常数)和x 2+2x ﹣3+(2x ﹣1)相等.求(a +b )+(﹣2m )n 的值. 18.(1)如图,数轴上的点A ,B ,C 分别表示有理数a ,b ,c .化简:|a |﹣|b +2|﹣|a +c |﹣|b +1|+|1﹣c |;(2)已知关于x 、y 的多项式(3y ﹣ax 2﹣3x ﹣1)﹣(﹣y +bx ﹣2x 2)中不含x 项和x 2项,且﹣x +b =0,求代数式:﹣x ﹣b 的值.19.先去括号,再合并同类项 (1)2(2b ﹣3a )+3(2a ﹣3b ) (2)4a 2+2(3ab ﹣2a 2)﹣(7ab ﹣1)20.阅读材料:我们知道,4x ﹣2x +x =(4﹣2+1)x =3x ,类似地,我们把(a +b )看成一个整体,则4(a +b )﹣2(a +b )+(a +b )=(4﹣2+1)(a +b )=3(a +b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛. 尝试应用:(1)把(a ﹣b )2看成一个整体,合并3(a ﹣b )2﹣6(a ﹣b )2+2(a ﹣b )2的结果是 .(2)已知x 2﹣2y =4,求3x 2﹣6y ﹣21的值; 拓展探索:(3)已知a ﹣2b =3,2b ﹣c =﹣5,c ﹣d =10,求(a ﹣c )+(2b ﹣d )﹣(2b ﹣c )的值.。
七年级上整式的加减同步试题及解析七年级上整式的加减同步试题及解析一、选择题(共21小题)1.化简﹣2a+3a的结果是( )A.﹣aB.aC.5aD.﹣5a2.化简:a+a=( )A.2B.a2C.2a2D.2a3.如果单项式﹣xa+1y3与是同类项,那么a、b的值分别为( )A.a=2,b=3B.a=1,b=2C.a=1,b=3D.a=2,b=24.已知代数式﹣3xm﹣1y3与xnym+n是同类项,那么m、n的值分别是( )A. B. C. D.5.计算5x2﹣2x2的结果是( )A.3B.3xC.3x2D.3x46.计算﹣2x2+3x2的结果为( )A.﹣5x2B.5x2C.﹣x2D.x27.下列各式中,与2a的同类项的是( )A.3aB.2abC.﹣3a2D.a2b8.下列计算中,正确的是( )A.2a+3b=5abB.(3a3)2=6a6C.a6÷a2=a3D.﹣3a+2a=﹣a9.化简﹣5ab+4ab的结果是( )A.﹣1B.aC.bD.﹣ab10.计算﹣a2+3a2的结果为( )A.2a2B.﹣2a2C.4a2D.﹣4a211在下列单项式中,与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x12.下列各组中,不是同类项的是( )A.52与25B.﹣ab与baC.0.2a2b与﹣ a2bD.a2b3与﹣a3b213.下列运算中,正确的是( )A.3a+2b=5abB.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=114.化简﹣16(x﹣0.5)的结果是( )A.﹣16x﹣0.5B.﹣16x+0.5C.16x﹣8D.﹣16x+815.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=( )A.2B.3C.6D.x+316.计算3a﹣2a的结果正确的是( )A.1B.aC.﹣aD.﹣5a17.若﹣5x2ym与xny是同类项,则m+n的值为( )A.1B.2C.3D.418.计算﹣3(x﹣2y)+4(x﹣2y)的结果是( )A.x﹣2yB.x+2yC.﹣x﹣2yD.﹣x+2y19.把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,那么钢丝大约需要加长( )A.102cmB.104cmC.106cmD.108cm20.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“ ”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )A.2a﹣3bB.4a﹣8bC.2a﹣4bD.4a﹣10b21.若﹣2amb4与5an+2b2m+n可以合并成一项,则mn的值是( )A.2B.0C.﹣1D.1二、填空题(共6小题)22.计算:2x+x= .23.化简:2x﹣x= .24.计算:3(2x+1)﹣6x= .25.如果单项式﹣xyb+1与xa﹣2y3是同类项,那么(a﹣b)2015= .26.计算:2a2+3a2= .27.如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2= .三、解答题(共1小题)28.先化简,再求值:2x+7+3x﹣2,其中x=2.