二次函数图像信息题
- 格式:doc
- 大小:231.01 KB
- 文档页数:16
二次函数的图象与性质专题【知识点1 二次函数的配方法】二次函数y =ax 2+bx +c (a ≠0)配方成顶点式y =a (x +b 2a )2+4ac−b 24a 2, 对称轴为2b x a =−,顶点坐标为2424b ac b a a ⎛⎫−− ⎪⎝⎭,.【题型1 二次函数的配方法】【例1】用配方法将下列函数化成y =a (x -h )2+k 的形式,并指出抛物线的开口方向,对称轴和顶点坐标.(1)y =2x 2+4x -1 (2)y =12x 2﹣2x +3; (3)y =(1﹣x )(1+2x );【知识点2 二次函数的五点绘图法】利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =−+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.【题型2 二次函数的五点绘图法】【例2】已知抛物线y =x 2﹣2x ﹣3(1)写出该抛物线的开口方向、顶点坐标、对称轴、与x 、y 轴交点;(2)选取适当的数据填表格,并在直角坐标系内描点画出该抛物线的图象.【知识点3 二次函数的图象与各系数之间的关系】①二次项系数a :a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. ②一次项系数b :在a 确定的前提下,b 决定了抛物线对称轴的位置,概括的说就是“左同右异”. ③常数项c :总结起来,c 决定了抛物线与y 轴交点的位置.【题型3 二次函数的图象与各系数之间的关系】【例3-1】如图所示的四个二次函数图象分别对应 ①y =ax 2, ②y =bx 2, ③y =cx 2, ④y =dx 2,则a ,b ,c ,d 的大小关系为 .(用“>”连接)【例3-2】二次函数y=ax2+bx+c(a≠0)图像如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.②④B.②⑤C.①②③D.②③⑤【例3-3】函数y=ax2﹣a与y=ax+a(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【知识点4 二次函数图象的平移变换】平移步骤:①将抛物线解析式转化成顶点式()2y a x h k=−+,确定其顶点坐标()h k,;②平移规律概括成八个字“左加右减,上加下减”.【题型4 二次函数图象的平移变换】【例4】要得到函数y=﹣(x﹣2)2+3的图象,可以将函数y=﹣(x﹣3)2的图象()A.向右平移1个单位,再向上平移3个单位B.向右平移1个单位,再向下平移3个单位C.向左平移1个单位,再向上平移3个单位D.向左平移1个单位,再向下平移3个单位【知识点5 二次函数图象的对称变换】2y ax bx c=++关于x轴对称,得到2y ax bx c=−−−;关于y轴对称,得到2y ax bx c=−+;()2y a x h k=−+关于x轴对称,得到()2y a x h k=−−−;关于y轴对称,得到()2y a x h k=++;2y ax bx c=++关于原点对称后,得到的解析式是2y ax bx c=−+−;()2y a x h k=−+关于原点对称后,得到的解析式是()2y a x h k=−+−;【题型5 二次函数图象的对称变换】【例5】在同一平面直角坐标系中,若抛物线y=x2+(2a﹣b)x+b+1与y=﹣x2+(a+b)x+a﹣4关于x轴对称,则a+b的值为()A.﹣5B.3C.5D.15【变式5-1】抛物线y=﹣(x+2)2关于y轴对称的抛物线的表达式为.【变式5-2】在平面直角坐标系中,将抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是()A.y=﹣(x﹣1)2﹣2 B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2+2D.y=﹣(x+1)2+2【题型6 利用二次函数的性质判断结论】【例6】对于抛物线y=﹣2(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1B.2C.3D.4【变式6-1】关于抛物线y =x 2﹣(a +1)x +a ﹣2,下列说法错误的是( )A .开口向上B .当a =2时,经过坐标原点OC .不论a 为何值,都过定点(1,﹣2)D .a >0时,对称轴在y 轴的左侧【变式6-2】对于二次函数y =x 2﹣2mx ﹣3,有下列结论:③ 它的图象与x 轴有两个交点;②如果当x ≤﹣1时,y 随x 的增大而减小,则m =﹣1;③如果将它的图象向左平移3个单位后过原点,则m =1;④如果当x =2时的函数值与x =8时的函数值相等,则m =5.其中一定正确的结论是 .