大一高等数学期末考试试卷及答案详解
- 格式:doc
- 大小:79.00 KB
- 文档页数:10
大学一年级《高等数学》期末测试卷一、选择题(每题4分,共16分)1.101lim(1)lim sinxx x x x x -→→∞++=( )。
A 、e ;B 、1e -;C 、1e +;D 、11e -+2.设()ln f x x x =在0x 处可导,且0()2f x '=,则0()f x =( )。
A 、0;B 、e ;C 、1;D 、2e 。
3.若sin 2x 是()f x 的一个原函数,则()xf x dx =⎰( )。
A 、sin 2cos2x x x C ++;B 、sin 2cos2x x xC -+;C 、1sin 2cos 22x x x C -+;D 、1sin 2cos 22x x x C++。
4.已知函数32()f x x ax bx =++在1x =处取得极值2-,则( )。
A 、3,0a b =-=且1x =为函数()f x 的极小值点;B 、0,3a b ==-且1x =为函数()f x 的极小值点;C 、3,0a b =-=且1x =为函数()f x 的极大值点;D 、0,3a b ==-且1x =为函数()f x 的极大值点。
二、填空题(每题5分,共20分)1. 0limx xx xe e -→=- 。
2.x =⎰。
3.3222sin (cos )1x x dx x ππ-+=+⎰ 。
4.设,,,αβδγ为向量,k 为实数。
若||||1,||||1αβ==,α⊥β,2,k γαβδαβ=+=+,γ⊥δ,则k = 。
三、计算下列各题(每题9分,共45分)1.求极限0lim xx x →+。
2.函数()y y x =由方程0x y e e xy --=确定,求202|x d ydx =。
3.求定积分1dx。
4.求过点(3,1,2)且与平面21x z +=和32y z -=平行的直线方程。
5.设1sin , 0()20, x x f x π⎧≤≤⎪=⎨⎪⎩其它,求0()()xx f t dt Φ=⎰。
大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x y e y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()x f x dx xe dx ---=+⎰⎰⎰03()x xd e --=-+⎰⎰0232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
页眉内容大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:101233()2x f x dx xe dx x x dx---=+-⎰⎰⎰123()1(1)xxd e x dx--=-+--⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
大一高等数学期末考试试卷及(Ji)答案详解一、选择题(Ti)(共12分)1. (3分(Fen))若为连续函(Han)数,则的(De)值为( ).(A)1 (B)2 (C)3 (D)-12. (3分(Fen))已知则(Ze)的(De)值为().(A)1 (B)3 (C)-1 (D)3. (3分)定积分的值为().(A)0 (B)-2 (C)1 (D)2f x在该点处( ).4. (3分)若在处不连续,则()(A)必不可导 (B)一定可导(C)可能可导 (D)必无极限二、填空题(共12分)1.(3分)平面上过点,且在任意一点处的切线斜率为的曲线方程为 .2. (3分) .3. (3分)= .4. (3分)的极大值为 .三、计算题(共42分)1.(6分)求2.(6分)设求3.(6分)求(Qiu)不定积分4.(6分(Fen))求其(Qi)中5.(6分)设函(Han)数由方(Fang)程所(Suo)确定,求6.(6分(Fen))设求(Qiu)7.(6分)求极限四、解答题(共28分)1.(7分)设且求2.(7分)求由曲线与轴所围成图形绕着x轴旋转一周所得旋转体的体积.3.(7分)求曲线在拐点处的切线方程.4.(7分)求函数在上的最小值和最大值.五、证明题(6分)设在区间上连续,证明标准答案一、 1 B; 2 C; 3 D; 4 A.二、 1 2 3 0; 4 0.三、 1 解原式 5分1分2解 2分4分(Fen)3 解原(Yuan)式 3分(Fen)2分(Fen)1分(Fen)4解(Jie) 令则(Ze) 2分1分(Fen)1分1分1分5两边求导得 2分1分1分2分6解 2分4分7解原式= 4分= 2分四、1 解令则 3分= 2分2分1分2解(Jie) 3分(Fen)2分(Fen)2分(Fen)3解(Jie) 1分(Fen)令(Ling)得(De) 1分当时,当时, 2分为拐点, 1分该点处的切线为 2分4解 2分令得 1分2分最小值为最大值为 2分五、证明1分1分1分1分1分移项即得所证. 1分。
