当前位置:文档之家› 激光焊接工艺技术特点

激光焊接工艺技术特点

激光焊接工艺技术特点
激光焊接工艺技术特点

激光焊接工艺技术特点及应用

激光焊接工艺特点及其影响因素

l、激光的投入能量密度。调整激光照射能量密度的方法主要有:

A、调整激光输出能量(调整激发电压)

B、调整光斑大小(调节出射焦距)

C、改变光斑中的能量分布(改变光纤类型:峰形输出型——GI型光纤、梯形输出型——SI型光纤)

D、改变出射脉冲的宽度和波形

2、材料反射率

大多数金属在激光开始照射时,会将大部分激光能量反射掉,所以,焊接过程开始的瞬间,要相应提高光束的功率。采用脉冲激光缝焊工艺时,可以通过接入引弧板来保证整个焊接段的品质一致性。当金属表面开始熔化或汽化后,其反射率迅速降低。

影响材料对激光束吸收的主要因素

1、温度

室温时金属材料两激光的吸收率一般在20℃以下;当金属温度达到烙点产生熔融和气化后吸收率上升到40~50%;当接近沸点时吸收率可高达90%。

材料的直流电阻率

材料对激光的吸收率与材料的直流电阻率的平方根成正比、与激光波长的平方根成反比关系。

2、激光束的入射角

入射角越大,吸收率越小。当激光垂直于金属表面照射时,金属对激光的吸收率最大。但通常为了保护激光出射镜头,需要维持一定的入射角。

材料的表面状态

为了低反射率,可在金属表面涂上薄薄一层金属粉,但两者必须是能够形成合金的。如铜、金、银可覆盖薄锐层,此时在同样熔深的情况下,焊接所需的能量大约为原来铜、金、银所需的四分一。

3、聚焦性和离焦量

品质优良的YAG激光焊接装置,其聚焦性(光斑大小)是通过装置本身的光路同轴精度、输出光纤和出射头的成像比等来保证。以激光出射焦点正好落在工作上面时的位置为零。离焦量是指焦点离开这个零点的距离量。焦点位置超过零点位置时叫负离焦(焦点深入到工件内部),其距离值为负离焦量。反之,焦点不到零点的距离数值为正离焦量。要获得较大的熔深,可将焦点位置选择在工件内部某一位置上,即采用负离焦量进行焊接。

4、焊接的穿入深度

脉冲激光焊接时,主要是以传热熔化方式进行的。激光束本身对金属的直接穿入深度是有限的,其主要取决于材料的导温系数(导温系数大的则穿入深度大),而不是激光器的功率大小

激光焊接工艺

发布日期:2010-8-30 | 阅读次数:271

一、激光焊接的工艺参数。

1、功率密度。功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。

2、激光脉冲波形。激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。

3、激光脉冲宽度。脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。

4、离焦量对焊接质量的影响。激光焊接通常需要一定的离做文章一,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。实验表明,激光加热50~200us材料开始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以极高的速

度喷射,发出耀眼的白光。与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。

二、激光焊接工艺方法:

1、片与片间的焊接。包括对焊、端焊、中心穿透熔化焊、中心穿孔熔化焊等4种工艺方法。

2、丝与丝的焊接。包括丝与丝对焊、交叉焊、平行搭接焊、T型焊等4种工艺方法。

3、金属丝与块状元件的焊接。采用激光焊接可以成功的实现金属丝与块状元件的连接,块状元件的尺寸可以任意。在焊接中应注意丝状元件的几何尺寸。

4、不同金属的焊接。焊接不同类型的金属要解决可焊性与可焊参数范围。不同材料之间的激光焊接只有某些特定的材料组合才有可能。激光钎焊有些元件的连接不宜采用激光熔焊,但可利用激光作为热源,施行软钎焊与硬钎焊,同样具有激光熔焊的优点。采用钎焊的方式有多种,其中,激光软钎焊主要用于印刷电路板的焊接,尤其实用于片状元件组装技术。

三、采用激光软钎焊与其它方式相比有以下优点:

1、由于是局部加热,元件不易产生热损伤,热影响区小,因此可在热敏元件附近施行软钎焊。

2、用非接触加热,熔化带宽,不需要任何辅助工具,可在双面印刷电路板上双面元件装备后加工。

3、重复操作稳定性好。焊剂对焊接工具污染小,且激光照射时间和输出功率易于控制,激光钎焊成品率高。

4、激光束易于实现分光,可用半透镜、反射镜、棱镜、扫描镜等光学元件进行时间与空间分割,能实现多点同时对称焊。

5、激光钎焊多用波长1.06um的激光作为热源,可用光纤传输,因此可在常规方式不易焊接的部位进行加工,灵活性好。

6、聚焦性好,易于实现多工位装置的自动化。

四、激光深熔焊:

1、冶金过程及工艺理论。激光深熔焊冶金物理过程与电子束焊极为相似,即能量转换机制是通过“小孔”结构来完成的。在足够高的功率密度光束照射下,材料产生蒸发形成小孔。这个充满蒸汽的小孔犹如一个黑体,几乎全部吸收入射光线的能量,孔腔内平衡温度达25000度左右。热量从这个高温孔腔外壁传递出来,使包围着这个孔腔的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周即围着固体材料。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外材料在连续流动,随着光

束移动,小孔始终处于流动的稳定态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属填充着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。

2、影响因素。对激光深熔焊产生影响的因素包括:激光功率,激光束直径,材料吸收率,焊接速度,保护气体,透镜焦长,焦点位置,激光束位置,焊接起始和终止点的激光功率渐升、渐降控制。

3、激光深熔焊的特征:

特征:(1)高的深宽比。因为熔融金属围着圆柱形高温蒸汽腔体形成并延伸向工件,焊缝就变得深而窄。(2)最小热输入。因为源腔温度很高,熔化过程发生得极快,输入工件热量极低,热变形和热影响区很小。(3)高致密性。因为充满高温蒸汽的小孔有利于熔接熔池搅拌和气体逸出,导致生成无气孔熔透焊接。焊后高的冷却速度又易使焊缝组织微细化。(4)强固焊缝。(5)精确控制。(6)非接触,大气焊接过程。

4、激光深熔焊的优点:(1)由于聚焦激光束比常规方法具有高得多的功率密度,导致焊接速度快,热影响区和变形都较小,还可以焊接钛、石英等难焊材料。(2)因为光束容易传输和控制,又不需要经常更换焊炬、喷嘴,显著减少停机辅助时间,所以有荷系数和生产效率都高。(3)由于纯化作用和高的冷却速度,焊缝强,综合性能高。(4)由于平衡热输入低,加工精度高,可减少再加工费用。另外,激光焊接的动转费用也比较低,可以降低生产成本。(5)容易实现