(把你认为正确结论的序号都填上)【题型7 利用二次函数的性质比较函数值】【例7】已知二次函数y =x 2﹣2x ﹣3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当﹣1<x 1<0, 1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3【变式7-1】抛物线y =x 2+x +2,点(2,a ),(﹣1,﹣b ),(3,c ),则a ,b ,c 的大小关系是( )A .c >a >bB .b >a >cC .a >b >cD .无法比较大小【变式7-2】已知点A (b ﹣m ,y 1),B (b ﹣n ,y 2),C (b +m+n 2,y 3)都在二次函数y =﹣x 2+2bx +c 的图象上, 若0<m <n ,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 1<y 3<y 2 【题型8 利用二次函数的性质求字母的范围】【例8】已知抛物线y =﹣(x ﹣2)2+9,当m ≤x ≤5时,0≤y ≤9,则m 的值可以是( )A .﹣2B .1C .3D .4【变式8-1】若抛物线y =(x ﹣m )(x ﹣m ﹣3)经过四个象限,则m 的取值范围是( )A .m <﹣3B .﹣1<m <2C .﹣3<m <0D .﹣2<m <1【题型9 利用二次函数的性质求最值】【例9】若实数m 、n 满足m+n =2,则代数式2m 2+mn +m ﹣n 的最小值是_______.【变式9-2】抛物线y =ax 2+bx +3(a ≠0)过A (4,4),B (2,m )两点,点B 到抛物线对称轴的距离记为d ,满足0<d ≤1,则实数m 的取值范围是( )A .m ≤2或m ≥3B .m ≤3或m ≥4C .2<m <3D .3<m <4*【题型10 二次函数给定范围内的最值问题】【例10】若二次函数y =﹣x 2+mx 在﹣1≤x ≤2时的最大值为3,那么m 的值是( )A .﹣4或72B .﹣2√3或72C .﹣4 或2√3D .﹣2√3或2 √3【变式10-1】已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( )A .3B .﹣3或38C .3或−38D .﹣3或−38 【变式10-2】若二次函数y =x 2﹣2x +5在m ≤x ≤m +1时的最小值为6,那么m 的值是 .二次函数的图象与性质— 易错精选 —1. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下面五条信息:①c <0;②ab <0; ③a ﹣b +c >0;④2a ﹣3b =0;⑤c ﹣4b >0.你认为其中正确的个数有( )A .1个B .2个C .3个D .4个2. 如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论:①abc >0;②2a ﹣b =0;③4ac ﹣b 2<0;④若点B (﹣,y 1)、C (﹣,y 2)为函数图象上的两点,则y 1>y 2;⑤am 2+bm <a ﹣b (m 为任意实数);其中,正确结论的个数是( )A .1B .2C .3D .43. 在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,现给出以下结论:①abc <0;②c +2a <0;③9a ﹣3b +c =0;④a ﹣b ≥m (am +b )(m 为实数),其中正确的结论有 .(只填序号)4. 已知二次函数y =ax 2+bx+c (a≠0)的图像如图,有下列6个结论:①abc<0;②b<a ﹣c ;③4a+2b+c>0;④2c<3b ;⑤a+b<m (am+b ),(m≠1的实数)⑥2a+b+c>0,其中正确的结论的有_____.5. 如图是抛物线21(0)y ax bx c a =++≠图像的一部分,抛物线的顶点坐标为(1,3)A ,与x 轴的一个交点为(4,0)B ,点A 和点B 均在直线2(0)y mx n m =+≠上.①20a b +=;②>0abc ;③抛物线与x 轴的另一个交点时(4,0)−;④方程23ax bx c ++=−有两个不相等的实数根;⑤4a b c m n −+<+;⑥不等式2mx n ax bx c +>++的解集为14x <<.上述六个结论中,其中正确的结论是_____________.(填写序号即可)6. 在同一个平面直角坐标系xOy 中,二次函数211y a x =,222y a x =,233y a x 的图象如图所示,则123,,a a a 的大小关系为___________(用“>”连接).。
2023年中考数学《函数图像的信息获取和判断的秒杀方法》专项题型解析◆题型一:函数图像的判断判断函数的图像并不需要把每段函数的解析式完整的求出来!秒杀方法:1.判断一次函数关系:只要判断出结果的未知数的次数,并不需要把解析数求出来,当次数是1时即为一次函数,然后通过k判断结果;2.判断二次函数关系:一般在求面积的时候,会有两个含未知数的式子相乘,即结果为二次函数关系,然后通过该二次项系数的正负判断函数的开口方向即可;3.判断反比例函数关系:只要判断出结果的未知数是不是在分母里即可。