高数(大一上)期末试题及答案第一学期期末考试试卷(1)课程名称:高等数学(上)考试方式:闭卷完成时限:120分钟班级:学号:姓名:得分:一、填空(每小题3分,满分15分)1.lim (3x^2+5)/ (5x+3x^2) = 02.设 f''(-1) = A,则 lim (f'(-1+h) - f'(-1))/h = A3.曲线 y = 2e^(2t) - t 在 t = 0 处切线方程的斜率为 44.已知 f(x) 连续可导,且 f(x)。
0,f(0) = 1,f(1) = e,f(2) = e,∫f(2x)dx = 1/2ex,则 f'(0) = 1/25.已知 f(x) = (1+x^2)/(1+x),则 f'(0) = 1二、单项选择(每小题3分,满分15分)1.函数 f(x) = x*sinx,则 B 选项为正确答案,即当x → ±∞ 时有极限。
2.已知 f(x) = { e^x。
x < 1.ln x。
x ≥ 1 },则 f(x) 在 x = 1 处的导数不存在,答案为 D。
3.曲线 y = xe^(-x^2) 的拐点是 (1/e。
1/(2e)),答案为 C。
4.下列广义积分中发散的是 A 选项,即∫dx/(x^2+x+1)在区间 (-∞。
+∞) 内发散。
5.若 f(x) 与 g(x) 在 (-∞。
+∞) 内可导,且 f(x) < g(x),则必有 B 选项成立,即 f'(x) < g'(x)。
三、计算题(每小题7分,共56分)1.lim x^2(e^(2x)-e^(-x))/((1-cosx)sinx)lim x^2(e^(2x)-e^(-x))/((1-cosx)/x)*x*cosxlim x(e^(2x)-e^(-x))/(sinx/x)*cosxlim (2e^(2x)+e^(-x))/(cosx/x)应用洛必达法则)2.lim {arcsin(x+1) + arcsin(x-1) - 2arcsin(x)}/xlim {arcsin[(x+1)/√(1+(x+1)^2)] + arcsin[(x-1)/√(1+(x-1)^2)] - 2arcsin(x)/√(1+x^2)}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+x^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+x^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+(x+1)^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+(x-1)^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin[(x-1)/√(1+(x-1)^2)]} π/2 (应用洛必达法则)3.y = y(x) 由 x + y - 3 = 0 确定,即 y = 3 - x,因此 dy/dx = -1.4.f(x) = arctan(2x-9) - arctan(x-3) 的导数为 f'(x) = 1/[(2x-9)^2+1] - 1/[(x-3)^2+1],因此 f'(x)。
大一高数b1期末考试题及答案解析一、选择题(每题5分,共20分)1. 以下哪个选项是微分的定义?A. 函数在某点的导数B. 函数在某点的切线斜率C. 函数在某点的极限D. 函数在某点的增量答案:C解析:微分是函数在某点的极限,即函数增量与自变量增量之比当自变量增量趋近于零时的极限。
2. 函数f(x)=x^3+2x-1的导数是?A. 3x^2+2B. x^3+2C. 2x^2+2D. x^2+2x答案:A解析:根据导数的定义,f'(x)=3x^2+2。
3. 以下哪个选项是定积分的定义?A. 函数在某区间的原函数B. 函数在某区间的增量C. 函数在某区间的极限D. 函数在某区间的差分答案:C解析:定积分是函数在某区间的极限,即函数在该区间上所有小矩形面积的和的极限。
4. 曲线y=x^2与x轴围成的面积是?A. 1/3B. 1/2C. 2/3D. 1/4答案:A解析:曲线y=x^2与x轴围成的面积可以通过定积分计算,即∫(0,1)x^2dx=1/3。