自动化,对光束强度与精细定位能进行有效的控制。

5、激光深熔焊设备:激光深熔焊通常选用连续波CO2激光器,这类激光器能维持足够高的输出功率,产生“小孔”效应,熔透整个工件截面,形成强韧的焊接接头。就激光器本身而言,它只是一个能产生可作为热源、方向性好的平行光束的装置。如果把它导向和有效处理后射向工件,其输入功率就具有强的相容性,使之能更好的适应自动化过程。为了有效实施焊接,激光器和其他一些必要的光学、机械以及控制部件一起共同组成一个大的焊接系统。这个系统包括激光器、光束传输组件、工件的装卸和移动装置,还有控制装置。这个系统可以是仅由操作者简单地手工搬运和固定工件,也可以是包括工件能自动的装、卸、固定、焊接、检验。这个系统的设计和实施的总要求是可获得满意的焊接质量和高的生产效率。

五、钢铁材料的激光焊接:

1、碳钢及普通合金钢的激光焊接。总的说,碳钢激光焊接效果良好,其焊接质量取决于杂质含量。就象其它焊接工艺一样,硫和磷是产生焊接裂纹的敏感因素。为了获得满意的焊接质量,碳含量超过0.25%时需要预热。当不同含碳量的钢相互焊接时,焊炬可稍偏向低碳材料一边,以确保接头质量。低碳沸腾钢由于硫、磷的含量高,并不适合激光焊接。低碳镇静钢由于低的杂质含量,焊接效果就很好。中、高碳钢和普通合金钢都可以进行良好的激光焊接,但需要预热和焊后

处理,以消除应力,避免裂纹形成。

2、不锈钢的激光焊接。一般的情况下,不锈钢激光焊接比常规焊接

更易于获得优质接头。由于高的焊接速度热影响区很小,敏化不成为

重要问题。与碳钢相比,不锈钢低的热导系数更易于获得深熔窄焊缝。

3、不同金属之间的激光焊接。激光焊接极高的冷却速度和很小的热

影响区,为许多不同金属焊接融化后有不同结构的材料相容创造了有

利条件。现已证明以下金属可以顺利进行激光深熔焊接:不锈钢~低

碳钢,416不锈钢~310不锈钢,347不锈钢~HASTALLY镍合金,

镍电极~冷锻钢,不同镍含量的双金属带。

激光焊接的工艺技术和性能特点

激光焊接工艺和参数选择

作者:浏览次数:1000次发表时间:2009-7-13 8:53:02

用脉冲固体激光器发出的激光进行焊接属于熔化焊。影响焊接的因素有很多,如金属的光学性质(对激光的反射喝吸收),热学性质(溶点、沸点、热扩散率、热传导率、熔化潜热等)表面状况等。一般根据金属的性质、需要的熔深喝焊接方式,决定激光的功率密度、脉宽喝波形。下面以薄片与薄片之间的焊接为例,讨论激光焊接的工艺喝参数选择问题。

1、最佳参数与片厚的关系

片与片之间的焊接,在保证强度要求的情况下,使其形成牢固焊接的参数范围还是比较大的。倘若选取其中能量小、脉宽短的参数作为最佳参数,则可提高焊接效率、

降低设备费用。此类焊接的最佳参数是光斑直径为上片材料厚度的2倍所需要的脉宽都与片厚(或是所需的熔深)的平方成正比;功率密度与片厚成反比;总能量与片厚的立方成正比。这说明片厚是决定激光参数的重要因素。

2、焊接方式

焊接方式一般随焊接件的结构而定。但在很多情况下,可以根据焊接的要求,选择合理的焊接方式。薄片与薄片间的焊接方式有以下几种:

(1)对焊两片金属齐缝放置,激光直接同时照射两片金属。两片金属同时熔化,且熔化液流入缝内凝固。

(2)端焊两片金属重叠放置,激光同时直接照射在上片端部和下片,使两片金属同时熔化,上片的金属熔液稍往下流动。

(3)中心穿透熔化焊两片金属重叠放置,激光直接照射上片,光被上片金属吸收转变成热能,往下片传递,使上片金属的下表面和下片金属的上表面同时熔化。(4)中心插式熔化焊两片金属重叠放置,激光直接照射上片,激光初始峰值很高,使光斑中心处前期蒸发成一小孔,在激光作用下达到熔化的效果。

激光焊接主要工艺参数

(一)激光深熔焊接的主要工艺参数

1)激光功率。激光焊接中存在一个激光能量密度阈值,低于此

值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。只有当工

件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,

这标志着稳定深熔焊的进行。如果激光功率低于此阈值,工件仅发生

表面熔化,也即焊接以稳定热传导型进行。而当激光功率密度处于小

孔形成的临界条件附近时,深熔焊和传导焊交替进行,成为不稳定焊

接过程,导致熔深波动很大。激光深熔焊时,激光功率同时控制熔透深度和焊接速度。焊接的熔深直接与光束功率密度有关,且是入射光束功率和光束焦斑的函数。一般来说,对一定直径的激光束,熔深随着光束功率提高而增加。

2)光束焦斑。光束斑点大小是激光焊接的最重要变量之一,因为它决定功率密度。但对高功率激光来说,对它的测量是一个难题,尽管已经有很多间接测量技术。

光束焦点衍射极限光斑尺寸可以根据光衍射理论计算,但由于聚焦透镜像差的存在,实际光斑要比计算值偏大。最简单的实测方法是等温度轮廓法,即用厚纸烧焦和穿透聚丙烯板后测量焦斑和穿孔直径。这种方法要通过测量实践,掌握好激光功率大小和光束作用的时间。

3)材料吸收值。材料对激光的吸收取决于材料的一些重要性能,如吸收率、反射率、热导率、熔化温度、蒸发温度等,其中最重要的是吸收率。

影响材料对激光光束的吸收率的因素包括两个方面:首先是材料的电阻系数,经过对材料抛光表面的吸收率测量发现,材料吸收率与电阻系数的平方根成正比,而电阻系数又随温度而变化;其次,材料的表面状态(或者光洁度)对光束吸收率有较重要影响,从而对焊接效果产生明显作用。

CO2激光器的输出波长通常为10.6μm,陶瓷、玻璃、橡胶、塑料等非金属对它的吸收率在室温就很高,而金属材料在室温时对它的吸收很差,直到材料一旦熔化乃至气化,它的吸收才急剧增加。采用表面涂层或表面生成氧化膜的方法,提高材料对光束的吸收很有效。

4)焊接速度。焊接速度对熔深影响较大,提高速度会使熔深变浅,但速度过低又会导致材料过度熔化、工件焊穿。所以,对一定激光功率和一定厚度的某特定材料有一个合适的焊接速度范围,并在其中相应速度值时可获得最大熔深。图10-2给出了1018钢焊接速度与熔深的关系。

5)保护气体。激光焊接过程常使用惰性气体来保护熔池,当某些材料焊接可不计较表面氧化时则也可不考虑保护,但对大多数应用场合则常使用氦、氩、氮等气体作保护,使工件在焊接过程中免受氧化。

氦气不易电离(电离能量较高),可让激光顺利通过,光束能量不受阻碍地直达工件表面。这是激光焊接时使用最有效的保护气体,但价格比较贵。

氩气比较便宜,密度较大,所以保护效果较好。但它易受高温金属等离子体电离,结果屏蔽了部分光束射向工件,减少了焊接的有效激光功率,也损害焊接速度与熔深。使用氩气保护的焊件表面要比使用氦气保护时来得光滑。