人教新版七年级数学上册同步试卷:2.2 整式的加减参考答案与试题解析一、选择题(共21小题)1.化简﹣2a+3a的结果是( )A.﹣aB.aC.5aD.﹣5a【考点】合并同类项.【分析】合并同类项,系数相加字母和字母的指数不变.【解答】解:﹣2a+3a=(﹣2+3)a=a.故选B.【点评】本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.2.化简:a+a=( )A.2B.a2C.2a2D.2a【考点】合并同类项.【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,由此计算即可.【解答】解:原式=2a.故选D.【点评】本题考查了合并同类项的运算,属于基础题,掌握合并同类项的法则是关键.3.如果单项式﹣xa+1y3与是同类项,那么a、b的值分别为( )A.a=2,b=3B.a=1,b=2C.a=1,b=3D.a=2,b=2【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a,b的值.【解答】解:根据题意得:,则a=1,b=3.故选:C.【点评】考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点4.已知代数式﹣3xm﹣1y3与xnym+n是同类项,那么m、n的值分别是( )A. B. C. D.【考点】同类项;解二元一次方程组.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值.【解答】解:由同类项的定义,得,解得 .故选C.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.5.计算5x2﹣2x2的结果是( )A.3B.3xC.3x2D.3x4【考点】合并同类项.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进行运算即可.【解答】解:原式=5x2﹣2x2=3x2.故选:C.【点评】此题考查了合并同类项的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.6.计算﹣2x2+3x2的结果为( )A.﹣5x2B.5x2C.﹣x2D.x2【考点】合并同类项.【分析】根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变即可求解.【解答】解:原式=(﹣2+3)x2=x2,故选D.【点评】本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.7.下列各式中,与2a的同类项的是( )A.3aB.2abC.﹣3a2D.a2b【考点】同类项.【分析】本题是同类项的定义的考查,同类项是所含的字母相同,并且相同字母的指数也相同的项.中的字母是a,a的指数为1,【解答】解:2a中的字母是a,a的指数为1,A、3a中的字母是a,a的指数为1,故A选项正确;B、2ab中字母为a、b,故B选项错误;C、中字母a的指数为2,故C选项错误;D、字母与字母指数都不同,故D选项错误,故选:A.【点评】考查了同类项的定义.同类项一定要记住两个相同:同类项是所含的字母相同,并且相同字母的指数也相同.8.下列计算中,正确的`是( )A.2a+3b=5abB.(3a3)2=6a6C.a6÷a2=a3D.﹣3a+2a=﹣a【考点】合并同类项;幂的乘方与积的乘方.【专题】计算题.【分析】根据合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.【解答】解:A、不是同类二次根式,不能加减,故A选项错误;B、(3a3)2=9a6≠6a6,故B选项错误;C、a6÷a2=a4,故C选项错误;D、﹣3a+2a=﹣a,故D选项正确.故选:D.【点评】本题主要考查了合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;熟记计算法则是关键.9.化简﹣5ab+4ab的结果是( )A.﹣1B.aC.bD.﹣ab【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变作答.【解答】解:﹣5ab+4ab=(﹣5+4)ab=﹣ab故选:D.【点评】本题考查了合并同类项的法则.注意掌握合并同类项时把系数相加减,字母与字母的指数不变,属于基础题.10.计算﹣a2+3a2的结果为( )A.2a2B.﹣2a2C.4a2D.﹣4a2【考点】合并同类项.【分析】运用合并同类项的方法计算.【解答】解:﹣a2+3a2=2a2.故选:A.【点评】本题考查了合并同类项法则,解题的关键是掌握相关运算的法则.11.