二、填空题(每题5分,共20分)1. 已知函数f(x)=x^2-3x+2,求f'(x)=________。
答案:2x-3解析:根据导数的定义,f'(x)=2x-3。
2. 函数f(x)=ln(x)的导数是________。
答案:1/x解析:自然对数函数ln(x)的导数是1/x。
3. 求定积分∫(0,1)x^2dx的值。
答案:1/3解析:通过计算定积分∫(0,1)x^2dx=1/3。
4. 曲线y=x^3与x轴围成的面积是________。
答案:1/4解析:曲线y=x^3与x轴围成的面积可以通过定积分计算,即∫(0,1)x^3dx=1/4。
三、解答题(每题10分,共20分)1. 求函数f(x)=e^x的导数。
答案:f'(x)=e^x解析:指数函数e^x的导数仍然是e^x。
2. 求定积分∫(0,2)e^xdx的值。
答案:e^2-1解析:通过计算定积分∫(0,2)e^xdx=e^2-1。
大一数学期末考试试题及答案解析一、选择题(每题5分,共20分)1. 下列哪个选项是实数集的符号表示?A. ZB. NC. QD. R答案:D解析:实数集的符号表示为R,整数集为Z,自然数集为N,有理数集为Q。
2. 函数f(x) = x^2 + 3x + 2的根是:A. -1B. -2C. 1D. 2答案:B解析:通过求解二次方程x^2 + 3x + 2 = 0,我们得到(x + 1)(x + 2) = 0,因此根为-1和-2。
3. 极限lim(x→0) (sin x)/x的值是:A. 0B. 1C. 2D. 3答案:B解析:根据洛必达法则,当x趋近于0时,(sin x)/x的极限值为1。
4. 以下哪个选项是复数z = 2 + 3i的共轭复数?A. 2 - 3iB. 2 + 3iC. -2 + 3iD. -2 - 3i答案:A解析:复数z = a + bi的共轭复数为a - bi,因此2 + 3i的共轭复数为2 - 3i。
二、填空题(每题5分,共20分)1. 函数f(x) = 2x - 3的反函数是f^(-1)(x) = _______。
答案:x/2 + 3/2解析:将f(x) = 2x - 3中的x和y互换,得到x = 2y - 3,解出y 得到反函数。
2. 圆的方程x^2 + y^2 = 9的圆心坐标是(0, 0),半径为_______。
答案:3解析:圆的方程x^2 + y^2 = r^2,其中r为半径,因此半径为3。
3. 集合{1, 2, 3}的子集个数为_______。
答案:8解析:一个有n个元素的集合的子集个数为2^n,因此3个元素的集合有2^3 = 8个子集。
4. 向量a = (3, 4)和向量b = (-4, 3)的点积为_______。
答案:-7解析:点积计算公式为a·b = |a||b|cosθ,其中θ为两向量之间的夹角。
由于向量a和向量b的点积为3*(-4) + 4*3 = -12 + 12 = -7,因此答案为-7。
大一高等数学期末考试试卷及答案详解一、选择题(共12分)1. (3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数;则a 的值为( ).(A)1 (B)2 (C)3 (D)-12. (3分)已知(3)2,f '=则0(3)(3)lim 2h f h f h→--的值为( ). (A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-⎰的值为( ). (A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续;则()f x 在该点处( ).(A)必不可导 (B)一定可导(C)可能可导 (D)必无极限二、填空题(共12分)1.(3分) 平面上过点(0,1);且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2. (3分) 1241(sin )x x x dx -+=⎰ . 3. (3分) 201lim sin x x x→= . 4. (3分) 3223y x x =-的极大值为 .三、计算题(共42分)1. (6分)求20ln(15)lim .sin 3x x x x →+2. (6分)设y =求.y '3. (6分)求不定积分2ln(1).x x dx +⎰4. (6分)求30(1),f x dx -⎰其中,1,()1cos 1, 1.x x x f x x e x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程00cos 0y xt e dt tdt +=⎰⎰所确定;求.dy6. (6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程.4. (7分)求函数y x =+[5,1]-上的最小值和最大值.