氮气作为保护气体最便宜,但对某些类型不锈钢焊接时并不适用,主要是由于冶金学方面问题,如吸收,有时会在搭接区产生气孔。

使用保护气体的第二个作用是保护聚焦透镜免受金属蒸气污染和液体熔滴的溅射。特别在高功率激光焊接时,由于其喷出物变得非常有力,此时保护透镜则更为必要。

保护气体的第三个作用是对驱散高功率激光焊接产生的等离子屏蔽很有效。金属蒸气吸收激光束电离成等离子云,金属蒸气周围的保护气体也会因受热而电离。如果等离子体存在过多,激光束在某种程度上被等离子体消耗。等离子体作为第二种能量存在于工作表面,使得熔深变浅、焊接熔池表面变宽。通过增加电子与离子和中性原子三体碰撞来增加电子的复合速率,以降低等离子体中的电子密度。中性原子越轻,碰撞频率越高,复合速率越高;另一方面,只有电离能高的保护气体,才不致因气体本身的电离而增加电子密度。

表常用气体和金属的原子(分子)量和电离能

================================================== ===========

材料氦氩氮铝镁铁

------------------------------------------------------------

原子(分子)量 4 40 28 27 24 56

电离能(eV) 24.46 15.68 14.5 5.96 7.61 7.83

================================================== ===========

从表可知,等离子体云尺寸与采用的保护气体不同而变化,氦气最小,氮气次之,使用氩气时最大。等离子体尺寸越大,熔深则越浅。造成这种差别的原因首先由于气体分子的电离程度不同,另外也由于保护气体不同密度引起金属蒸气扩散差别。

氦气电离最小,密度最小,它能很快地驱除从金属熔池产生的上升的金属蒸气。所以用氦作保护气体,可最大程度地抑制等离子体,从而增加熔深,提高焊接速度;由于质轻而能逸出,不易造成气孔。当然,从我们实际焊接的效果看,用氩气保护的效果还不错。

等离子云对熔深的影响在低焊接速度区最为明显。当焊接速度提高时,它的影响就会减弱。

保护气体是通过喷嘴口以一定的压力射出到达工件表面的,喷嘴的流体力学形状和出口的直径大小十分重要。它必须以足够大以驱使喷出的保护气体覆盖焊接表面,但为了有效保护透镜,阻止金属蒸气污染或金属飞溅损伤透镜,喷口大小也要加以限制。流量也要加以控制,否则保护气的层流变成紊流,大气卷入熔池,最终形成气孔。

为了提高保护效果,还可用附加的侧向吹气的方式,即通过一较小直径的喷管将保护气体以一定的角度直接射入深熔焊接的小孔。保护气体不仅抑制了工件表面的等离子体云,而且对孔内的等离子体及小孔的形成施加影响,熔深进一步增大,获得深宽比较为理想的焊缝。但是,此种方法要求精确控制气流量大小、方向,否则容易产生紊流而破坏熔池,导致焊接过程难以稳定。

6)透镜焦距。焊接时通常采用聚焦方式会聚激光,一般选用63~254mm(2.5”~10”)焦距的透镜。聚焦光斑大小与焦距成正比,焦距越短,光斑越小。但焦距长短也影响焦深,即焦深随着焦距同步增加,所以短焦距可提高功率密度,但因焦深小,必须精确保持透镜与工件的间距,且熔深也不大。由于受焊接过程中产生的飞溅物和激光模式的影响,实际焊接使用的最短焦深多为焦距126mm(5”)。当接缝较大或需要通过加大光斑尺寸来增加焊缝时,可选择254mm(10”)焦距的透镜,在此情况下,为了达到深熔小孔效应,需要更高的激光输出功率(功率密度)。

当激光功率超过2kW时,特别是对于10.6μm的CO2激光束,由于采用特殊光学材料构成光学系统,为了避免聚焦透镜遭光学破坏的危险,经常选用反射聚焦方法,一般采用抛光铜镜作反射镜。由于能有效冷却,它常被推荐用于高功率激光束聚焦。

7)焦点位置。焊接时,为了保持足够功率密度,焦点位置至关重要。焦点与工件表面相对位置的变化直接影响焊缝宽度与深度。图2-6表示焦点位置对1018钢熔深及缝宽的影响。

在大多数激光焊接应用场合,通常将焦点的位置设置在工件表面之下大约所需熔深的1/4处。

8)激光束位置。对不同的材料进行激光焊接时,激光束位置控制着焊缝的最终质量,特别是对接接头的情况比搭接结头的情况对此更为敏感。例如,当淬火钢齿轮焊接到低碳钢鼓轮,正确控制激光束位置将有利于产生主要有低碳组分组成的焊缝,这种焊缝具有较好的抗

裂性。有些应用场合,被焊接工件的几何形状需要激光束偏转一个角度,当光束轴线与接头平面间偏转角度在100度以内时,工件对激光能量的吸收不会受到影响。

9)焊接起始、终止点的激光功率渐升、渐降控制。激光深熔焊接时,不管焊缝深浅,小孔现象始终存在。当焊接过程终止、关闭功率开关时,焊缝尾端将出现凹坑。另外,当激光焊层覆盖原先焊缝时,会出现对激光束过度吸收,导致焊件过热或产生气孔。

为了防止上述现象发生,可对功率起止点编制程序,使功率起始和终止时间变成可调,即起始功率用电子学方法在一个短时间内从零升至设置功率值,并调节焊接时间,最后在焊接终止时使功率由设置功率逐渐降至零值。

1. 激光深熔焊特征及优、缺点

(一)激光深熔焊的特征

1) 高的深宽比。因为熔融金属围着圆柱形高温蒸气腔体形成并延伸向工件,焊缝就变成深而窄。

2) 最小热输入。因为小孔内的温度非常高,熔化过程发生得极快,输入工件热量很低,热变形和热影响区很小。

3) 高致密性。因为充满高温蒸气的小孔有利于焊接熔池搅拌和气体逸出,导致生成无气孔的熔透焊缝。焊后高的冷却速度又易使焊缝组织细微化。

4) 强固焊缝。因为炽热热源和对非金属组分的充分吸收,降

低杂质含量、改变夹杂尺寸和其在熔池中的分布。焊接过程无需电极或填充焊丝,熔化区受污染少,使得焊缝强度、韧性至少相当于甚至超过母体金属。

5) 精确控制。因为聚焦光点很小,焊缝可以高精确定位。激光输出无“惯性”,可在高速下急停和重新起始,用数控光束移动技术则可焊接复杂工件。

6) 非接触大气焊接过程。因为能量来自光子束,与工件无物理接触,所以没有外力施加工件。另外,磁和空气对激光都无影响。

(二)激光深熔焊的优点

1) 由于聚焦激光比常规方法具有高得多的功率密度,导致焊接速度快,受热影响区和变形都很小,还可以焊接钛等难焊的材料。

2) 因为光束容易传输和控制,又不需要经常更换焊枪、喷嘴,又没有电子束焊接所需的抽真空,显著减少停机辅助时间,所以有荷系数和生产效率都高。

3) 由于纯化作用和高的冷却速度,焊缝强度、韧性和综合性能高。

4) 由于平均热输入低,加工精度高,可减少再加工费用;另外,激光焊接运转费用也较低,从而可降低工件加工成本。

5) 对光束强度和精细定位能有效控制,容易实现自动化操作。

(三)激光深熔焊的缺点

1) 焊接深度有限。

2) 工件装配要求高。

3) 激光系统一次性投资较高

一、激光焊接的特点。

激光焊接是激光材料加工技术应用的重要方面之一。20世纪7 0年代主要用于焊接薄壁材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,已成功应用于微、小型零件的精密焊接中。