在下列单项式中,与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关.【解答】解:与2xy是同类项的是xy.故选:C.【点评】此题考查同类项,关键是根据同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,与系数无关.12.下列各组中,不是同类项的是( )A.52与25B.﹣ab与baC.0.2a2b与﹣ a2bD.a2b3与﹣a3b2【考点】同类项.【专题】计算题.【分析】利用同类项的定义判断即可.【解答】解:不是同类项的是a2b3与﹣a3b2.故选:D.【七年级上整式的加减同步试题及解析】。
人教版七年级上册第二章整式的加减2.2.3整式的加减培优训练一.选择题(共10小题,3*10=30)1.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3 B.2x+9C.8x-3 D.18x-32.化简a-(5a-3b)+(2b-a)的结果是()A.7a-bB.-5a+5bC.7a+5b D.-5a-b3. 若a-b=2,b-c=-3,则a-c等于( )A.1 B.-1C.5 D.-54.已知A=5a-3b,B=-6a+4b,则A-B等于()A.-a+bB.11a+bC.11a-7b D.-a-7b5.一个多项式与x2-2x+1的和是3x-2,则这个多项式为( )A.x2-5x+3 B.-x2+x-1C.-x2+5x-3 D.x2-5x-136.用2a+5b减去4a-4b的一半,应当得到( )A.4a-b B.b-aC.a-9b D.7b7.如果(3x2-2)-(3x2-y)=-2,那么代数式(x+y)+3(x-y)-4(x-y-2)的值是() A.4B.20C.8D.-68.若P是三次多项式,Q也是三次多项式,P+Q一定是()A .三次多项式B .六次多项式C .不高于三次的多项式或单项式D .单项式9.多项式36x 2-3x +5与3x 3+12mx 2-5x +7相加后,不含二次项,则常数m 的值是( )A .2B .-3C .-2D .-810.一家商店以每包a 元的价格买进30包甲种茶叶,又以每包b 元的价格买进60包乙种茶叶.如果以每包a +b 2的价格卖出这两种茶叶,那么卖完后,这家商店( ) A .赚了 B .赔了C .不赔不赚D .不能确定赔或赚二.填空题(共8小题,3*8=24)11.化简:(x 2+y 2)-3(x 2-2y 2)=________________.12.一个长方形的一边长是2a +3b ,另一边的长是a +b ,则这个长方形的周长是________.13.某客车上原有(4a -2b)人,中途有一半人下车,又上来若干人,这时车上共有乘客(10a -6b)人,则中途上车的乘客有_____________人.14.三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树____________棵.15.三角形的周长为48,第一边长为4a +3b ,第二边比第一边的2倍少2a -b ,则第三边的长为_______________.16. 如果关于x 的多项式(8x 2-2nx +14)-(8x 1-m -6x +5)的值与x 无关,则m +n =___.17.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红年龄的12还多1岁,则这三名同学的年龄之和是____________. 18. 已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么,图(1)阴影部分的周长与图(2)阴影部分的周长的差是______________.(用含a 的代数式表示)三.解答题(共7小题,46分)19. (6分)化简:(1)(9x-6y)-(5x-4y);(2)2(m2+2m)-(5m-m2);(3)3(2x2-y2)-2(3y2-2x2).20. (6分)化简,再求值:(1)(x3-2x2+x-4)-2(x3-x2+2x-2),其中x=-2;(2)3x2y-[2xy2-2(xy-32x2y)]+3xy2-xy,其中x=3,y=-13.21. (6分)计算:(1)(x2-y2)-3(x2-2y2);(2)(9a-2b)-[8a-(5b-2a)]+2c;(3)2a2-3[2a-2(-a2+2a-1)-4].22. (6分) 黑板上有一道题,是一个多项式减去3x2-5x+1,某同学由于大意,将减号抄成了加号,得出的结果是5x2+3x-7,求出这道题的正确结果.23. (6分)某校有A,B,C三个课外活动小组,A小组有学生(x+2y)名,B小组学生人数是A小组学生人数的3倍,C小组比A小组多3名学生,问A,B,C三个课外活动小组共有多少名学生?24. (8分)已知多项式A,B,其中B=5x2+3x-4,马小虎同学在计算“3A+B”时,误将“3A+B”看成了“A+3B”,求得的结果为12x2-6x+7.