五、证明题(6分)设()f x ''在区间[,]a b 上连续;证明1()[()()]()()().22bb a ab a f x dx f a f b x a x b f x dx -''=++--⎰⎰ 标准答案一、 1 B; 2 C; 3 D; 4 A.二、 1 31;y x =+ 2 2;33 0;4 0. 三、 1 解 原式205lim 3x x x x →⋅= 5分 53= 1分 2 解 22l n l n l n (1),12x y x x ==-++ 2分2212[]121x y x x '∴=-++ 4分 3 解 原式221ln(1)(1)2x d x =++⎰ 3分 222212[(1)ln(1)(1)]21x x x x dx x=++-+⋅+⎰ 2分2221[(1)ln(1)]2x x x C =++-+ 1分 4 解 令1,x t -=则 2分3201()()f x dx f t dt -=⎰⎰ 1分1211(1)1cos t t dt e dt t -=+++⎰⎰ 1分 210[]t e t =++ 1分 21e e =-+ 1分5 两边求导得cos 0,y e y x '⋅+= 2分 cos y x y e '=-1分 c o s s i n 1x x =- 1分 cos sin 1x dy dx x ∴=- 2分 6 解 1(23)(23)(22)2f x d x f x d x +=++⎰⎰ 2分 21sin(23)2x C =++ 4分 7 解 原式=23323lim 12n n n ⋅→∞⎛⎫+ ⎪⎝⎭ 4分=32e 2分四、1 解 令ln ,x t =则,()1,t t x e f t e '==+ 3分()(1)t f t e dt =+⎰=.t t e C ++ 2分(0)1,0,f C =∴= 2分().x f x x e ∴=+ 1分2 解 222c o s x V xd x πππ-=⎰ 3分 2202cos xdx ππ=⎰ 2分 2.2π=2分 3 解 23624,66,y x x yx '''=-+=- 1分 令0,y ''=得 1.x = 1分当1x -∞<<时;0;y ''< 当1x <<+∞时;0,y ''> 2分 (1,3)∴为拐点; 1分该点处的切线为321(1).y x =+- 2分4 解1y '=-= 2分 令0,y '=得3.4x = 1分35(5)5 2.55,,(1)1,44y y y ⎛⎫-=-+≈-== ⎪⎝⎭ 2分 ∴最小值为(5)5y -=-+最大值为35.44y ⎛⎫= ⎪⎝⎭ 2分 五、证明()()()()()()bba a x a xb f x x a x b df x '''--=--⎰⎰ 1分[()()()]()[2()bb a a x a x b f x f x x a b dx ''=----+⎰ 1分[2()()b a x a b df x =--+⎰ 1分{}[2()]()2()b b a a x a b f x f x dx =--++⎰ 1分()[()()]2(),b a b a f a f b f x dx =--++⎰ 1分移项即得所证. 1分。
大一高等数学期末考试试卷及复习资料详解大一高等数学期末考试试卷(一)一、选择题(共12分)1.(3分)若/3= 2XXV0,为连续函数,则d的值为().a+ x,x>0(A)I (B) 2 (C)3 (D)-I2.(3分)已知厂⑶=2,则Ii y "7⑶的值为().λ→0 2hOOl (B) 3 (C)-I (D)I23.(3分)定积分∫>Λ∕1-COS23Xdx的值为()•■⑷ 0 (B)-2 (C)I (D) 24.(3分)若/⑴在“勺处不连续,则/3在该点处()・(A)必不可导(B)—定可导(C)可能可导(D)必无极限二、填空题(共12分)1.(3分)平面上过点(0,1),且在任意一点(Λ∙,y)处的切线斜率为3疋的曲线方程为_________________________ .2.( 3 分)∫ ι(x2+x4 Sin XyIX = _______ 1-3.(3 分)IilnX2 Sin丄= ・.r→υX4.(3分)y = 2√ -3√的极大值为________________ —2 (6分)设尸冕,求*JT + 1三、计算题(共42分)1.(6 分)求Iim史S.∙*→υ Sin 3x^3.(6分)求不定积分JXIn(I+十)厶.x .v<ι4.