高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。获得了以小孔效应为理论基础的深熔焊接,在机械、汽车、钢铁等工业领域获得了日益广泛的应用。

与其它焊接技术相比,激光焊接的主要优点是:

1、速度快、深度大、变形小。

2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。

3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。

4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。

5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。

6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。

7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。

但是,激光焊接也存在着一定的局限性:

1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。

2、激光器及其相关系统的成本较高,一次性投资较大。

二、激光焊接热传导。

激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,使金属熔化形成焊接。在激光与金属的相互作用过程

中,金属熔化仅为其中一种物理现象。有时光能并非主要转化为金属熔化,而以其它形式表现出来,如汽化、等离子体形成等。然而,要实现良好的熔融焊接,必须使金属熔化成为能量转换的主要形式。为此,必须了解激光与金属相互作用中所产生的各种物理现象以及这些物理现象与激光参数的关系,从而通过控制激光参数,使激光能量绝大部分转化为金属熔化的能量,达到焊接的目的。

三、激光焊接工艺参数。

1、功率密度。

功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/CM2。

2、激光脉冲波形。

激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。

3、激光脉冲宽度。

脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。

4、离焦量对焊接质量的影响。

激光焊接通常需要一定的离焦,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。

离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离焦相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。实验表明,激光加热5 0~200us材料开始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以极高的速度喷射,发出耀眼的白光。与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。

四、激光焊接工艺方法。

1、片与片间的焊接。

激光焊接机怎样选型

激光焊接机怎样选型 激光焊接设备是激光材料加工技术应用的重要方面之一,东莞奥信激光激光焊接机主要分为脉冲激光焊接和连续激光焊接两种。 脉冲激光主要用于1 m m厚度以内薄壁金属材料的点焊和缝焊,其焊接过程属于热传导型,即激光辐射加热工件表面,再通过热传导向材料内部扩散,通过控制激光脉冲的波形、宽度、峰值功率和重复频率等参数,使工件之间形成良好的连接。在3 C产品外壳、锂电池、电子元器件、模具补焊等行业有着大量的应用。脉冲激光焊接最大的优点是工件整体温升很小,热影响范围小,工件变形小。 连续激光焊接机大部分都是高功率激光器,功率在500瓦以上,一般1mm以上的板

材都应该使用这种激光器。其焊接机理是基于小孔效应的深熔焊,深宽比大,可达到5:1以上,焊接速度快,热变形小。在机械、汽车、船舶等行业有着广泛的应用。还有一部分小功率连续激光器,功率在几十到几百瓦之间,它们在塑料焊接及激光钎焊这些行业使用得比较多。 1、激光器工作原理 1.1、YAG激光器的工作原理 激光电源首先把脉冲氙灯点着,通过激光电源对氙灯脉冲放电,形成一定频率,一定脉宽的光波,该光波经过聚光腔辐射到Nd 3+:YAG激光晶体上,激发Nd 3+:YAG激光晶体发光,再经过激光谐振腔谐振之后,发出波长为1064nm脉冲激光,该脉冲激光经过扩束、反射、(或经光纤传输)聚焦后打在所要焊接的物体上;在PLC或工业PC机的控制下,移动数控工作台,从而完成焊接。焊接时所需要的脉冲激光的频率、脉宽、波形、工作台速度、移动方向均可用单片机、PLC或工业PC机来控制,通过对激光的频率、脉宽的不同设定可调节控制脉冲激光的能量。

激光焊接的工作原理及其主要工艺参数(精)

激光焊接的工作原理及其主要工艺参数 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和可见光波段实际上是非相干光源。如果能够创造这样一种情况:使得腔内某一特定模式的ρ很大,而其他所有模式的都很小,就能够在这一特定模式内形成很高的光子简并度,使相干

锂离子电池工艺流程

锂离子电池工艺流程 正极混料 ●原料的掺和: (1)粘合剂的溶解(按标准浓度)及热处理。 (2)钴酸锂和导电剂球磨:使粉料初步混合,钴酸锂和导电剂粘合在一起,提高团聚作用和的导电性。配成浆料后不会单独分布于粘合剂中,球磨时间一般为2小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。 ●干粉的分散、浸湿: (1)原理:固体粉末放置在空气中,随着时间的推移,将会吸附部分空气在固体的表面上,液体粘合剂加入后,液体与气体开始争夺固体表面;如果固体与气体吸附力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的吸附力强,液体可以浸湿固体,将气体挤出。 当润湿角≤90度,固体浸湿。 当润湿角>90度,固体不浸湿。 正极材料中的所有组员都能被粘合剂溶液浸湿,所以正极粉料分散相对容易。 (2)分散方法对分散的影响: A、静置法(时间长,效果差,但不损伤材料的原

有结构); B、搅拌法;自转或自转加公转(时间短,效果佳,但有可能损伤个别 材料的自身结构)。 1、搅拌桨对分散速度的影响。搅拌桨大致包括蛇形、蝶形、球形、桨形、齿轮形等。一般蛇形、蝶形、桨型搅拌桨用来对付分散难度大的材料或配料的初始阶段;球形、齿轮形用于分散难度较低的状态,效果佳。 2、搅拌速度对分散速度的影响。一般说来搅拌速度越高,分散速度越快,但对材料自身结构和对设备的损伤就越大。 3、浓度对分散速度的影响。通常情况下浆料浓度越小,分散速度越快,但太稀将导致材料的浪费和浆料沉淀的加重。 4、浓度对粘结强度的影响。浓度越大,柔制强度越大,粘接强度 越大;浓度越低,粘接强度越小。 5、真空度对分散速度的影响。高真空度有利于材料缝隙和表面的气体排出,降低液体吸附难度;材料在完全失重或重力减小的情况下分散均匀的难度将大大降低。

