等差数列公式大全-等差公式大全
- 格式:docx
- 大小:380.67 KB
- 文档页数:3
等差数列公式第n项=首项+(项数-1)×公差项数=(末项-首项)÷公差+1公差=(末项-首项)÷(项数-1)和=(首项+末项)×项数÷2平均数问题:总数量÷总份数=平均数总数量=平均数×总份数行船问题:顺水速度=船速+水速逆水速度=船速-水速(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速过桥问题:过桥是指车头上桥到车尾离桥,即车运动的总路程=即车长与桥长的和。
速度×时间=路程路程÷速度=时间路程÷时间=速度盈亏问题公式:一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。
两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。
两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数。
一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数。
一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)=人数。
还原问题:解还原问题所作的相应的“逆运算”是指:加法用减法还原,减法用加法还原,乘法用除法还原,除法用乘法还原,并且原来是加(减)几,还原时应为减(加)几,原来是乘(除)以几,还原时应为除(乘)以几。
例如:数码与页码问题:一位数(1~9)的页码:9个数码(字)两位数(10~99)的页码:180个数码(字)三位数(100~999)的页码:2700个数码(字)四位数(1000~9999)的页码:36000个数码(字)四位数(10000~99999)的页码:450000个数码(字)奇数和偶数:奇数±奇数=偶数偶数±偶数=偶数奇偶±奇数=奇数奇数×奇数=奇数奇数×偶数=偶数偶数×偶数=偶数奇数不可能被偶数整除。
一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。
3、等差数列的前n项和公式:S n= S n= S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。
4、等比数列的通项公式: a n= a1 q n-1a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式);当q≠1时,S n= S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。
6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列。
7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{a n}为等差数列,则 (c>0)是等比数列。
高中数列公式总结大全高中数列公式总结大全数列是高中数学中非常重要的一个概念,它是由一般概念到具体具有规律性的数值排列的组合,我们可以通过分析数列的规律,找到其通项公式,从而求解各种问题。
下面是我为你们总结的高中数列公式大全。
等差数列公式:等差数列是一种每个数与它的相邻数之间的差恒定的数列。
我们可以用a1表示首项,d表示公差,n表示项数来描述等差数列。
等差数列的通项公式和前n项和公式如下:1. 通项公式:an = a1 + (n-1)d2. 前n项和公式:Sn = (n/2)(a1 + an)等比数列公式:等比数列是一种每个数与它的前一项之比恒定的数列。
我们可以用a1表示首项,q表示公比,n表示项数来描述等比数列。
等比数列的通项公式和前n项和公式如下:1. 通项公式:an = a1 * q^(n-1)2. 前n项和公式(当q≠1):Sn = a1 * (1 - q^n) / (1 - q)算术-几何数列公式:算术-几何数列是一种既满足等差性质又满足等比性质的数列。
我们可以用a1表示首项,a表示公差差值,q表示公比,n表示项数来描述算术-几何数列。
算术-几何数列的通项公式如下:an = a1 + (n-1)d + a1(q - 1)(q^n - 1) / (q - 1)Fibonacci数列公式:Fibonacci数列是一种特殊的数列,其第1项和第2项都是1,从第3项开始,每个数是前两个数之和。
Fibonacci数列的通项公式如下:fn = (1/sqrt(5)) * ((1 + sqrt(5))/2)^n - (1/sqrt(5)) * ((1 -sqrt(5))/2)^n等差多项式数列公式:等差多项式数列是一种既满足等差性质又满足多项式规律的数列。
我们可以用a1表示首项,d表示公差,n表示项数,k表示多项式次数来描述等差多项式数列。
等差多项式数列的通项公式如下:an = a1 + (n-1)d + (n(n-1)/2)k等差奇数数列公式:等差奇数数列是一种等差数列,其项数都是奇数。
等差等⽐数列公式⼤全
等差等⽐数列公式有哪些?想了解等⽐等差是什么的朋友可以来看看,下⾯店铺⼩编为你准备了“等差等⽐数列公式⼤全”内容,仅供参考,祝⼤家在本站阅读愉快!