【例1】如图,在矩形ABCD中,AB=2cm,BC=4√3cm,E是AD的中点,连接BE,CE.点P 从点B出发,以√3cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s 的速度沿BE-EC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()【答案】D【解析】由题意得:BE=4cm,bc=4√3cm,则Q从B到E需要4s,从E到C需要4s,共8s;P从B到C需要4s。
①当Q在线段BE上运动时,如图,作QF⊥BC,BP=t,QF=12BQ=√32t,则y=12⋅BF⋅QF,即可得函数为二次函数,且二次项系数>0,开口向上,排除AC;②4s时,P到达终点,不再运动;点Q依然在运动,所以面积公式里只有一个变量,则对应函数为一次函数,因此选D。
1.(2013·湖南衡阳·中考真题)如图所示,半径为的圆和边长为的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过的时间为,圆与正方形重叠部分阴影部分的面积为S,则S与的函数关系式的大致图象为()A.B.C.D.【答案】B【分析】观察图形,在运动过程中,S随的变化情况,得到开始随时间的增大而增大,当圆在正方形内时改变,而重合面积等于圆的面积不变,再运动,随的增大而减小,根据以上结论判断即可.【详解】解:∵半径为的圆沿水平线从左向右匀速穿过正方形,开始至完全进入正方形S随时间的增大而增大,∴选项A、D错误;∵当圆在正方形内时,改变,重合面积等于圆的面积,S不变,再运动,S随的增大而减小,∴选项C错误,选项B正确;故选:B.【点睛】本题主要考查动图形问题的函数图象,熟练掌握函数图象形状变化与两图形重合部分形状、大小变化的关系,是解决此题的关键.2.(2022·青海西宁·统考中考真题)如图,△ABC中,BC=6,BC边上的高为3,点D,E,F分别在边BC,AB,AC上,且EF∥BC.设点E到BC的距离为x,△DEF的面积为y,则y关于x的函数图象大致是()A.B.C.D.【答案】A【分析】过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【详解】解:过点A向BC作AH⊥BC于点H,根据相似比可知:,即,解得:EF=2(3-x),则△DEF的面积y=×2(3-x)x=-x2+3x=-(x-)2+,故y关于x的函数图象是一个开口向下、顶点坐标为(,)的抛物线.故选:A.【点睛】本题考查了二次函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键.3.(2022·山东菏泽·统考中考真题)如图,等腰与矩形DEFG在同一水平线上,,现将等腰沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF 为止.等腰与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.【答案】B【分析】根据平移过程,可分三种情况,当时,当时,当时,利用直角三角形的性质及面积公式分别写出各种情况下y与x的函数关系式,再结合函数图象即可求解.【详解】过点C作CM⊥AB于N,,在等腰中,,,①当时,如图,,,,∴,y随x的增大而增大;②当时,如图,,∴当时,y是一个定值为1;③当时,如图,,,,当x=3,y=1,当3<x<4,y随x的增大而减小,当x=4,y=0,结合ABCD选项的图象,故选:B.【点睛】本题考查了动点函数问题,涉及二次函数的图象及性质,能够准确理解题意并分情况讨论是解题的关键.4.(2022·辽宁锦州·中考真题)如图,四边形是边长为的正方形,点E,点F分别为边,中点,点O为正方形的中心,连接,点P从点E出发沿运动,同时点Q从点B出发沿运动,两点运动速度均为,当点P运动到点F时,两点同时停止运动,设运动时间为,连接,的面积为,下列图像能正确反映出S与t的函数关系的是()A.B.C.D.【答案】D【分析】分0≤t≤1和1<t≤2两种情形,确定解析式,判断即可.【详解】当0≤t≤1时,∵正方形ABCD 的边长为2,点O为正方形的中心,∴直线EO垂直BC,∴点P到直线BC的距离为2-t,BQ=t,∴S=;当1<t≤2时,∵正方形ABCD 的边长为2,点F分别为边,中点,点O为正方形的中心,∴直线OF∥BC,∴点P到直线BC的距离为1,BQ=t,∴S=;故选D.【点睛】本题考查了正方形的性质,二次函数的解析式,一次函数解析式,正确确定面积,从而确定解析式是解题的关键.5.(2022·广西河池·统考中考真题)东东用仪器匀速向如图容器中注水,直到注满为止.