钣金调研报告

汽车钣金调查报告 调研时间:2011年8月20日-25日 调研人员:教研室全体人员广汽雨田店 调研地点:广汽雨田4S店、大众华海店、别克华通店 调查对象:4S店钣金车间维修工、后场服务经理等 调查目的:通过到4S店钣金车间的调研,让我们从汽车钣金修复市场入手,分析汽车钣金修复的发展史,维修现状,通过对具体的钣金修复过程的分析,来确定目前汽车钣金应该发展的方向,同时对钣金修复的设备也做出了必要的总结和要求。 汽车钣金在事故车维修中地位举足轻重。企业对汽车钣金修复技术工人的需 求量呈明显上升态势,对他们的技术要求也越来越高。这次实践使我们认识到:一、汽车钣金修复市场及设备发展史 随着我国汽车工业和道路运输业的迅速发展,汽车维修业也不断发展壮大.汽 车钣金修复维修也不断在技术、设备上改进发展.作为汽车钣金修复维修大致经历了以下发展阶段: 原始的人力维修→半机械化→机械化→机电液压测量系统化→数字化在线支 持的智能化。 传统的汽车钣金修复维修作业手敲、火烤,费时费力.而且维修的精确度得不到保证,再次碰撞的安全性不能够保证。随着汽车的制造技术的发展.新材料的广泛使用.传统的纯手工作业方式已不适应现代汽修的发展,于是校正设备应运而生。 铁桩胡辘→L型牵引器→地八卦→欧式框架(专用) →美国平台式(通用) → 激光、电、液压的综合运用→在线支持的智能化设备。 二、目前国内钣金修复维修的现状 1、传统的维修方式占据主体,主要分布在不发达地区及二、三类中小型维修 企业.这些维修企业只拥有一些铁桩胡辘、L型拉臂或地八卦等简单维修设备。 2、现代的维修方式正在受到重视.在四位一体维修站和发达地区一类维修企 业被广泛应用.欧式框架型设备和美式平台型设备已越来越多地被此类企业所应 用。 三、汽车钣金修复机理和修复方法分析 (一) 钣金碰撞机理

激光焊缝跟踪系统机器人用技术手册

Meta Vision Systems 机器人用激光焊缝 跟踪系统 技术手册 原作者:Jonathan Moore 翻译:Dr. Lin Sanbao (林三宝博士)

前言 尽管我们在编写这个手册时已经尽了最大努力,但是我们不接受任何由通过使用或者错误使用本手册中的信息,或者可能包含在本手册中的错误,而引发的责任和义务。本手册所提供的信息只是用于培训的目的。 英文版权所有 ? Meta Vision Systems 2000。 中文版版权所有? 中国哈尔滨AWPT-RDC联合实验室 所有权力保留,未经允许,不得以任何形式复制本手册或本手册中的任何部分。 联系方式: Meta Vision Systems Ltd. Oakfield House Oakfield Industrial Estate Eynsham Oxfordshire OX8 1TH UNITED KINGDOM Tel: +44 (0) 1865 887900 Fax: +44 (0) 1865 887901 Email: support@https://www.doczj.com/doc/9116471173.html, 中国地区: 地址:珠海市九洲大道兰埔白石路105号二楼西 邮编:519000 电话:0756 --- 8509695、8508516、6680610、6602419、6626464 传真:0756 --- 8500745 联系人:魏占静 电邮:jbw@https://www.doczj.com/doc/9116471173.html, wzj0756@https://www.doczj.com/doc/9116471173.html, 网址:https://www.doczj.com/doc/9116471173.html,

目录 1.概述 (3) 1.1传感头 (3) 1.2控制系统 (3) 1.3应用 (3) 1.4典型应用 (4) 1.5焊缝类型 (4) 2.传感器 (9) 2.1激光的安全性 (9) 2.2规格 (9) 2.3MT 产品系列的规格 (11) 2.4传感器的物理规格 (12) 2.5焊缝的特征尺寸 (12) 3.控制系统 (14) 3.1MTF – Finder(MTF 定位控制系统) (14) 3.2MTR (15) 3.3MTR Integrated(集成型MTR系统) (16) 3.4MTX-HS (16) 4.软件的主要特征 (18) 4.1焊缝定义 (18) 4.2间隙测量 (18) 4.3真实路径(True Path) (18) 4.4搜索 (18) 4.5体积&高度错边测量 (19) 4.6交替式激光器 (19) 4.7示教跟踪(Teach Track) (20) 5.配置和可选项 (21) 5.1应用概述 (21) 5.2硬件和软件可选项 (22)

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理及其主要工艺参数摘要:焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊, 电子束焊,激光焊等多种,本文详细介绍了激光焊接的工作原理与工艺参数,还讨论了激光焊接技术在现代工业中的应用,并与其他焊接方法进行对比。研究表明激光焊接技术将逐步得到广泛应用。 关键词:焊接技术;激光焊接;工作原理;工艺参数。 1. 引言 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,

激光焊接方式的分类

激光焊接方式的分类 激光焊接工艺方法不同可进行如下分类: 1、片与片间的焊接。 包括对焊、端焊、中心穿透熔化焊、中心穿孔熔化焊等4种工艺方法。 对焊要求对缝质量较高,一般采用自动化焊接或手动焊接。 参考机型: →激光通用焊接机(氙灯泵浦Nd:YAG激光器):AHL-W200、AHL-W400 →光纤传输激光焊接机:AHL-FW200、AHL-FW400 2、丝与丝的焊接。 包括丝与丝对焊、交叉焊、平行搭接焊、T型焊等4种工艺方法。 对这种焊接一般不适合自动焊接,采用手动焊接或半自动焊接。 参考机型: →激光通用焊接机(氙灯泵浦Nd:YAG激光器):AHL-W200、AHL-W400 →光纤传输激光焊接机:AHL-FW200、AHL-FW400 →激光点焊机(氙灯泵浦Nd:YAG激光器):AHL-W75、AHL-W90 →激光模具烧焊机(氙灯泵浦Nd:YAG激光器):AHL-W120II、AHL-W180III、AHL-W180IV 3、金属丝与块状元件的焊接。采用激光焊接可以成功的实现金属丝与块状元件的连接,块状元件的尺寸可以任意。在焊接中应注意丝状元件的几何尺寸。 参考机型: →激光点焊机(氙灯泵浦Nd:YAG激光器):AHL-W75、AHL-W90 →激光模具烧焊机(氙灯泵浦Nd:YAG激光器):AHL-W120II、AHL-W180III、AHL-W180IV 4、不同块的组焊及密封焊。在组件物体上缝上进行密封焊接及组焊,如传感器等 参考机型: →激光通用焊接机(氙灯泵浦Nd:YAG激光器):AHL-W200、AHL-W400 →光纤传输激光焊接机:AHL-FW200、AHL-FW400 →激光模具烧焊机(氙灯泵浦Nd:YAG激光器):AHL-W180III、AHL-W180IV 5、块状物件补焊。采用激光将激光焊丝熔化沉积到基材上。一般适合模具等产品修补。参考机型: →激光模具烧焊机(氙灯泵浦Nd:YAG激光器):AHL-W180III、AHL-W180IV →激光点焊机(氙灯泵浦Nd:YAG激光器):AHL-W75、AHL-W90 激光焊接的工艺参数。 1、功率密度。功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/CM2。 2、激光脉冲波形。激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。 3、激光脉冲宽度。脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。 4、离焦量对焊接质量的影响。激光焊接通常需要一定的离做文章一,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。 离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离焦平面与焊接平面距离相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更

