2
知识点中的整体思想
• • • • • • • • • • 第五章 数量与数量之间的关系 第六章 整式的加减 第九章 二元一次方程组 第十章 整式乘法与因式分解 第十一章 三角形 第十四章 分式 第十五章 轴对称 第十六章 勾股定理 第十七章 实数 第二十二章 四边形 第二十五章 一次函数 第二十八章 一元二次方程 第二十九章 相似形
12
第九章 二元一次方程组
一、巧用“整体思想”妙解方程组---整体代 入或整体加减 x 1 例1、解方程组 : 3 2 y
2( x 1) y 11
11
五、整体去括号
化简
2x y 2xy 3x y 2(3x y 2xy) 4xy
2 2 2
2[思路分析] 受一个“-”号影响,应变号; 受 两个“-”号影响,不变号;
[规律总结]在含有多重括号的运算式中,括号里的项 是否变号,只与该项以及该项所在的各层括号前面的 “-”号有关,而与其前面的“+”号无关.因此只 要从外向里逐层确定影响该项的“-”号的个数就 可整体去括号.当某项受奇数个“-”号影响时该项 变号,受偶数个“-”号影响时该项不变号.
[
当变形转化,再整体代入,是经常使用的一种方法.
规律总结]把计算式中的某部分看作整体或先作适
8
二、整体转化法
计算(3a+2b-c+5)(3a-2b+c+5) [思路分析]将(3a+5)看成相同的项,将(2b-c) 看成相反的项,问题就转化平方差公式,计算起 来就方便了. 2 2 2 2 2 ( 3 a 5 ) ( 2 b c ) 9 a 30 a 25 4 b 4 bc c 解:原式=
1
整体思想概述:
整体思想方法是指用“集成”的眼光,把某些式 子或图形看成一个整体,把握已知和所求之间的关联, 进行有目的、有意识的整体处理来解决问题的方法. 从整体出发的处理方法,体现了一种着眼全局、通盘 考虑的整体观念. 中学数学中,整体思想的应用广泛. 运用整体思想方法的三部曲:(1)从整体出发,高 瞻远瞩地统帅局部;(2)通过对局部的研究,酝酿 总体解决的方案;(3)回到整体,实现解决整个问 题的总目标. 整体思想方法在代数式的化简与求值、解方程 (组)、几何解证等方面都有广泛的应用,整体代入、 整体运算、整体设元、整体处理、几何中的补形等都 是整体思想方法在解数学问题中的具体运用。