数学建模最优化模型
- 格式:ppt
- 大小:1.77 MB
- 文档页数:142
数学建模的主要建模方法数学建模是指运用数学方法和技巧对复杂的实际问题进行抽象、建模、分析和求解的过程。
它是解决实际问题的一个重要工具,在科学研究、工程技术和决策管理等领域都有广泛的应用。
数学建模的主要建模方法包括数理统计法、最优化方法、方程模型法、概率论方法、图论方法等。
下面将分别介绍这些主要建模方法。
1.数理统计法:数理统计法是基于现有的数据进行概率分布的估计和参数的推断,以及对未知数据的预测。
它适用于对大量数据进行分析和归纳,提取有用的信息。
数理统计法可以通过描述统计和推断统计两种方式实现。
描述统计主要是对数据进行可视化和总结,如通过绘制直方图、散点图等图形来展示数据的分布特征;推断统计则采用统计模型对数据进行拟合,进行参数估计和假设检验等。
2.最优化方法:最优化方法是研究如何在给定的约束条件下找到一个最优解或近似最优解的方法。
它可以用来寻找最大值、最小值、使一些目标函数最优等问题。
最优化方法包括线性规划、非线性规划、整数规划、动态规划等方法。
这些方法可以通过建立数学模型来描述问题,并通过优化算法进行求解。
3.方程模型法:方程模型法是通过建立数学方程或函数来描述问题,并利用方程求解的方法进行求解。
这种方法适用于可以用一些基本的方程来描述的问题。
方程模型法可以采用微分方程、代数方程、差分方程等不同类型的方程进行建模。
通过求解这些方程,可以得到问题的解析解或数值解。
4.概率论方法:概率论方法是通过概率模型来描述和分析不确定性问题。
它可以用来处理随机变量、随机过程和随机事件等问题。
概率论方法主要包括概率分布、随机变量、概率计算、条件概率和贝叶斯推理等内容。
利用概率论的方法,可以对问题进行建模和分析,从而得到相应的结论和决策。
5.图论方法:图论方法是研究图结构的数学理论和应用方法。
它通过把问题抽象成图,利用图的性质和算法来分析和求解问题。
图论方法主要包括图的遍历、最短路径、最小生成树、网络流等内容。
数学建模案例之多变量无约束最优化多变量无约束最优化问题是指在变量间没有限制条件的情况下,求解目标函数的最优值。
这类问题在数学建模中非常常见,实际应用非常广泛。
下面以一个实际案例说明多变量无约束最优化的建模过程。
假设地有几个旅游景点,现在需要制定一个旅游路线,使得游客的游玩时间最长,同时经济成本最低。
已知每个旅游景点之间的距离和游玩时间,以及游客每次游玩每公里所需的成本。
目标是找到一条旅游路线,使得游客在游览所有景点后,花费的经济成本最少。
首先,我们需要定义问题的数学模型。
假设有n个旅游景点,用x1, x2, ..., xn表示每个景点的游玩时间(单位:小时),用dij表示第i个景点和第j个景点之间的距离(单位:公里),用c表示游客游玩每公里所需的成本。
为了定义问题的数学模型,我们需要明确如下几个关键部分:1. 决策变量:定义一个n维向量X,其中每一个分量xi表示游客在第i个景点的游玩时间。
2. 目标函数:定义一个目标函数f(X),表示游客花费的经济成本。
在本例中,目标函数可以定义为:f(X) = ∑dij * xi * c。
3.约束条件:由于是无约束最优化问题,这里没有额外的约束条件。
有了以上几个关键部分,我们可以将问题的数学模型表达为如下形式:最小化:f(X) = ∑dij * xi * c其中,i=1,2,...,n下一步是求解这个最优化问题。
可以使用各种数值优化算法,比如梯度下降法、牛顿法、遗传算法等。
具体的求解过程会涉及到算法的具体细节,这里不再详述。
最后,根据求解结果,我们可以得到游玩时间最长且经济成本最低的旅游路线。
这条路线就是我们需要制定的旅游路线。
总结起来,多变量无约束最优化问题在数学建模中的应用非常广泛。
通过定义合适的决策变量、目标函数和约束条件,可以将实际问题转化为数学模型,并通过数值优化算法求解这个模型,得到最优解。