(6 分)求J /(X-1)JΛ∖其中/(x)= < l + cosχ,e' +l,x> 1.5.(6分)设函数y = f(x)由方程JO e,M + [cos∕d∕ = 0所确定,求dy.6.( 6 分)设 f f{x)dx = Sin + C,求j + 3)dx.7.(6 分)求极限IinJI÷-Γn→30k 2/7 7四、解答题(共28分)1.(7 分)设,Γ(lnx) = l+x,且/(0) = 1,求32.(7分)求由曲线y = cosx[-^-<x<^及X轴所围成图形绕着X轴旋I 2 2)转一周所得旋转体的体积.3.(7分)求曲线y = x3-3√÷24x-19在拐点处的切线方程•4.(7分)求函数y = x + √∏7在[-5,1]上的最小值和最大值.五、证明题(6分)设厂(X)在区间[“]上连续,证明i a f^dx = ¥ [/(“) + f(b)]+1 [(X - a)(x - b)fj)dx.(二)一、填空题(每小题3分,共18分)1.设函数/(χ)= 2χ2~1 ,则"1是心)的第_________ 类间断点.X -3x + 23.=∙v→∞V X)4・ 曲线 V 在点(扣)处的切线方程 为 ・5 .函数J = 2X 3-3X 2在[-1,4]上的最大值 _________________ ,最小值 __________ .二、 单项选择题(每小题4分,共20分)1.数列&”}有界是它收敛的( )•(A)必要但非充分条件; (C)充分必要条件; 2.下列各式正确的是((B)充分但非必要条件; (D)无关条件.)・(A) je-χdx=e"x+C i(B) J In X(IX = _ + C ; (C)JI 2∕x=2hl (l 2x)+C ;(D) f —5—JX = Inlllx+ C ・' ,J XInX3-设/(x)在RM 上,广(x)>O 且厂(x)>0,则曲线y = f(x)在[“问上•6.∣∙arctanx J l +x 2(IX(小沿X轴正向上升且为凹(B)沿兀轴正向下降且为凹的;的;(D)沿X轴正向下降且为凸(C)沿兀轴正向上升且为凸的;的.则/(x)在兀=0处的导? :( )•4. 设/(*)=XInX ’⑷等于1;(C)等于O ;(D)不存在•5.已知Ihn/(x)= 2,以下结论正确的是()•G)函数在工=1处有定义且/(1)=2 ; (B)函数在;V = I处的某去心邻域内有定义;(C)函数在2 1处的左侧某邻域内有定义;(D)函数在21处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:HlnX2 sinx→0X2.已知y = ln(l + χ2),求几3.求函数J = >0)的导数.5.J X COS XdX ・丄 16.方程y x =X y确定函数y = f(x)f求八四、(H)分)已知/为/(X)的一个原函数,求∫x2∕(x}∕x.五、(6分)求曲线,=壮7的拐点及凹凸区间.六、(10 分)设J广(√∑)/X = X(e、' +1)+C ,求/(X)・(三)填空题(本题共5小题,每小题4分,共20分)・±J_(1)⅛(COSX)r = ________ 石________ .(2)曲线A = Xlnx上及直线X-y + l= °平行的切线方程为y =x-∖(3 )已知f f(e x) = xe~x,且/(D = O ,则大一高等数学期末考试试卷及复习资料详解/(X)= _________ /Cv)= 2(In X)________ .X 211(4)曲线V =3777的斜渐近线方程为 _______ V= 3Λ^9,二、选择题(本题共5小题,每小题4分,共20分)・(1)下列积分结果正确的是(D )(2)函数/W 在[恥]内有定义,其导数广⑴的图形如图1-1所示, 则(D ) •(A)刁宀都是极值点.⑻ g ,/3)),(£,/(£))都是拐点.(C) F 是极值点.,U 是拐点. (D) WJy))是拐点,勺是极值点.(3) 函数y = qe v ÷C 2e-÷A -e'满足的一个微分方程是(D ).(A) /-y-2>∙ = 3xe t . (B) /-y-2y = 3e v . (C) / + y-2y = 3Λ∙e c .(D) / + y~2y = 3e r .lim∕(⅞)-∕(⅞~z0 (4) 设/W 在%处可导,则I h 为(A ) •⑷ 广仇). (B) -f ,M.(C) O. (D)不存在.