求正确答案.25. (8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:+(-3x2+5x-7)=-2x2+3x-6.(1)求所捂的多项式;(2)若x为正整数,任取几个x值并求出所捂多项式的值,你能发现什么规律?(3)若所捂多项式的值为144,请直接写出正整数x的取值.参考答案1-5ABBCC 6-10DCCBD11. -2x2+7y212.6a+8b13. (8a-5b)14. (4x+6)15. 48-10a-10b16. 217. (4m-5)岁18.a19. 解:(1)原式=9x-6y-5x+4y=4x-2y(2)原式=2m2+4m-5m+m2=3m2-m(3)原式=6x2-3y2-6y2+4x2=10x2-9y220. 解:(1)原式=x3-2x2+x-4-2x3+2x2-4x+4=-x3-3x. 当x=-2时,原式=-(-2)3-3×(-2)=14解:原式=3x2y-2xy2+2xy-3x2y+3xy2-xy=xy2+xy.当x=3,y=-13时,原式=3×(-13)2+3×(-13)=-2321. 解:(1)原式=x2-y2-3x2+6y2=-2x2+5y2(2)原式=9a-2b-(8a-5b+2a)+2c=9a-2b-8a+5b-2a+2c=-a+3b+2c(3)原式=2a2-3(2a+2a2-4a+2-4)=2a2-3(2a2-2a-2)=2a2-6a2+6a+6=-4a2+6a+622. 解:该多项式为(5x2+3x-7)-(3x2-5x+1)=2x2+8x-8.所以正确的结果为(2x2+8x-8)-(3x2-5x+1)=-x2+13x-923. 解:(x+2y)+3(x+2y)+(x+2y)+3=5(x+2y)+3=5x+10y+3.答:A,B,C三个课外活动小组共有(5x+10y+3)名学生24. 解:根据题意知A=12x2-6x+7-3B=12x2-6x+7-3(5x2+3x-4)=12x2-6x+7-15x2-9x+12=-3x2-15x+19,则3A+B=3(-3x2-15x+19)+5x2+3x-4=-9x2-45x+57+5x2+3x-4=-4x2-42x+5325. 解:(1)(-2x2+3x-6)-(-3x2+5x-7)=-2x2+3x-6+3x2-5x+7=x2-2x+1,即所捂的多项式是x2-2x+1(2)当x=1时,x2-2x+1=1-2+1=0;当x=2时,x2-2x+1=4-4+1=1;当x=3时,x2-2x+1=9-6+1=4;当x=4时,x2-2x+1=16-8+1=9,由上可以发现规律是所捂多项式的值是(x-1)2(3)x=13。
2.2整式的加减(第一课时)教学目标知识目标1、理解同类项的概念;2、掌握合并同类项的法则,能进行同类项的合并。
能力目标1、在经历从具体问题抽象出同类项、合并同类项法则的过程中,发展抽象概括能力;2、通过化简问题引出同类项的概念,发展学生的探究能力。
情感目标通过参与同类项、合并同类项法则的数学探究活动,提高对数学学习的好奇心和求知欲;重点:同类项的概念和合并同类项的法则。
难点:对同类项的概念的理解,学会合并同类项。
教学流程具体情景引入问题设置步步引导同类项的定义合并同类项的法则(火眼金睛)巩固定义范例分析,巩固练习募然回首教学过程一、具体情景引入2010年3月28日上午,在郑州和开封之间举行了一场国际性的健身运动,大家知道是什么活动吗?对,是中国郑开国际马拉松赛在这里隆重举行。
爱好长跑运动的小明,看到宽敞的郑开大道,决定通过长跑亲身体验一下郑州至开封的距离。
在开封至中牟段小明的平均长跑速度为16千米/时,中牟至郑州段由于体力下降,小明的平均速度为10千米/时。
小明在中牟至郑州段所用的时间是开封至中牟段的 3.1倍,如果小明开封至中牟段所用的时间为t小时,能用含t的式子表示郑开大道的全长吗?学生回答。
郑开大道的全长是:16t+10 ×3.1t即: 16t+31t多项式中的字母表示数,类比数的运算,应如何化简该式呢?其依据是什么?与同伴交流。
这个式子是两个单项式的和,两个单项式中都含有相同的字母t,因此,我们可以用乘法分配律,把它们的系数相加,再乘以相同的因式t。
二、问题设置,步步引导同学们能否用乘法分配律把下列多项式进行化简?学生回答。
热身运动判别下列多项式是否能化简,若能,请你将它们化简,若不能,请说明理由。