在实际应用中,对于复杂的问题,可能需要结合多种算法和技巧来求解。
习题六1、某工厂生产四种不同型号的产品,而每件产品的生产要经过三个车间进行加工,根据该厂现有的设备和劳动力等生产条件,可以确定各车间每日的生产能力(折合成有效工时来表示)。
现将各车间每日可利用的有效工时数,每个产品在各车间加工所花费的工时数及每件产品可获得利润列成下表:试确定四种型号的产品每日生产件数,,,,4321x x x x 使工厂获利润最大。
2、在车辆拥挤的交叉路口,需要合理地调节各车道安置的红绿灯时间,使车辆能顺利、有效地通过。
在下图所示的十字路口共有6条车道,其中d c b a ,,,是4条直行道,f e ,是两条左转弯道,每条车道都设有红绿灯。
按要求制定这6组红绿灯的调节方案。
首先应使各车道的车辆互不冲突地顺利驶过路口,其次希望方案的效能尽量地高。
即各车道总的绿灯时间最长,使尽可能多的车辆通过。
da bc 提示:将一分钟时间间隔划分为4321,,,d d d d 共4个时段,()()()f J b J a J ,,, 为相应车道的绿灯时间。
()d J3、某两个煤厂A 和B 每月进煤量分别为60吨和100吨,联合供应三个居民区C 、D 、E 。
这三个居民区每月对煤的需求量依次分别是50吨、70吨、40吨。
煤厂A 与三个居民区C 、D 、E 的距离分别为10公里、5公里和6公里。
煤厂B 与三个居民区C 、D 、E 的距离分别为4公里、8公里和12公里。
问如何分配供煤量可使运输总量达到最小?4、某工厂制造甲、乙两种产品,每种产品消耗煤、电、工作日及获利润如下表所示。
现有煤360吨,电力200KW.h ,工作日300个。
请制定一个使总利润最大的生产计划。
5、棉纺厂的主要原料是棉花,一般要占总成本的70%左右。
所谓配棉问题,就是要根据棉纱的质量指标,采用各种价格不同的棉花,按一定的比例配制成纱,使其既达到质量指标,又使总成本最低。
棉纱的质量指标一般由棉结和品质指标来决定。
这两项指标都可用数量形式来表示。
数学建模分配问题模型数学建模是一种通过数学方法解决实际问题的方法。
在实际生活中,我们经常会遇到分配问题,即将一定数量的资源分配给不同的需求方。
这些资源可以是金钱、人力、材料等,需求方可以是个人、企业、机构等。
为了合理地分配资源,我们可以使用数学建模的方法进行分析和优化。
一般来说,分配问题可以分为两类:最优化问题和约束问题。
最优化问题的目标是使得某个指标达到最大或最小值,比如最大化利润、最小化成本等。
约束问题则是在一定的条件下寻找满足需求的最优解。
下面我们将分别介绍这两类问题的数学建模方法。
对于最优化问题,我们首先需要确定一个目标函数。
目标函数描述了我们希望优化的指标,可以是一个或多个变量之间的函数关系。
然后,我们需要确定一组约束条件。
约束条件反映了资源的限制以及需求方的限制,可以是等式或不等式。
最后,我们需要确定决策变量,即需要分配的资源量或决策方案。
通过求解目标函数在约束条件下的最优解,就可以得到最佳的分配方案。
以货物运输为例,假设有一批货物需要从仓库分配给不同的销售点,我们希望通过最优化分配来降低运输成本。
我们可以将每个销售点的需求量作为约束条件,将货物的运输成本作为目标函数。
然后,我们需要确定每个销售点的分配量作为决策变量,通过求解目标函数在约束条件下的最优解,就可以得到最佳的分配方案,从而降低运输成本。
对于约束问题,我们需要确定一组约束条件,这些条件可能是资源的限制、需求方的限制或其他限制。
然后,我们需要确定决策变量,即需要分配的资源量或决策方案。
通过在约束条件下寻找满足需求的最优解,就可以得到合理的分配方案。
以人力资源分配为例,假设有一定数量的员工需要分配到不同的项目中,每个项目对员工的技能要求不同。
我们希望通过合理的分配来最大化项目的效益。
我们可以将每个项目的效益作为约束条件,将员工的技能水平作为决策变量。
通过在约束条件下寻找满足需求的最优解,就可以得到最佳的分配方案,从而最大化项目的效益。