(5)下列等式中正确的结果是((A) (J* /(x)"∙χ)'Z=/W-(C) 町 /(χ)"χ]=/W -) 微分方程= (V+1)-的通解为三、计算J (本 共4小题,每小题6分,共24分).y =3 _5 "3 O(或令 √Γ+χ = r)四、解答题(本题共4小题,共29分)•1. (本题6分)解微分方程r-5∕÷6j = xe -.解:特征方程r 2-5r + 6 = 0 ------------- 1分 特征解斤=2,r 2 =3. ------------ 1分 3x大一高等数学期末考试试卷及复习资料详解 恤(丄—丄)1∙求极限j X-I In —X 11. xlnx-x+1Iim (—— _ ——)IIm ---------In XIUn I XTl x-1 I---- + In xh ∖x Iim x →,X -1 + xln1.1 + In X 1 IUn -------- =— j 1 + In X +1 2Λ = In Sin t2.方程尸COSWSinf 确定V 为X 的函数,dy y ,(f)-=-一 =∕sm∕, 解 JX 十⑴求dx 及Jx 2 .(3分) (6分)arctan JX3. 4.计算不定积分J石(1+『. arctanA∕√7—— (i + χ)=21 arctan √7t∕ arctan y ∕x ——解 Hatan 仇=2 J √x(l + x)=(arctan2+C ——「一 dx4.计算定积分如+曲.'3χ(l -VTTX) 0解 分)oT7⅛7_ V dx = 一J(:(I-、/i+x)〃X(6分)LL i∖l4/1 «\ ? r V 八2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为乙计算桶的一端面上所受的压力.解:建立坐标系如图3.(本题8分)设/B在S】上有连续的导数,f(u) = f(b) = θ9且∫O∕2(X)JΛ =1^试求∫>∕ω∕解:J:Xf(X)f∖x)dx = £ Xf(X)df(x) 2 分= -∫n^^W ------------ 2 分=IV 2(Λ-)⅛-|£72(X)厶一一2 分4.(本题8分)过坐标原点作曲线>, = h^的切线,该切线及曲线y =lnx及X轴围成平面图形D.⑴(3) 求D的面积A;⑵(4) 求D绕直线X = e旋转一周所得旋转体的体积V.解:(1)设切点的横坐标为",则曲线y = In Λ在点(⅞Jn ⅞)处的切线方程y = Inx0 + —(X-X0).氐__I分由该切线过原点知山心-1 = 0,从而心=匕所以该切线的方程为1y = -X.平面图形D的面积1V = -X(2)切线"及X轴及直线Xe所围成的三角形绕直线Xe旋转V I = -7te1所得的圆锥体积为,3 2分曲线尸IZ及X轴及直线所围成的图形绕直线Xe旋转所得的旋转体体积为V2=(oπ(e-e>)2dy9】分因此所求旋转体的体积为V=V l-V2=-^2-e y)2dy = -(5e2-∖2e + 3).五、证明题(本题共1小题,共7分)•1.证明对于任意的实数Y , eJl + x.e x = l + x + —Λ2≥l + x2解法二设fM = e x-x~^则/(0) = 0.因为f f M = e x-∖. 1 分当Xno时,f,M≥o.f(χ)单调增加,/(χ)≥∕(θ)=o.当x≤0时,∕,ω≤0.∕(Λ∙)单调增加,/(X)≥/(0) =0. 所以对于任意的实数X, ∕3≥°∙即e'≥l + I 解法三:由微分中值定理得,R -1 = “ -60 =^(X-O) = ^Xt 其中§位于0 到X 之一1分2分A = V -ey)dy = ~e~^∙解法一:2分2分1分2分间。
大一高等数学期末考试试卷(一)一、选择题(共12分)1. (3分)若为连续函数,则的值为( )。
(A)1 (B)2 (C)3 (D)-12。
(3分)已知则的值为()。
(A)1 (B)3 (C)—1 (D)3。
(3分)定积分的值为()。
(A)0 (B)-2 (C)1 (D)24. (3分)若在处不连续,则在该点处().(A)必不可导(B)一定可导(C)可能可导(D)必无极限二、填空题(共12分)1.(3分)平面上过点,且在任意一点处的切线斜率为的曲线方程为 .2。
(3分) .3. (3分) = .4. (3分)的极大值为。
三、计算题(共42分)1.(6分)求2.(6分)设求3.(6分)求不定积分4.(6分)求其中5.(6分)设函数由方程所确定,求6.(6分)设求7.(6分)求极限四、解答题(共28分)1.(7分)设且求2.(7分)求由曲线与轴所围成图形绕着轴旋转一周所得旋转体的体积.3.(7分)求曲线在拐点处的切线方程。
4.(7分)求函数在上的最小值和最大值。