(1) 0.2ab -0.4ab =(0.2-0.4)ab=-0.2ab(2) x 2y -3xy 2 不能(3)-m 2+m 2=(-1+1)m 2=0(4) -3x 3y -31x 3y= (-3-31 ) x 3=-311x 3y (5) n 3+m 3 不能上面的(1)、(3)、(4)能够化简,再对比一下不能化简的几个式子,你能发现这些能化简的式子的各项的共同特点吗?与同伴交流 特点:1、各项所含的字母相同2、相同字母的指数分别相同像a 与2a 、0.2ab 与-0.4ab 、-m 2与m 2、-3x 3y 与-31x 3y 这样所含字母相同,并且相同字母的指数也相同的项叫做同类项。
七年级上册第2.2整式的加减
一、选择题(每小题3分,共24分)
1、下列各组中,不是同类项的是( )
A、2235.0abba与 B、yxyx2222与 C、315与 D、mmxx32与
2、若七个连续整数中间的一个数为n,则这七个数的和为( )
A、0 B、7n C、-7n D、无法确定
3、若a3与52a互为相反数,则a等于( )
A、5 B、-1 C、1 D、-5
4、下列去括号错误的共有( )
①cabcba)(;②dcbadcba)(;③cbacba2)(2;
④baabaabaa222)]([
A、1个 B、2个 C、3个 D、4个
5、计算:)](2[nmmnm等于( )
A、n2 B、m2 C、nm24 D、mn22
6、式子223ba与22ba的差是( )
A、22a B、2222ba C、24a D、2224ba
7、cba的相反数是( )
A、cba B、cba C、cba D、cba
8、减去m3等于5352mm的式子是( )
A、)1(52m B、5652mm C、)1(52m D、)565(2mm
二、填空题(每小题3分,共24分)
1、若4243babamn与是同类项,则m=____,n=____。
2、在xxxx6214722中,27x与___同类项,x6与___是同类项,-2与
__是同类项。
3、单项式abbaababba3,4,3,2,3222的和为____。
4、把多项式3223535yxyxxy按字母x的指数从大到小排列是:____
5、若4)13(22aaAaa,则A=_____。
6、化简:_______77_______,653121_________,5722babaaaaxx
7、去括号:__________)(32________;)2(2dcbayx
8、已知:_______2,3,2cbacbca则
三、解答题(52分)
1、去括号并合并同类项
①)22(aa; ②)32(3)5(yxyx;
③)(2)(2babaa; ④)32(2[)3(1yzxxxy
2、计算
①22222323xyxyyxyx;
②)32(3)23(4)(5bababa;
③)377()5(322222ababbabaa
3、化简求值
①2),45()54(3223xxxxx其中
②43,32),12121()3232(yxxyxyxy其中
4、试用含x的多项式表示如图所示中阴影部分的面积。
5、已知222222324,cbaBcbaA,且A+B+C=0。
求(1)多项式C。
(2)若3,1,1cba,求A+B的值。
6、三个队植树,第一队种a棵,第二队种的比第一队种的树的2倍还多8棵,第三队种的
比第二队种的树的一半少6棵,问三个队共种多少棵树?并求当100a棵时,三个队种树
的总棵数。
参考答案:
一、
1、A 2、B 3、B 4、C 5、C 6、B 7、B 8、B
二、
1、2,4 2、1,4,2xx 3、2235ababba 4、5533223xyyxyx
5、12x 6、2x,a,0 7、dcbayx3332,42 8、-1
三、
1、
解:①原式=aaa222
②原式=yxyxyx811965
③原式=bababaa222
④原式=yzxxyyzxxxy63316431
2、
解:①原式=222222)23()23(xyyxxyxyyxyx
②原式=babbbaaabababa4)985()6125(9681255
③原式=22222226637753babaababbabaa
3、
(1)
721434554233223时,原式=当解:原式xxxxxxx
(2)
4743,3212121323
2
时,原式=-,解:原式yxxyxyxy
4、
xxxxxxxxx2432.3)2(S222=解:
阴影
5、
解:(1)因为A+B+C=0,所以
222222222222
233)233()324()(cbacbacbacbaBAC
(2)3,1,1cba,A+B=18
6、
解:第二队种树的棵数为82a,第三队种树的棵数为2646)82(21aaa,
三个队共种的棵数为64)2()82(aaaa,当100a时,三队种树的总棵数为
40661004
(棵)。