输油管布置的优化模型摘要本文建立了输油管线布置的优化问题.为了使两家炼油厂到铁路线上增建的车站的管线铺设费用最省,依据题目提供的有关数据及相关信息,设计出了总费用最少的输油管布置方案以及增建车站的具体位置,最终在讨论分析后,对模型做出了评价和推广.模型Ⅰ:对问题1,根据两炼油厂到铁路线距离和两炼油厂间的不同距离以及共用管线与非共用管线的两种不同情况,给出了四种处理方案,并从图形上加以说明.模型Ⅱ:对问题2,建立了最优模型.在单目标非线性规划模型中,将输油管道铺设分为两个过程.先将输油管道从城区铺设到城郊区域边界线上一点,再从该点铺设到铁路线上.这样,总的费用就化为这两个过程的管道费用之和.本模型兼顾到管线的铺设费用,在城区铺设管线需增加的拆迁和工程补偿等附加费用,运用Lingo9.0数学软件得到新增车站的建设位置、管线的具体布置方案及管线费用最小值281.6893万元.模型Ⅲ:根据炼油厂的实际能力,借助题目提供的输送A、B两厂原油的管线铺设费用,在模型Ⅱ的基础上建立最优模型,给出管线最佳布置方案及相应的最省管线铺设费用为250.9581万元.关键词:输油管共用管线非共用管线 Lingo9.0 非线性规划一、问题重述某油田计划在铁路线一侧建造两家炼油厂,同时在铁路线上增建一个车站,用来运送成品油。
由于这种模式具有一定的普遍性,油田设计院希望建立管线建设费用最省的一般数学模型和方法。
现欲解决下列问题:问题1:针对炼油厂到铁路线距离和两炼油厂间距离的各种不同情形,提出设计方案。
在方案设计时,若有共用管线,考虑共用管线与非共用管线相同或不同的情形。
问题2:设计院目前需对一更为复杂的情形(两炼油厂的具体位置)进行具体的设计。
两炼油厂的具体位置如下图:若所有管线的费用均为7.2万元/千米。
铺设在城区的管线还需增加迁拆和工程补偿等附加费用,为对此附加费用进行估计,聘请三家工程咨询公司(其中一具有甲级资质,公司二和公司三具有乙级资质)进行了估算。
数学建模案例之单变量最优化生猪的最佳销售时间问题1:一头猪重200磅(1磅=0.454公斤),每天增重5磅,饲养每天需花费45美分。
猪的市场价格为每磅65美分,但每天下降0.01美元,求出售猪的最佳时间。
1.问题分析与假设、符号说明涉及的变量:猪的重量w(磅),饲养时间t≥0(天),t天内饲养猪的化费Q(美元),猪的市场价格p(美元/磅),售出生猪所获得的总收益R(美元),我们最终获得的净收益C(美元)。
涉及的常量:猪的初始重量200(磅),饲养每天的花费0.45(美元),生猪每天的增加重量s(磅),当前的市场价格0.65(美元),生猪价格每天的下降比例系数r。
变量之间的联系:假设1:猪的重量从初始的200(磅)按每天s=5(磅)增加,于是有关系:w(磅)=200(磅)+s(磅/天)×t(天)假设2:当前的市场价格0.65(美元/磅),生猪价格每天的下降比例系数r=0.01,那么出售时生猪的价格为:p(美元/磅)=0.65(美元/磅)- r(美元/磅.天)×t(天)因此,我们有如下关系式:饲养生猪的总的费用为:Q(美元)=0.45(美元/天)×t(天)售出生猪时获得的总收益为:R(美元)=p(美元/磅)×w(磅)最终获得的净收益为:C(美元)=R(美元)-Q(美元)当生猪卖出时获得最大净收益的时间即为最佳出售时间,因此原问题转换成数学表述就是求P达到最大时的时间t≥0,其中P的表达式为:=-=⨯-⨯=-+-C t R t Q t p w t rt st t()()()0.45(0.65)(200)0.452.建立数学模型根据前面的分析,原问题的数学模型如下:max ()..()(0.65)(200)0.45,0C t s t C t rt st t t =-+-≥ (1.1)其中,r ,s 为模型参数,此处取值为s=5,r=0.01。
3.模型求解当s=5,r=0.01时,这是一个单变量t 的函数的最优化问题,而且()C t 是一个连续可微的函数。
