第18章 基于罚函数的粒子群算法的函数寻优
- 格式:ppt
- 大小:509.00 KB
- 文档页数:10
基于粒子群算法的函数寻优代码详解首先,我们需要定义问题的目标函数。
在本案例中,我们以寻找函数f(x)=x^2的最小值为例,目标是找到使得f(x)最小化的x的值。
接下来,我们需要初始化一群粒子。
每个粒子都有一个位置向量x和一个速度向量v。
粒子的位置和速度将在算法的迭代过程中被更新。
初始化粒子的位置和速度可以通过随机生成的方式实现,即将每个粒子的初始位置和速度设为一个在问题空间中随机选择的点。
在每次迭代中,每个粒子的速度和位置将按照以下过程进行更新:1.对粒子i,计算其当前位置的目标函数值,并将该值与其历史最优值进行比较。
如果当前值更优,则将其作为粒子i的历史最优值。
2.对粒子i,计算其当前位置的目标函数值,并与整个群体中的最优值进行比较。
如果当前值更优,则将其作为全局最优值。
3. 对粒子i,更新其速度和位置。
首先根据历史最优位置和全局最优位置计算两个加速度项。
然后根据公式v(i+1) = w * v(i) + c1 * rand( * (pbest(i) - x(i)) + c2 * rand( * (gbest - x(i))来更新速度,其中w为惯性权重,c1和c2为加速系数,rand(为[0,1]之间的随机数,pbest(i)为粒子i的历史最优位置,gbest为全局最优位置。
最后,更新位置为x(i+1) = x(i) + v(i+1)。
4.如果满足终止条件(如达到最大迭代次数或达到收敛阈值),则停止迭代。
否则,返回步骤2下面是一个基于粒子群算法的函数寻优的代码示例:```pythonimport randomclass Particle:def __init__(self, position, velocity):self.position = positionself.velocity = velocityself.best_position = positiondef objective_function(x):return x ** 2def initialize_particles(num_particles, search_space):particles = []for _ in range(num_particles):position = [random.uniform(search_space[0], search_space[1])] velocity = [random.uniform(-1, 1)]particles.append(Particle(position, velocity))return particlesdef update_particle(particle, inertia_weight,cognitive_weight, social_weight, global_best):current_fitness = objective_function(particle.position[0])best_fitness = objective_function(particle.best_position[0])if current_fitness < best_fitness:particle.best_position = particle.position.copyif current_fitness <objective_function(global_best.position[0]):global_best.position = particle.position.copyinertia_term = inertia_weight * particle.velocity[0]cognitive_term = cognitive_weight * random.random( * (particle.best_position[0] - particle.position[0])social_term = social_weight * random.random( *(global_best.position[0] - particle.position[0])particle.velocity[0] = inertia_term + cognitive_term +social_termparticle.position[0] = particle.position[0] +particle.velocity[0]def optimize(max_iterations, num_particles, search_space):inertia_weight = 0.5cognitive_weight = 0.9social_weight = 0.9particles = initialize_particles(num_particles, search_space)global_best = min(particles, key=lambda p:objective_function(p.position[0]))for _ in range(max_iterations):for particle in particles:update_particle(particle, inertia_weight, cognitive_weight, social_weight, global_best)return global_best.position[0]#使用示例max_iterations = 100num_particles = 30search_space = [-10, 10]best_solution = optimize(max_iterations, num_particles, search_space)print(f"Best solution: {best_solution}")print(f"Objective function value:{objective_function(best_solution)}")```以上代码示例实现了一个简单的基于粒子群算法的函数寻优。
基于自适应罚函数优化粒子群的WSN定位算法
刘宏;韩亚波;张时斌;关业欢
【期刊名称】《传感技术学报》
【年(卷),期】2018(031)008
【摘要】针对无线传感器网络节点定位问题,提出了一种自适应罚函数优化粒子群的算法.算法在定位过程中,首先运用极大似然估计法进行粗略定位,然后通过对计算误差和测距误差之间差值进行加权处理,限制搜索区域,根据群体中可行解比例的大小,自适应调节罚因子的大小进行迭代寻优,最终得到节点坐标.仿真结果表明:算法较好地克服了传统粒子群算法收敛速度慢,易陷入局部极小点等问题,对比同类算法,算法具有更高的定位精度和较快的收敛速,且稳定性更高.