用t表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是()A.B.C.D.【答案】C【分析】根据题目中的图形可知,刚开始水面上升比较慢,紧接着水面上升较快,最后阶段水面上升最快,从而可以解答本题.【详解】因为对边的圆柱底面半径较大,所以刚开始水面上升比较慢,中间部分的圆柱底面半径较小,故水面上升较快,上部的圆柱的底面半径最小,所以水面上升最快,故适合表示y与t的对应关系的是选项C.故选:C.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.6.(2022·山东潍坊·中考真题)如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是()A.B.C.D.【答案】A【分析】分0≤x≤1,1<x<2,2≤x≤3三种情况讨论,利用三角形面积公式求解即可.【详解】解:当0≤x≤1时,过点F作FG⊥AB于点G,∵∠A=60°,AE=AF=x,∴AG=x,由勾股定理得FG=x,∴y=AE×FG=x2,图象是一段开口向上的抛物线;当1<x<2时,过点D作DH⊥AB于点H,∵∠DAH=60°,AE=x,AD=1,DF= x-1,∴AH=,由勾股定理得DH=,∴y=(DF+AE)×DH=x-,图象是一条线段;当2≤x≤3时,过点E作EI⊥CD于点I,∵∠C=∠DAB=60°,CE=CF=3-x,同理求得EI=(3-x),∴y= AB×DH -CF×EI=-(3-x)2=-x2+x-,图象是一段开口向下的抛物线;观察四个选项,只有选项A符合题意,故选:A.【点睛】本题考查了利用分类讨论的思想求动点问题的函数图象;也考查了平行四边形的性质,含30度的直角三角形的性质,勾股定理,三角形的面积公式以及一次函数和二次函数的图象.7.(2022·辽宁锦州·统考中考真题)如图,在中,,动点P从点A出发,以每秒1个单位长度的速度沿线段匀速运动,当点P运动到点B时,停止运动,过点P作交于点Q,将沿直线折叠得到,设动点P的运动时间为t秒,与重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.【答案】D【分析】由题意易得,,则有,进而可分当点P在AB中点的左侧时和在AB中点的右侧时,然后分类求解即可.【详解】解:∵,∴,由题意知:,∴,由折叠的性质可得:,当点P与AB中点重合时,则有,当点P在AB中点的左侧时,即,∴与重叠部分的面积为;当点P在AB中点的右侧时,即,如图所示:由折叠性质可得:,,∴,∴,∴,∴与重叠部分的面积为;综上所述:能反映与重叠部分的面积S与t之间函数关系的图象只有D选项;故选D.【点睛】本题主要考查二次函数的图象及三角函数,熟练掌握二次函数的图象及三角函数是解题的关键.8.(2022·湖北武汉·统考中考真题)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为,小正方形与大正方形重叠部分的面积为,若,则S随t变化的函数图象大致为()A.B.C.D.【答案】A【分析】根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,②小正方形穿入大正方形但未穿出大正方形,③小正方形穿出大正方形,分别求出S,可得答案.【详解】解:根据题意,设小正方形运动的速度为v,由于v分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt(vt≤1);②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3;③小正方形穿出大正方形,S=2×2-(1×1-vt)=3+vt(vt≤1).分析选项可得,A符合,C中面积减少太多,不符合.故选:A.【点睛】本题主要考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.9.(2022·浙江台州·统考中考真题)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校,设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是()A.B.C.D.【答案】C【分析】根据吴老师离公园的距离以及所用时间可判断.【详解】解:吴老师家出发匀速步行8min到公园,表示从(0,400)运动到(8,0);在公园,停留4min,然后匀速步行6min到学校,表示从(12,0)运动到(18,600);故选:C.【点睛】本题考查函数的图象,解题的关键是正确理解函数图象表示的意义,明白各个过程对应的函数图象.10.(2021·辽宁鞍山·统考中考真题)如图,是等边三角形,,点M从点C出发沿CB方向以的速度匀速运动到点B,同时点N从点C出发沿射线CA方向以的速度匀速运动,当点M停止运动时,点N也随之停止.