五、证明题(6分)设在区间上连续,证明(二)一、填空题(每小题3分,共18分)1.设函数,则是的第类间断点.2.函数,则。
3..4.曲线在点处的切线方程为. 5.函数在上的最大值,最小值.6..二、单项选择题(每小题4分,共20分)1.数列有界是它收敛的() .必要但非充分条件; 充分但非必要条件;充分必要条件;无关条件。
2.下列各式正确的是()。
; ;;。
3.设在上,且,则曲线在上。
沿轴正向上升且为凹的;沿轴正向下降且为凹的;沿轴正向上升且为凸的;沿轴正向下降且为凸的. 4.设,则在处的导数().等于;等于;等于;不存在.5.已知,以下结论正确的是().函数在处有定义且;函数在处的某去心邻域内有定义;函数在处的左侧某邻域内有定义;函数在处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:.2。
已知,求。
3. 求函数的导数。
4. 。
5。
6.方程确定函数,求。
四、(10分)已知为的一个原函数,求。
五、(6分)求曲线的拐点及凹凸区间.六、(10分)设,求。
(三)一、填空题(本题共5小题,每小题4分,共20分).(1) =_____________。
(2)曲线上与直线平行的切线方程为_________。
(3)已知,且, 则___________ 。
(4)曲线的斜渐近线方程为_________(5)微分方程的通解为_________二、选择题 (本题共5小题,每小题4分,共20分)。
(1)下列积分结果正确的是( D )(A) (B) (C) (D )(2)函数在内有定义,其导数的图形如图1-1所示,则( D ).(A)都是极值点. (B) 都是拐点.(C) 是极值点.,是拐点。
(D) 是拐点,是极值点。
(3)函数满足的一个微分方程是(D )。
(A )(B ) (C) (D )(4)设在处可导,则为( A ).(A ) 。
(B) 。
(C) 0. (D )不存在 .(5)下列等式中正确的结果是 ( A ).(A ) (B) (C) (D)三、计算题(本题共4小题,每小题6分,共24分)。
1.求极限.解 = 1分= 2分 = 1分 = 2分2.方程确定为的函数,求与.解 (3分)(6分) 3. 4。
计算不定积分 . 4.计算定积分。
解 (3分)(6分) (或令)四、解答题(本题共4小题,共29分)。
1.(本题6分)解微分方程.2.(本题7分)一个横放着的圆柱形水桶(如图4—1),桶内盛有半桶水,设桶的底半径为,水的比重为,计算桶的一端面上所受的压力.解:建立坐标系如图3. (本题8分)设在上有连续的导数,,且, 试求。
4。
(本题8 D.(1) (3) 求D 的面积A;(2) (4) 求D --——1分由该切线过原点知,从而所以该切线的方程为----1分平面图形D的面积-——-2分(2)切线与轴及直线所围成的三角形绕直线旋转所得的圆锥体积为2分曲线与x轴及直线所围成的图形绕直线旋转所得的旋转体体积为, 1分因此所求旋转体的体积为1分五、证明题(本题共1小题,共7分).1。
证明对于任意的实数,.解法一:解法二:设则 1分因为 1分当时,单调增加, 2分当时,单调增加, 2分所以对于任意的实数,即. 1分解法三:由微分中值定理得,,其中位于0到x之间。
2分当时,,。
2分当时,,. 2分所以对于任意的实数,。
1分(四)一.填空题(每小题4分,5题共20分):1. .2..3.设函数由方程确定,则。
4。
设可导,且,,则。
5.微分方程的通解为.二.选择题(每小题4分,4题共16分):1.设常数,则函数在内零点的个数为( B ).(A) 3个;(B) 2个;(C) 1个; (D) 0个.2.微分方程的特解形式为( C )(A); (B);(C); (D)3.下列结论不一定成立的是 ( A )(A)(A)若,则必有;(B)(B)若在上可积,则;(C)(C)若是周期为的连续函数,则对任意常数都有;(D)(D)若可积函数为奇函数,则也为奇函数.4. 设,则是的( C ).(A)连续点;(B)可去间断点;(C)跳跃间断点; (D)无穷间断点.三.计算题(每小题6分,5题共30分):1.计算定积分。
解: —---———2—--—-—-2——-———-—22.计算不定积分.解: -——-—---3—--—————-——33.求摆线在处的切线的方程。
解:切点为———---—2--—---—2切线方程为即。
—---———24. 设,则。
5.设,求.解:-———---——2-——----—-———-—2= ——-—-—---—--2故=四.应用题(每小题9分,3题共27分)1.求由曲线与该曲线过坐标原点的切线及轴所围图形的面积.解:设切点为,则过原点的切线方程为,由于点在切线上,带入切线方程,解得切点为。