数学建模动态优化模型数学建模是一种通过建立数学模型来解决实际问题的方法。
动态优化模型则是指在一定的时间尺度内,通过调整决策变量,使系统在约束条件下达到最优效果的数学模型。
本文将介绍数学建模中动态优化模型的基本原理、方法和应用。
动态优化模型是一种考虑时间因素的优化模型。
在解决实际问题时,往往需要考虑到系统随时间变化的特性,因此单纯的静态优化模型可能无法满足需求。
动态优化模型对系统的演化过程进行建模,通过引入时间因素,能够更准确地描述系统的行为,并找到最优的策略。
动态优化模型的核心是建立一个数学模型来描述系统的演化过程。
在建模过程中,需要确定决策变量、目标函数、约束条件和系统的动态特性。
决策变量是指在不同时间点上的决策变量值,目标函数是指目标的数量指标,约束条件是系统必须满足的条件,系统的动态特性是指系统状态随时间的变化规律。
动态优化模型的建模方法有很多种,常见的方法包括状态空间建模、差分方程建模和优化控制建模等。
其中,状态空间建模是一种通过描述系统状态和系统状态之间的关系来建立模型的方法;差分方程建模是一种通过描述离散时间点上系统的状态之间的关系来建立模型的方法;优化控制建模则是一种将优化方法和控制方法相结合的建模方法。
动态优化模型在实际问题中有广泛的应用。
例如,在生产调度问题中,我们需要根据不同时间的产销情况来安排生产任务,以使得产能得到充分利用并满足市场需求;在交通控制问题中,我们需要根据交通流量的变化来调整信号灯的配时方案,以最大程度地减少交通拥堵;在能源管理问题中,我们需要根据电网的负荷变化来调整发电机组的出力,以实现能源的有效利用。
在建立动态优化模型时,需要考虑到模型的复杂性和求解的难度。
一方面,动态优化模型往往比静态优化模型复杂,需要考虑到系统的动态特性和约束条件的演化;另一方面,求解动态优化模型需要考虑到系统的运行时间和求解算法的效率。
因此,在建立动态优化模型时,需要合理选择模型和算法,以保证模型的可行性和求解的可行性。
数学建模案例之单变量最优化在现实生活中,我们经常需要对一些变量进行优化,以获得最佳的结果。
这个过程就被称为单变量最优化。
在数学建模中,单变量最优化是一个非常常见的问题。
下面以公司海外销售业绩最大化为例,介绍单变量最优化的数学建模方法。
假设公司想要通过调整价格来提高其在海外市场的销售额。
现在,该公司销售一种产品,定价为P(单位:美元),该产品的销售量是一个衰减函数,即随着价格的上升,销售量逐渐减少。
为了简化问题,我们假设销售量Q(单位:件)与价格P之间的关系可以用一个二次函数来近似表示。
那么,我们可以将该问题建模为一个单变量最优化问题。
首先,我们需要找到销售量与价格之间的函数关系。
假设销售量与价格之间的关系可以用以下二次函数来表示:Q=aP^2+bP+c其中,a、b、c是待定系数。
接下来,我们需要根据已知的数据来确定这些系数的值。
假设我们已经知道了两个数据点,即在价格P1下销售量为Q1,价格P2下销售量为Q2、我们可以将这两个点代入上式,得到以下两个方程:Q1=aP1^2+bP1+cQ2=aP2^2+bP2+c通过解这个方程组,我们可以确定a、b、c的值。
具体的解法可以使用最小二乘法,即通过最小化误差平方和的方法,求得最佳的a、b、c的估计值。
接下来,我们需要确定如何调整价格来使销售额最大化。
为了简化问题,我们假设该公司的成本是固定的,并且每一件产品的利润是固定的。
那么,该公司的总利润可以表示为:Profit = (P - Cost) * Q其中,Cost是单位产品的成本,P是产品的价格,Q是销售量。
我们的目标是使总利润最大化。
通过将Profit表达式代入销售量与价格之间的函数关系,可以得到总利润关于价格的函数。
我们可以使用微分法来求解这个问题,即通过求导数来找到函数的驻点。
驻点处的导数为0,表示函数取得极值。
我们可以找到极值点来确定价格的最佳取值。
最后,我们可以使用数值方法,如牛顿法或二分法,来求得函数的极值点。