【总页数】6页(P1253-1257,1265)
【作者】刘宏;韩亚波;张时斌;关业欢
【作者单位】江西理工大学电气工程与自动化学院,江西赣州341000;江西理工大学电气工程与自动化学院,江西赣州341000;江西理工大学电气工程与自动化学院,江西赣州341000;江西理工大学电气工程与自动化学院,江西赣州341000
【正文语种】中文
【中图分类】TP393
【相关文献】
1.基于自适应变异二进制粒子群算法的WSN区域覆盖问题研究 [J], 李雨江;潘博
2.煤矿井下WSN中基于自适应粒子群聚类算法的多sink节点部署 [J], 胡长俊;袁
树杰
3.基于模拟退火自适应粒子群算法的WSN拓扑抗毁性方法研究 [J], 宋玉龙;王磊;武欣嵘;曾维军
4.基于WSN分簇的自适应粒子群优化算法 [J], 宋兆函
5.一种基于自适应免疫粒子群算法的多峰函数优化 [J], 何庆
因版权原因,仅展示原文概要,查看原文内容请购买。
粒⼦群优化算法-参数寻优⼀、粒⼦群算法的概念 粒⼦群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解. PSO的优势:在于简单容易实现并且没有许多参数的调节。
⽬前已被⼴泛应⽤于函数优化、神经⽹络训练、模糊系统控制以及其他遗传算法的应⽤领域。
⼆、粒⼦群算法分析1、基本思想 粒⼦群算法通过设计⼀种⽆质量的粒⼦来模拟鸟群中的鸟,粒⼦仅具有两个属性:速度和位置,速度代表移动的快慢,位置代表移动的⽅向。
每个粒⼦在搜索空间中单独的搜寻最优解,并将其记为当前个体极值,并将个体极值与整个粒⼦群⾥的其他粒⼦共享,找到最优的那个个体极值作为整个粒⼦群的当前全局最优解,粒⼦群中的所有粒⼦根据⾃⼰找到的当前个体极值和整个粒⼦群共享的当前全局最优解来调整⾃⼰的速度和位置。
2、粒⼦群算法的主要步骤如下:(1)对粒⼦群的随机位置和速度进⾏初始设定,同时设定迭代次数。
第⼆步:计算每个粒⼦的适应度值。
(2)对每个粒⼦,将其适应度值与所经历的最好位置Pbest;的适应度值进⾏⽐较,若较好,则将其作为当前的个体最优位置。
(3)对每个粒⼦,将其适应度值与全局所经历的最好位置Gbestg的适应度值进⾏⽐较,若较好,则将其作为当前的全局最优位置。
(4)根据公式(1), (2)对粒⼦的速度和位置进⾏优化,从⽽产⽣新的粒⼦。
(5)如未达到结束条件(通常为最⼤循环数或最⼩误差要求),则返回第⼆步。
3、本案例群体的初始参数列表:maxgen:⼀般为最⼤迭代次数以最⼩误差的要求满⾜的。
粒⼦群算法的最⼤迭代次数,也是终⽌条件数。
c1,c2:加速常数,取随机2左右的值。
w:惯性权重产⽣的。
4、初始运⾏:(1)⾸先测试c1、c2、w的迭代影响:利⽤函数来表⽰各变量:运⾏得:逐渐迭代得:可以看出迭代收敛最早。
随着不断的迭代,最优适应度承不稳定状态。
(2)dim与sizepop的影响:适应度函数维数dim=12:适应度函数维数dim=8:适应度函数维数dim=5:适应度函数维数dim=3:种群规模sizepop=220:种群规模sizepop=200:种群规模sizepop=150:种群规模sizepop=130:将种群规模sizepop调制到<130时,迭代次数⽆法收敛到接近于0,所以判别种群规模sizepop在200最佳。
基于粒子群优化算法的最优化问题求解在当前的科技之中,机器学习、数据分析、人工智能等热门领域中,最优化问题求解显得尤为重要。
而对于最优化问题求解,粒子群优化算法成为了较为热门的解决办法。
一、最优化问题的定义在介绍粒子群算法前,我们先需要了解最优化问题的定义。
最优化问题是指在某一条件前提下,寻找函数的最大值或最小值,以达到“最优解”的目的。
在数学领域中,求解最优化问题属于优化方法的范畴。
二、粒子群算法的定义粒子群算法(Particle Swarm Optimization,PSO)是一种群体智能算法,其基本思想源于对鸟群、鱼群等生物的观察,把问题看作是一个粒子在问题空间中搜索最优解。
每个粒子表示一种可能的解,在搜索的过程中不断地调整其速度和位置,以寻找更优解。
粒子群算法充分利用了种群协同思想和群体智慧,对多峰、非线性问题有着很好的适应性,在机器学习、图像识别等领域有着广泛的应用。
三、粒子群算法的基本思路粒子群算法的基本思路是寻找某个问题目标函数的全局最小值或最大值。
针对最优化问题,我们可以把每个解想象成问题空间中的一个粒子,每次移动到下一个位置时,每个粒子所占的位置都会产生一种速度,粒子的位置在问题空间中会进行搜索,直到寻找到全局最优解或达到预设的迭代终止值。
四、粒子群算法的优点粒子群算法具有以下几个优点:1. 对于非线性多峰问题适用性好:对于搜索空间内容略多、非线性多峰问题,粒子群算法较其他算法如遗传算法、蚁群算法较具优势。
2. 全局寻优:与其他算法相比,粒子群算法在全局寻优方面表现较好。
3. 鲁棒性:由于采用并行搜索模式,粒子群算法也能够不受初始值选择过大或过小等影响,从而更加鲁棒。
五、粒子群算法的局限性粒子群算法虽然在大多数情况下表现优异,但仍然存在以下不足:1. 对于单峰问题的处理能力略弱:若要解决单峰问题,仍需选用其他的优化算法。
2. 收敛速度较慢:粒子群算法需要不断与其他粒子交互,从而增加了迭代次数,进而降低了求解速度。