过点M作交AB于点P,连接MN,NP,作关于直线MP对称的,设运动时间为ts,与重叠部分的面积为,则能表示S与t之间函数关系的大致图象为()A.B.C.D.【答案】A【分析】首先求出当点落在AB上时,t的值,分或两种情形,分别求出S的解析式,可得结论.【详解】解:如图1中,当点落在AB上时,取CN的中点T,连接MT.,,,,是等边三角形,,是等边三角形,,,,,,,,是等边三角形,,,,,四边形CMPN是平行四边形,,,,如图2中,当时,过点M作于K,则,.如图3中,当时,,观察图象可知,选项A符合题意,故选:A.【点睛】本题考查动点问题,等边三角形的性质,二次函数的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考选择题中的压轴题.11.(2022·山东济宁·三模)如图,在正方形中,,动点M自A点出发沿AB方向以每秒1cm 的速度运动,同时动点N自A点出发沿折线以每秒3cm的速度运动,到达B点时运动同时停止.设的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.【答案】B【分析】根据题意,分三段(,,)分别求解与的解析式,从而求解.【详解】解:当时,分别在线段,此时,,为二次函数,图象为开口向上的抛物线;当时,分别在线段,此时,底边上的高为,,为一次函数,图象为直线;当时,分别在线段,此时,底边上的高为,,为二次函数,图象为开口向下的抛物线;结合选项,只有B选项符合题意,故选:B【点睛】本题考查动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.12.(2022·甘肃平凉·校考二模)如图,在中,,点以每秒的速度从点出发,沿折线运动,到点停止,过点作,垂足为,的长与点的运动时间秒的函数图像如图所示,当点运动秒时,的长是()A.B.C.D.【答案】B【分析】根据图可判断,,则可确定时的值,利用的值,可求出.【详解】解:由图可得,,,当时,如图所示:此时,故B,,.故选:B.【点睛】本题考查了动点问题的函数图象,解答本题的关键是根据图得到、的长度,此题难度一般.13.(2022·广东深圳·深圳市海滨中学校考模拟预测)如图①,已知Rt△ABC的斜边BC和正方形DEFG的边DE都在直线l上(BC<DE),且点C与点D重合,△ABC沿直线l向右匀速平移,当点B与点D重合时,△ABC停止运动,设DG被△ABC截得的线段长y与△ABC平移的距离x之间的函数图像如图②,则当x=3时,△ABC和正方形DEFG重合部分的面积为()A.B.C.D.【答案】C【分析】过点A作AH⊥BC于点H,由图形可知,当点H和点D重合时,DG被截得的线段长最长,即CH=1;当点B和点D重合时,BC=4,由此可解△ABC;画出当x=3时的图形,利用相似可得出结论.【详解】解:如图①,过点A作AH⊥BC于点H,∴∠AHB=∠AHC=∠BAC=,∴∠ABH+∠BAH=∠BAH+∠HAC=,∴∠ABH=∠HAC,∴△ABH∽△CAH,∴AH:HC=BH:AH,结合图①可知,当点H和点D重合时,DG被截得的线段长最长,即CH=1;当点B和点D重合时,由函数图像可得:BC=4,∴BH=3,∴AH:1=3:AH,即(负值舍去),当x=3时,,如图②,∴设与DG的交点为M,由,则,∴,∴1:3=MD:,即,∴故选:C.【点睛】本题考查的是动点图象问题,涉及相似三角形的性质与判定,解题关键是得出BC和DM的长.14.(2022·青海·统考一模)如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的关系用图象描述大致是()A.B.C.D.【答案】D【分析】该题属于分段函数,根据图象需要得出:点在边上时,随的增大而减小;当点在边上时,随的增大而增大;当点在线段上时,随的增大而减小;当点在线段上时,随的增大而增大.【详解】解:如图,过点作于点.在中,,.①点在边上时,随的增大而减小.故A、B错误,不符合题意;②当点在边上时,随的增大而增大;③当点在线段上时,随的增大而减小,点与点重合时,最小,但是不等于零.故C错误,不符合题意;④当点在线段上时,随的增大而增大.故D正确,符合题意.故选:D.【点睛】本题考查了动点问题的函数图象,解题的关键是读懂图象的含义,即会识图.15.(2021·宁夏银川·统考一模)如图,AB是半圆O的直径,点P从点O出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是()A.B.C.D.【答案】C【分析】依题意,可以知道路程先逐渐变大,再保持不变,然后逐渐变小直至为0.则可以作出判断.【详解】解:由题意可以看出点P在从O到A过程中,s随t的增大而增大;点P在上时,s等于半圆O的半径,即s随t的增大而保持不变;点P从B到O的过程中,s随t的增大而逐渐减少直至为0.只有选项C符合实际情况.故选:C.【点睛】此题考查了函数图像的识别,应抓住s随t变化的本质特征:从0开始增大,到达边线后不变,然后到达B点后开始减小直到0.16.