激光器项目可行性分析报告

激光器项目 可行性分析报告规划设计/投资方案/产业运营

摘要 该激光器项目计划总投资13431.00万元,其中:固定资产投资 9911.46万元,占项目总投资的73.80%;流动资金3519.54万元,占项目 总投资的26.20%。 达产年营业收入23521.00万元,总成本费用17875.45万元,税金及 附加229.62万元,利润总额5645.55万元,利税总额6653.87万元,税后 净利润4234.16万元,达产年纳税总额2419.71万元;达产年投资利润率42.03%,投资利税率49.54%,投资回报率31.53%,全部投资回收期4.67年,提供就业职位371个。 坚持“实事求是”原则。项目承办单位的管理决策层要以求实、科学 的态度,严格按国家《建设项目经济评价方法与参数》(第三版)的要求,在全面完成调查研究基础上,进行细致的论证和比较,做到技术先进、可靠、经济合理,为投资决策提供可靠的依据,同时,以客观公正立场、科 学严谨的态度对项目的经济效益做出科学的评价。 伴随新兴材料和新型结构的诞生,激光焊接技术向高效新工艺转变, 以实现轻量化、整体化结构件制造、精密制造、低成本高效新工艺的需求 方向转变。尤其是一体化集成复合型激光焊接设备将是未来的主流趋势, 将拉动飞机、发动机制造业的设备更新。 报告主要内容:概述、项目基本情况、产业调研分析、产品规划及建 设规模、项目建设地研究、工程设计方案、工艺先进性、环境影响分析、

安全生产经营、建设风险评估分析、项目节能方案分析、实施方案、投资估算、项目经济效益分析、项目总结、建议等。

激光器项目可行性分析报告目录 第一章概述 第二章项目基本情况 第三章产品规划及建设规模第四章项目建设地研究 第五章工程设计方案 第六章工艺先进性 第七章环境影响分析 第八章安全生产经营 第九章建设风险评估分析 第十章项目节能方案分析 第十一章实施方案 第十二章投资估算 第十三章项目经济效益分析 第十四章项目招投标方案 第十五章项目总结、建议

焊接公差标准gb19804

焊接结构的一般尺寸公差和形位公差: 《焊接结构的一般尺寸公差和形位公差(GB/T 19804-2005)(ISO 13920:1996)》等同采用了国际标准ISO 13920:1996,为了保证标准的适用性及协调性,本标准在等同转化ISO 13920的过程中,结合我国的实际情况做了必要的处理。《焊接结构的一般尺寸公差和形位公差(GB/T 19804-2005)(ISO 13920:1996)》由中国机械工业联合会提出。本标准由全国焊接标准化技术委员会归口。本标准负责起草单位:哈尔滨焊接研究所。本标准主要起草人:朴东光。 《焊接结构的一般尺寸公差和形位公差(GB/T 19804-2005)(ISO 13920:1996)》由中国标准出版社出版。 焊接标准汇编:工艺、质量安全和试验方法卷: 《焊接标准汇编:工艺、质量安全和试验方法卷》是2011年11月中国质检出版社、中国标准出版社联合出版的图书,作者是中国质检出版社第五编辑室。 内容简介: 钢产量是衡量一个国家综合经济实力的重要指标之一,也是我国工业化进程中的支柱产业。钢材产量的快速升高拉动了我国焊材产业的强劲发展。这不仅使我国成为世界上头号钢铁和焊材生产大国,也成为头号钢铁和焊材消费大国。 为满足机械工程、船舶、工程建设、航空航天、石油化工等行业企事业单位需求,我社特组织编辑出版《焊接标准汇编》,共分为两

卷:材料卷和工艺、质量安全和试验方法卷。本卷是工艺、质量安全和试验方法卷。本卷汇集了截至2011年6月底批准发布的焊接工艺与质量安全标准,包括焊接工艺、焊接质量与安全标准、试验方法标准,共有国家标准48项。 本汇编收集国家标准的属性已在本目录上标明(GB或GBlT),年号用四位数字表示。鉴于部分国家标准是在国家标准清理整顿前出版的,现尚未修订,故属性以本目录上标明的为准(标准正文“引用标准”中标准的属性请读者注意查对)。 目录: 一、焊接工艺 GB/T 985.1-2008 气焊、焊条电弧焊、气体保护焊和高能束焊的推荐坡口 GB/T 985.2-2008 埋弧焊的推荐坡口 GB/T 985.3-2008 铝及铝合金气体保护焊的推荐坡口 GB/T 985.4-2008 复合钢的推荐坡口 GB/T 5185-2005 焊接及相关工艺方法代号 GB/T 15169-2003 钢熔化焊焊工技能评定 GB/T 15829-2008 软钎剂分类与性能要求 GB/T 16672-1996 焊缝--工作位置倾角和转角的定义 GB/T 18591-2001 焊接预热温度、道间温度及预热维持温度的测量指南 GB/T 19419-2003 焊接管理任务与职责

激光焊接的工艺参数及特性分析讲解

激光焊接的工艺参数及特性分析 一、激光焊接的工艺参数:1、功率密度。功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。2、激光脉冲波形。激光脉冲波形在激光焊接 一、激光焊接的工艺参数: 1、功率密度。功率密度是激光加工中最关键的参数之一。采用较高的功率密度,在微秒时间范围内,表层即可加热至沸点,产生大量汽化。因此,高功率密度对于材料去除加工,如打孔、切割、雕刻有利。对于较低功率密度,表层温度达到沸点需要经历数毫秒,在表层汽化前,底层达到熔点,易形成良好的熔融焊接。因此,在传导型激光焊接中,功率密度在范围在104~106W/cm2。 2、激光脉冲波形。激光脉冲波形在激光焊接中是一个重要问题,尤其对于薄片焊接更为重要。当高强度激光束射至材料表面,金属表面将会有60~98%的激光能量反射而损失掉,且反射率随表面温度变化。在一个激光脉冲作用期间内,金属反射率的变化很大。 3、激光脉冲宽度。脉宽是脉冲激光焊接的重要参数之一,它既是区别于材料去除和材料熔化的重要参数,也是决定加工设备造价及体积的关键参数。 4、离焦量对焊接质量的影响。激光焊接通常需要一定的离焦,因为激光焦点处光斑中心的功率密度过高,容易蒸发成孔。离开激光焦点的各平面上,功率密度分布相对均匀。离焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离焦,反之为负离焦。按几何光学理论,当正负离做文章一相等时,所对应平面上功率密度近似相同,但实际上所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与熔池的形成过程有关。实验表明,激光加热50~200us材料开始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以极高的速度喷射,发出耀眼的白光。与此同时,高浓度汽体使液相金属运动至熔池边缘,在熔池中心形成凹陷。当负离焦时,材料内部功率密度比表面还高,易形成更强的熔化、汽化,使光能向材料更深处传递。所以在实际应用中,当要求熔深较大时,采用负离焦;焊接薄材料时,宜用正离焦。 二、激光焊接工艺方法: 1、片与片间的焊接。包括对焊、端焊、中心穿透熔化焊、中心穿孔熔化焊等4种工艺方法。