等差等⽐数列公式⼤全
等差数列通项公式、求和公式:
等⽐数列抄通项公式、求和公式:
拓展阅读:等⽐数列和等差数列有什么区别
等⽐数列是前⼀项除以后⼀项等于⼀个固定常数q;
通项公式an=a1·q(n-1);
等差数列是前⼀项与后⼀项的差是常数;
等差数列的通项公式an=a1+(n-1)d=dn+a1-d;
等⽐数列是指前⼀个数和后⼀个数的⽐相同,;
如:1,3,9,27,……
等差数列是指前⼀个数和后⼀个数的差相同,
如:1,4,7,10,13,,16,……
等⽐数列是前⼀项除以后⼀项等于⼀个固定常数q;
通项公式an=a1·q(n-1),
等差数列是前⼀项与后⼀项的差是固定常数;
等差数列的通项公式an=a1+(n-1)d=dn+a1-d;
⼀个差相等,⼀个⽐相等。
等差数列项数的公式
等差数列的项数公式是:
第n项=第1项+ (n-1) *公差
其中,第1项是等差数列的首项,n是等差数列的项数,公差是等差数列中相邻两项的差值。
拓展:
除了项数公式,还有其他一些与等差数列项数相关的公式和性质:
1.等差数列的前n项和公式:
等差数列的前n项和可以表示为:Sn = (n/2) * (第1项+第n项) 其中,Sn表示等差数列的前n项和。
2.等差数列的末项公式:
等差数列的末项可以表示为:第n项=第1项+ (n-1) *公差
3.项数公式的逆运算:
已知等差数列的第1项、末项和公差,可以使用项数公式的逆运算求得项数n。
具体步骤为:(第n项-第1项) /公差+ 1 = n
4.项数公式的特殊情况:
当等差数列的公差为1时,项数公式可以简化为:第n项=第1项+ (n-1) = n +第1项- 1
这些公式和性质都可以帮助我们在解决与等差数列项数相关的问题时进行计算和推导。
数列所有公式大全1、等差数列:所有项的差值都相等的数列。
公式为:a_n=a_1+(n-1)d;其中,a_1表示数列的第一项,d表示等差数列的公差,n表示从第一项开始的项数。
特别地,当d=1时,称为等比数列。
2、等比数列:所有项的比值都相等的数列。
公式为:a_n=a_1*q^(n-1);其中,a_1表示数列的第一项,q表示等比数列的公比,n表示从第一项开始的项数。
3、调和数列:调和数列又叫等级数列,它的前2项相加的结果作为第3项。
公式为:a_n=a_1+(a_1+a_2+…+a_(n-1));其中,a_1表示数列的第一项,a_2表示第二项,a_(n-1)表示第n-1项,n表示从第一项开始的项数。
4、椭圆数列:椭圆数列又称斐波那契数列,是一种只由两个初始斐波那契数开始,其它任何项都只能由之前最少两个数构成的数列。
公式为:a_n=a_(n-1)+a_(n-2);其中,a_(n-1)表示第n-1项,a_(n-2)表示第n-2项,n表示从第一项开始的项数。
5、斜坡数列:斜坡数列也叫等差等比数列,它的前2项相加的结果作为第3项。
公式为:a_n=a_1+((n-1)*q^(n-1));其中,a_1表示数列的第一项,d表示等差数列的公差,q表示等比数列的公比,n表示从第一项开始的项数。
6、平方数列:平方数列的每一项都是以前面某一个数的平方来构成的数列。
公式为:a_n=c^2+(n-1)d;其中,c表示数列的第一项,d 表示数列的公差,n表示从第一项开始的项数。
7、立方数列:立方数列的每一项都是以前面某一个数的立方来构成的数列。
公式为:a_n=c^3+(n-1)d;其中,c表示数列的第一项,d 表示数列的公差,n表示从第一项开始的项数。
等比等差数列的所有公式等差数列和等比数列是数学领域里比较基础且常见的两种数列。
它们不仅在高中阶段的数学学习中出现,同时也在大学的高级数学科目中应用广泛。
本文将会全面介绍等差数列和等比数列的定义、公式以及应用,以期为读者提供一个全面且清晰的了解。
一、等差数列等差数列是指一种数列,其任意两个相邻项之间的差值是相等的,这个相等的差值叫做公差。
举个例子,1,3,5,7,9....,就是一个公差为2的等差数列。
等差数列的通项公式对于任意一个等差数列,其通项公式可以表示为an=a1+(n-1)d,其中an表示该数列的第n项,a1表示该数列的首项,d表示该数列的公差。
这个公式用起来非常方便,读者只需要知道该数列的首项和公差,就可以轻松地得出该数列的任意一项。