--——-3过原点和点的切线方程为--—---———-----———-———-——-——--3面积=-—-——-——-—--—————--3或2.设平面图形由与所确定,试求绕直线旋转一周所生成的旋转体的体积.解:法一:-—--———6----—---3法二:V=-——--—--————--—--- 5-—--—--————-— 43。
设在内的驻点为问为何值时最小?并求最小值.解:—-—------—----— 3----————-—--3—--——2故——-------——-—-1五.证明题(7分)设函数在上连续,在内可导且试证明至少存在一点,使得证明:设,在上连续在可导,因,有,————---——--——-- 2又由,知在上用零点定理,根据,-————---————-—- 2可知在内至少存在一点,使得,由ROLLE中值定理得至少存在一点使得即,证毕. -——--———---—--3标准答案一、1 B; 2 C; 3 D; 4 A。
二、1 2 3 0; 4 0.三、1 解原式6分2解2分4分3 解原式3分2分1分4解令则2分1分1分1分1分5两边求导得2分1分1分2分6解2分4分7解原式= = 6分四、1 解令则3分= 2分2分1分2解3分2分2分3解1分令得1分当时, 当时, 2分为拐点, 1分该点处的切线为2分4解2分令得1分2分最小值为最大值为2分五、证明1分1分1分1分1分移项即得所证。
1分高等数学I (大一第一学期期末考试题及答案)1.当时,都是无穷小,则当时( D )不一定是无穷小。
(A)(B)(C) (D)2.极限的值是( C ).(A) 1 (B) e(C)(D)3.在处连续,则a=( D )。
(A) 1 (B) 0 (C)e(D)4.设在点处可导,那么( A ).(A) (B)(C)(D)二、填空题(本大题有4小题,每小题4分,共16分)5.极限的值是。
6.由确定函数y(x),则导函数.7.直线过点且与两平面都平行,则直线的方程为。
8.求函数的单调递增区间为(-∞,0)和(1,+∞ ) 。
三、解答题(本大题有4小题,每小题8分,共32分)9.计算极限.解:10.设在[a,b]上连续,且,试求出。
解:11.求解:四、解答题(本大题有4小题,每小题8分,共32分)12.求.13.求函数的极值与拐点.解:函数的定义域(-∞,+∞)令得x 1 = 1,x 2 = —1x 1 = 1是极大值点,x 2 = -1是极小值点极大值,极小值14.求由曲线与所围成的平面图形的面积。
15.设抛物线上有两点,,在弧A B上,求一点使的面积最大。
六、证明题(本大题4分)16.设,试证.证明:设,,,因此在(0,+∞)内递减。
在(0,+∞)内,在(0,+∞)内递减,在(0,+∞)内,即亦即当x>0时,试证。
中国传媒大学2009—2010学年第一学期期末考试试卷(A卷)及参考解答与评分标准考试科目:高等数学A(上)考试班级: 2009级工科各班考试方式:闭卷命题教师:9分)1、若在内,函数的一阶导数,二阶导数,则函数在此区间内单调增加,曲线是上凸的.2、设确定函数,求。
填在题末的括号中。
本大题共3小题,每小题3分,总计 9分)1、设,则必有答( C )2、设,则的一个原函数为答( D )3、设为连续函数,又,则答( B )2小题,每小题5分,总计10分)1、求极限。
解:(3分). (5分)2、,求。
解: (3分)。
(5分)3小题,每小题8分,总计24分)1、讨论,在处的可导性。
解: (4分), (6分)所以在处可导. (8分)2、设在上连续,且,证明:至少存在一点,使得.证:设,则在上连续。
(2分)又,;(4分)若,则结论成立。
(6分)若,则由零点定理。
(8分)3、证明不等式:当时,。
证:令,则。
(2分),,,显然,当时,(4分)在区间内单调增加。
又,在区间内恒大于零。
(6分)又,在区间内大于零。
(8分)3小题,每小题8分,总计24分)1、求函数的极值.解:,令,得驻点(为整数)。
(4分).∴当时,在该处取得极大值,其值为;(6分)当时,在该处取得极小值,其值为。
(8分)2、求不定积分。
解:(4分)(6分)。
(8分)3、计算积分。
解:(4分)(6分)(8分)4小题,每小题6分,总计24分 ) 1、求不定积分。
解: (4分)。
(6分)2、计算积分。
解: (2分)(4分)。
(6分)3、求抛物线被圆所截下部分的长度。
解:由有(2分)由对称性(4分). (6分)4、求微分方程的一个特解。
解:特征方程:的根为:。
(2分)故可设特解为,(4分)代入方程得,由此求得.所以方程有特解:. (6分)。