激光焊接工艺调研报告详解

激光焊接工艺调研报告引言 21世纪是现代科技高速发展的时代,而激光技术作为目前时代发展中人们所最为瞩目的可击之一,其不仅仅是应用于现代军事领域,同样随着激光技术的日益娴熟以及其本身的制造工艺和应用工艺的普遍化,未来能够在更多的行业得到广泛应用,其中就包括传统制造业。由于传统焊接本身更多是依赖于焊接人员自身的工作经验以及对于焊接目标的目测实现焊接,其往往精度存在一定的偏差性,很难实现高精度项目的作业,而激光焊接无疑能够有效解决这一难题,利用激光技术准确对现有的目标进行准确的焊接,从而大大提升了焊接的准确性和有效性。未来随着工业现代化的迅猛发展,激光焊接技术有着广阔的应用空间。鉴于此,本文主要通过对激光焊接技术的内涵以及分类出发,就目前国内外激光焊接技术研究现状进行综合性、系统性的分析,并由此结合未来制造业发展需求以及激光焊接的特点,对其未来的应用以及发展进行展望。 发展历程 世界上的第一个激光束于1960年利用闪光灯泡激发红宝石晶粒所产生,因受限于晶体的热容量,只能产生很短暂的脉冲光束且频率很低。虽然瞬间脉冲峰值能量可高达10^6瓦,但仍属于低能量输出。 使用钕(ND)为激发元素的钇铝石榴石晶棒(Nd:YAG)可产生1---8KW的连续单一波长光束。YAG激光,波长为1.06uM,可以通过柔性光纤连接到激光加工头,设备布局灵活,适用焊接厚度0.5-6mm。 使用CO2为激发物的CO2激光(波长10.6uM),输出能量可达25KW,可做出2mm板厚单道全渗透焊接,工业界已广泛用于金属的加工上。 20世纪80年代中期,激光焊接作为新技术在欧洲、美国、日本得到了广泛的关注。1985年德国蒂森钢铁公司与德国大众汽车公司合作,在Audi100车身上成功采用了全球第一块激光拼焊板。90年代欧洲、北美、日本各大汽车生产

激光焊接工艺详解

激光焊接工艺详解 随着科学技术的发展,近年来出现了激光焊接。那么什么是激光焊接呢?激光焊接的特点与优点又有哪些呢? 下图是激光焊接的工作原理: 首先,什么是激光?世界上的第一个激光束于1960年利用闪光灯泡激发红宝石晶粒所产生,因受限于晶体的热容量,只能产生很短暂的脉冲光束且频率很低。虽然瞬间脉冲峰值能量可高达106瓦,但仍属于低能量输出. 激光技术采用偏光镜反射激光产生的光束使其集中在聚焦装置中产生巨大能量的光束,假如焦点靠近工件,工件就会在几毫秒内熔化和蒸发,这一效应可用于焊接工艺高功率CO2及高功率YAG激光器的出现,开辟了激光焊接的新领域。激光焊接设备的关键是大功率激光器,主要有两大类,一类是固体激光器,又称Nd:YAG 激光器。Nd(钕)是一种稀土族元素,YAG代表钇铝柘榴石,晶体结构与红宝石相似。Nd:YAG激光器波长为1.06μm,主要优点是产生的光束可以通过光纤传送,因此可以省往复杂的光束传送系统,适用于柔性制造系统或远程加工,通常用于焊接精度要求比较高的工件。汽车产业常用输出功率为3-4千瓦的Nd:YAG激光器。另一类是气体激光器,又称CO2激光器,分子气体作工作介质,产生均匀为10.6μm的红外激光,可以连续工作并输出很高的功率,标准激光功率在2-5千瓦之间。 与其它传统焊接技术相比,激光焊接的主要优点是: 1、速度快、深度大、变形小。 2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。 3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。 4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。 5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。 6、可焊接难以接近的部位,施行非接触远间隔焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。 7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。

激光焊接工艺实践课程学习指南讲解

《激光焊接工艺实践》课程学习指南 一、课程资源导航 二、学前要求 学习本课程需要有一定的预备基础知识,需要配置一台计算机,对计算机具体要求如下: (一) 必备基础 学习本课程的学习者必须具备一定的基础: 1.会熟练使用计算机,如常用操作系统Windows XP或者Linux,还有常用软件如PowerPoint、Word等; 2.一定的激光加工技术和工程材料学知识。 (二) 软硬件环境 1.硬件环境:

三、学习目标与要求 课程设置是基于光机电应用技术专业职业岗位能力的培养需要,要求学生通过视频课件、动画和现场实训操作等多种学习资源,掌握激光焊接原理、工艺特点和应用领域。通过本课程学习,学生不仅应该掌握激光焊接加工的基础理论,更要培养、锻炼实际动手操作能力,从而使其在掌握专业知识的基础上获得所需要的职业技能。具体要求如下: ?了解激光焊接工艺的过程和机理; ?学习根据材料特点和焊接工艺要求来选择合适的激光焊接设备; ?针对不同激光焊接设备,学会选择合适的激光焊接参数并能够对设备进行调试、维护; ?针对不同激光焊接过程,学会分析影响焊接质量的因素和解决的措施; ?学习激光焊接的安全操作常识和正确的操作规范。 四、学习路径 1.学习模式 在校学生学习方式:课堂学习+操作实训+网络辅助+标准化试题库考试 网络学习方式:教材自学+按课件学习+网上导学+实训实验+标准化试题库考试2.课程知识学习路径 按知识点渐进式学习:先导课程为激光加工原理、工程材料学等。 3.推荐书籍和参考 (1)郑启光,邵丹编著,激光加工工艺与设备,北京:机械工业出版社,2009,10;(2)刘其斌编著,激光加工技术及其应用,北京:冶金工业出版社,2007;(3)蒙大桥,张友寿,何建军等译,材料激光工艺过程,北京:机械工业出版社,2012,9; (4)现代激光焊接技术,陈彦宾,科学出版社,2010,,10; (5)激光焊接与切割质量控制,陈武柱,机械工业出版社,2010。 五、考核标准 学生学习考核标准请参见本课程资源“考核方案”

激光焊接工艺参数

激光焊接原理与主要工艺参数 1.激光焊接原理 激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。 其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。 用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。下面重点介绍激光深熔焊接的原理。 激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。 2. 激光深熔焊接的主要工艺参数 1)激光功率。激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。只有当工件上的激光

中国激光焊接技术产业市场深度调研报告(2013版)