等差数列的和公式等差数列的和公式就是数列的所有数值之和,它能够帮助我们快速计算数列中所有数值之和。
韦达定理是该公式的基础,韦达定理是指求等差数列和时将数列上下颠倒,在叠加两个相同的数列使其首项与末项分别相加后,其中的所有项均相等,其和是所求等差数列的和的两倍。
求和公式: Sn=n(a1+an)/2其中n表示项数,a1表示首项,an表示末项。
(特殊情况下)如果公差为1,那么求和公式可以变为:Sn=n(a1+an)/2=n(a1+1)/2 。
二、等比数列等比数列是指一种数列,其任意两个相邻项之间的比值是相等的,这个相等的比值叫做公比。
例如,1,2,4,8,16....就是一个公比为2的等比数列。
等比数列的通项公式对于任意一个等比数列,其通项公式可以表示为an=a1×r^(n-1),其中an表示该数列的第n项,a1表示该数列的首项,r表示该数列的公比。
与等差数列的情况类似,知道等比数列的首项和公比,就可以很容易地得出该数列的任意一项。
等比数列的和公式等比数列的和公式可以帮助我们快速计算数列中所有数值之和。
其中,如果公比r=1,那么求和公式就是Sn=na1,这个公式表示如果公比为1的等比数列中有n个元素,那么这个数列的和就是该数列第一个元素的值与这n 个元素数值之和相等。
等差数列三条公式等差数列是数学中常见的一种数列形式,具有一定的规律性。
在等差数列中,有三条重要的公式,分别是求前n项和、求通项公式和求项数的公式。
下面将依次介绍这三条公式。
一、求前n项和的公式:对于等差数列,求前n项和是常见的问题。
我们可以通过一个简单的公式来求解。
设等差数列的首项为a1,公差为d,第n项为an,则前n项和Sn可表示为:Sn = (a1 + an) * n / 2其中,a1为首项,an为第n项,n为项数。
这个公式的推导过程比较简单,就不再赘述。
例如,对于等差数列1, 3, 5, 7, 9,我们可以通过这个公式来求其前4项和:a1 = 1, an = 7, n = 4Sn = (1 + 7) * 4 / 2 = 8 * 2 = 16二、求通项公式的公式:通项公式是指等差数列中第n项与公差、首项之间的关系式。
对于等差数列,通项公式的一般形式为:an = a1 + (n - 1) * d其中,an为第n项,a1为首项,d为公差,n为项数。
这个公式的推导过程也是比较简单的,可以通过观察数列的规律得到。
例如,对于等差数列2, 5, 8, 11,我们可以通过这个公式来求其第5项:a1 = 2, d = 3, n = 5an = 2 + (5 - 1) * 3 = 2 + 12 = 14三、求项数的公式:有时候,我们知道等差数列的首项、公差和前n项和,想要求项数n。
这个时候,我们可以利用求根公式来解决。
设等差数列的首项为a1,公差为d,前n项和为Sn,则项数n可表示为:n = (2 * Sn - a1) / d + 1这个公式的推导过程较为复杂,主要是通过求解一元二次方程来得到。
但是在实际应用中,我们可以直接使用这个公式来求解。
例如,对于等差数列3, 6, 9, 12,我们知道a1 = 3, d = 3,前n 项和Sn = 18,希望求解项数n,可以使用这个公式:n = (2 * 18 - 3) / 3 + 1 = 36 / 3 + 1 = 12 + 1 = 13以上就是等差数列中三个重要的公式:求前n项和的公式、求通项公式的公式和求项数的公式。
等差数列前n项和公式大全
等差数列是指数列中相邻两项之差相等的数列。
其前n项和公式如下:1. 等差数列首项为a,公差为d,前n项和为Sn,则有:Sn = n/2(2a + (n-1)d)这是最常用的等差数列前n项和公式,也是最基本的公式。
2. 等
差数列首项为a,公差为d,末项为an,前n项和为Sn,则有:Sn =
n/2(a + an)这个公式的推导需要用到等差数列的通项公式an = a + (n-1)d。
3. 等差数列首项为a,公差为d,第m项到第n项的和为Smn,则有:Smn = (n-m+1)/2(2a + (n-m)d)这个公式可以用来求等差数列中任意
一段连续项的和。
4. 等差数列首项为a,公差为d,第k项的值为ak,
则有:ak = a + (k-1)d这是等差数列的通项公式,可以用来求等差数列
中任意一项的值。
以上是等差数列前n项和公式的常见形式,需要根据具