深圳市深福源信息咨询有限公司自2006(3.99亿美元)年起,中国激光加工设备销售额一直稳步增长,2012年将达到22亿美元。再这期间中国激光加工设备销售经历了两个阶段:相对缓慢地增长到2009年的7.4亿美元,然后在过去四年迎来了增长高峰。 在过去三年,中国的激光器系统进口交易额平均每年在8亿美元左右,2012年有所下降这代表中国激光器已开始自我供应。 中国政府出口统计数据进一步表明,中国国产激光系统正逐渐在对外扩张。数据显示国产激光设备出口交易额从2010年的9800万美元稳增至2012年的2.02亿美元。 目前中国主要的激光设备供应商有:大族激光(2012年营业额达到4.6亿美元)、团结普瑞玛(9000万美元)、华工激光(8000万美元)、楚天激光(5000万美元)和武汉立德激光,天琪激光,深圳光大激光,这三家总的销售额在4千万左右。 一些大型国际激光器和光学组件供应商2012年在中国的销售额大体如下:IPG Photonics ($100m)、Rofin-Sinar ($100m)、Coherent ($45m)、SPI ($15m)、Synrad ($10m)、Scanlan/CTI/Raylase ($20m)、Gooch & Housego ($5m)。 中国本土厂商在2012年售出的激光器多为低功率CO2激光器(10-60W,1.5万件)、中高功率CO2激光器(100W至上千瓦,2300件)、低功率光纤激光器(<50W,1.3万件)、高功率光纤激光器(>1kW,300件)和DPSSL系统(6000件)。 中国激光行业将会取得快速发展,先进的激光器技术正在从工业部门延伸至中小企业、加工车间和汽修厂等。汽车、消费电子行业中的激光器销售增长强劲,中国激光器制造商也在奋起直追,提高售后服务质量和本地供应链管理。 激光市场的毛利率一直在不断被压缩:激光打标和切割系统被压缩了20%到40%,激光焊接和微加工系统被压缩了20%到50%。要成为世界第二大经济市场,中国企业需要引入正确的经营模式和经营哲学。 第一章激光焊接技术SWOT特性分析错误!未定义书签。 一、优势激光焊接错误!未定义书签。 二、劣势激光焊接错误!未定义书签。 三、机会激光焊接错误!未定义书签。 四、风险激光焊接错误!未定义书签。

工业强基工程实施指南

附件2 工业强基工程实施指南(2016-2020年) 为贯彻落实《中国制造2025》,组织实施好工业强基工程,夯实工业基础,提升工业发展的质量和效益,推进制造强国建设,特制订本指南。 一、背景 工业基础主要包括核心基础零部件(元器件)、关键基础材料、先进基础工艺和产业技术基础(简称“四基”),直接决定着产品的性能和质量,是工业整体素质和核心竞争力的根本体现,是制造强国建设的重要基础和支撑条件。 经过多年发展,我国工业总体实力迈上新台阶,已经成为具有重要影响力的工业大国,形成了门类较为齐全、能够满足整机和系统一般需求的工业基础体系。但是,核心基础零部件(元器件)、关键基础材料严重依赖进口,产品质量和可靠性难以满足需要;先进基础工艺应用程度不高,共性技术缺失;产业技术基础体系不完善,试验验证、计量检测、信息服务等能力薄弱。工业基础能力不强,严重影响主机、成套设备和整机产品的性能质量和品牌信誉,制约我国工业创新发展和转型升级,已成为制造强国建设的瓶颈。未来5-10年,提升工业基础能力,夯实工业发展基础迫在眉睫。 工业强基是《中国制造2025》的核心任务,决定制造强国战略的成败,是一项长期性、战略性、复杂性的系统工程,必须

加强顶层设计,制定推进计划,明确重点任务,完善政策措施,整合各方资源,组织推动全社会齐心协力,抓紧抓实,长期坚持,务求抓出实效。 二、总体要求 (一)基本原则 落实制造强国建设战略部署,围绕《中国制造2025》十大重点领域高端突破和传统产业转型升级重大需求,坚持“问题导向、重点突破、产需结合、协同创新”,以企业为主体,应用为牵引,创新为动力,质量为核心,聚焦五大任务,开展重点领域“一揽子”突破行动,实施重点产品“一条龙”应用计划,建设一批产业技术基础平台,培育一批专精特新“小巨人”企业,推动“四基”领域军民融合发展,着力构建市场化的“四基”发展推进机制,为建设制造强国奠定坚实基础。 ——坚持问题导向。围绕重点工程和重大装备产业链瓶颈,从问题出发,分析和研究工业“四基”的薄弱环节,针对共性领域和突出问题分类施策。 ——坚持重点突破。依托重点工程、重大项目和骨干企业,区分轻重缓急,点线面结合,有序推进,集中资源突破一批需求迫切、基础条件好、带动作用强的基础产品和技术。 ——坚持产需结合。瞄准整机和系统的发展趋势,加强需求侧激励,推动基础与整机企业系统紧密结合,推动基础发展与产业应用良性互动。 ——坚持协同创新。统筹各类创新资源,促进整机系统企业、

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理 焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊,电子束焊,激光焊等多种,研究表明激光焊接技术将逐步得到广泛应用。 1. 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和

激光焊接项目可行性研究报告

角向电钻项目 可行性研究报告 xxx科技公司

角向电钻项目可行性研究报告目录 第一章项目基本信息 第二章项目背景及必要性 第三章项目市场前景分析 第四章建设规划方案 第五章项目选址说明 第六章工程设计方案 第七章工艺技术 第八章环境保护可行性 第九章项目职业保护 第十章项目风险评估分析 第十一章节能情况分析 第十二章项目实施计划 第十三章项目投资可行性分析 第十四章经济收益分析 第十五章招标方案 第十六章项目结论

第一章项目基本信息 一、项目承办单位基本情况 (一)公司名称 xxx科技公司 (二)公司简介 公司一直秉承“坚持原创,追求领先”的经营理念,不断创造令客户 惊喜的产品和服务。 公司根据市场调研,结合国家产业发展政策,在大力发展相关产业的 同时,积极实施以“节能降耗、环境保护、清洁生产”为重点的技术改造 和产品升级换代,取得了较好的经济效益和社会效益;企业将以全国性的 销售网络、现代化的物流运作、科学的管理、良好的经济效益、与客户双 赢的经营方针,努力把公司发展成为国内综合实力较强的相关行业领军企 业之一。 未来公司将加强人力资源建设,根据公司未来发展战略和发展规模, 建立合理的人力资源发展机制,制定人力资源总体发展规划,优化现有人 力资源整体布局,明确人力资源引进、开发、使用、培养、考核、激励等 制度和流程,实现人力资源的合理配置,全面提升公司核心竞争力。鉴于 未来三年公司业务规模将会持续扩大,公司已制定了未来三年期的人才发 展规划,明确各岗位的职责权限和任职要求,并通过内部培养、外部招聘、

竞争上岗的多种方式储备了管理、生产、销售等各种领域优秀人才。同时,公司将不断完善绩效管理体系,设置科学的业绩考核指标,对各级员工进 行合理的考核与评价。 (三)公司经济效益分析 上一年度,xxx有限公司实现营业收入3908.96万元,同比增长29.58%(892.37万元)。其中,主营业业务角向电钻生产及销售收入为3679.01 万元,占营业总收入的94.12%。 根据初步统计测算,公司实现利润总额847.22万元,较去年同期相比 增长210.78万元,增长率33.12%;实现净利润635.41万元,较去年同期 相比增长99.41万元,增长率18.55%。 上年度主要经济指标

相关主题
文本预览
相关文档 最新文档