体问题选择合适的公式进行计算。
高中数列公式总结大全数列是高中数学中最重要的知识点之一,也是考试的重要内容。
数列在生活中也有广泛的应用,有助于我们更好地理解世界及其规律。
因此,了解各种数列的表达式及其相应的规律,对我们的学习十分重要。
本文旨在收集常见的数列表达式,并将这些表达式归纳总结,以便读者能够更好地理解这些表达式及其应用。
一、等差数列等差数列是最常见的数列,它满足“等差公式”:an=a1+(n-1)d其中a1表示等差数列的第一项,n表示数列的项数,d表示数列的公差。
等差数列的前n项和可用公式表示:Sn=n(a1+an)/2其中,a1表示等差数列的第一项,an表示等差数列的最后一项,n表示数列的项数。
二、等比数列等比数列是一种有规律的数列,它的每一项与前一项的比值相同,即比值为常数。
等比数列可以用指数形式表示:an=a1qn-1其中,a1表示数列的第一项,q表示公比,n表示数列的项数。
等比数列的前n项和可用公式表示:Sn=a1(1-qn)/(1-q)其中,a1表示数列的第一项,q表示公比,n表示数列的项数。
三、等差等比混合数列等差等比混合数列是由等差数列和等比数列混合而成的数列。
它的一般项公式为:an=a1qn-1+(n-1)d其中,a1表示数列的第一项,q表示公比,d表示公差,n表示数列的项数。
等差等比混合数列的前n项和可用公式表示:Sn=(an+a1)nr/(r+1)-(a1-d)(qn-1)/(q-1)其中,a1表示数列的第一项,q表示公比,d表示公差,r表示r=1-q,an表示数列的最后一项,n表示数列的项数。
四、其他数列除了上述的等差数列、等比数列以外,还有一些常见的数列,如偶数数列、奇数数列等。
偶数数列的一般项公式是:an=a1+2(n-1)其中,a1表示数列的第一项,n表示数列的项数。
奇数数列的一般项公式是:an=a1+2(n-1)+1其中,a1表示数列的第一项,n表示数列的项数。
偶数数列和奇数数列的前n项和可用公式表示:Sn=n(a1+an)/2其中,a1表示数列的第一项,an表示数列的最后一项,n表示数列的项数。
等差数列公式大全-等差公式大全
(共2页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
等差数列公式大全
1、 an=
1121)nnssnsn
(
(注意:(1)此公式对于一切数列均成立
(2)1nnnssa不是对一切正整数n都成立,而是局限于n≥2)
2、 等差数列通项公式:na=1a+(n-1)d
na=m
a
+(n-m)d d=mnaamn(重要)
3、 若{na}是等差数列,m+n=p+qma+na=pa+qa
4、 若a,A,b成等数列则2A=a+b (A是a,b的等差中项)
5、 {na}是等差数列,若m、n、p、qN且m≠n,p≠q,则
mnaamn
=qpaaqp=d
6、 等差数列{na}的前n项和为ns,则
n
s
=21naan (已知首项和尾项)=211dnnna (已知首项和
公差)=ndadn212112(二次函数可以求最值问题)
7、 等差数列部分和性质:mmmmmsssss232,,…仍成等差数列。
8、 在等差数列中抽取新数列:一般地,对于公差为d的等差数列{na},
若...,321kkk成等差数列,那么,......,,,321knkkkaaaa仍成等差数列,而且
公差为(12kk)d
9、 ns的最值问题:若{na}是等差数列,1a为首项,d为公差
① 首项1a>0,d<0,n满足na≥0,1na<0时前n项和ns最大
② 首项1a<0,d>0,n满足na≤0,1na>0时前n项和ns最小
10、 在等差数列{na}中,奇s与偶s的关系:
①当n为奇数时,ns=21n,
奇
s
-偶s=a21n, 偶奇ss=
11n
n
②当n为奇数时,ns=n.2122nnaa ,
奇
s
-偶s=dn2 偶奇ss=
122
n
n
a
a
11、等差数列的判别方法:
⑴定义法: 1na-na=d (d为常数) {na}是等差数
⑵中项公式法: 21na=na+a2n (nN*) {na}是等差数列
⑶通项公式法: na=pn+q (p,q为常数) {na}是等差数列
⑷前n项和公式法: ns=An2+Bn (A,B为常数) {na}是等差数列