(2022·湖南郴州·统考中考真题)如图1,在中,,,.点D从A 点出发,沿线段AB向终点B运动.过点D作AB的垂线,与的直角边AC(或BC)相交于点E.设线段AD的长为a(cm),线段DE的长为h(cm).(1)为了探究变量a与h之间的关系,对点D在运动过程中不同时刻AD,DE的长度进行测量,得出以下几组数据:变量a(cm)0 0.5 1 1.5 2 2.5 3 3.5 4变量h(cm)0 0.5 1 1.5 2 1.5 1 0.5 0在平面直角坐标系中,以变量a的值为横坐标,变量h的值为纵坐标,描点如图2-1;以变量h的值为横坐标,变量a的值为纵坐标,描点如图2-2.根据探究的结果,解答下列问题:①当时,________;当时,________.②将图2-1,图2-2中描出的点顺次连接起来.③下列说法正确的是________.(填“A”或“B”)A.变量h是以a为自变量的函数B.变量a是以h为自变量的函数(2)如图3,记线段DE与的一直角边、斜边围成的三角形(即阴影部分)的面积为s.①分别求出当和时,s关于a的函数表达式;②当时,求a的值.【答案】(1)①1.5;1或3;②见解析;③A(2)①当时,;当时,;②或【分析】(1)①根据题意,对照变量h和变量a对应的数值即可填写,②图2-1,图2-2中描出的点顺次连接起来即可;③根据函数的定义即可判断;(2)①如图,当时,,得到阴影部分是三角形ADE的面积:;当时,,得到阴影部分的面积是三角形BDE的面积:.②当时,令,解得a;当时,令,解得a即可求解;(1)解:①根据题意,对照变量h和变量a对应的数值,当时, 1.5;当时,1或3.故答案为:1.5;1或3;②连线如图2-1、图2-2所示:③根据函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量,所以变是h是以a为自变量的函数,故A选项符合,故选:A.(2)①如图3,当时,,∴阴影部分的面积:;当时,,∴阴影部分的面积:.∴当时,;当时,.②当时,令,解得或(不符合题意,舍去).当时,令,解得或(不符合题意,含去).∴当时,或.【点睛】本题考查了函数图像,写函数关系式,理解函数的定义以及表示方法,会根据三角形的面积公式得出函数关系式是解题的关键.◆题型二:根据已知图像获取相关信息把图像和运动情况结合起来,了解每一个转折点,每条线的具体含义。
二次函数经典题一、选择题 61.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,其对称轴为x=1,则正确的结论是( )A .abc>0B .3a +c <0C .4a+2b+c <0D .b 2 -4ac <062.如图是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法: ①abc <0;②2a ﹣b=0;③4a+2b+c <0;④若(﹣5,y 1),(,y 2)是抛物线上两点,则y 1>y 2.其中说法正确的是( )A .①②B .②③C .①②④D .②③④63.如图,半圆D 的直径AB=4,与半圆O 内切的动圆O 1与AB 切于点M ,设⊙O 1的半径为y ,AM=x ,则y 关于x 的函数关系式是 ( )A .21y x x 4B .2y x xC .21y x x 4D .21y x x 464.如右图,已知二次函数y=ax 2+bx +c 的图象过A (-3,0),对称轴为直线x=-1,下列结论:①b 2>4ac ;②2a +b=0;③a -b +c=0;④5a<b ;⑤a -b>m(am +b)(m ≠-1)其中正确的结论有( )A .1个B .2个C .3个D .4个65.如图,二次函数y=ax 2+bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )A .a <0B .a ﹣b+c <0C .2b a>1 D .4ac ﹣b 2<﹣8a 66.如图,已知二次函数y=ax 2+bx+c 的图象与y 轴正半轴的交点在(0,2)的下方,与x 轴的交点为(x 1,0)和(2,0),且-2<x 1<-1,则下列结论正确的是( )A 、0abc >B 、0a b c -+<C 、210a b ++>D 、0a b +>67.给出下列命题及函数y x =,2y x =和1y x=的图象 ①如果21a a a>>,那么0a 1<<; ②如果21a a a>>,那么a 1>; ③如果21a a a>>,那么1a 0-<<; ④如果21a a a>>时,那么a 1<-. 则( )A. 正确的命题是①④B. 错误..的命题是②③④C. 正确的命题是①②D. 错误..的命题只有③ 68.二次函数y=ax 2+bx+c 的图象如图所示,有下列结论:①a<0,②b<0,③c<0,④4a-2b+c<0,⑤b+2a=0其中正确的个数有( )A .1个B .2个C .3个D .4个69.二次函数)0(2≠++=a c bx x a y 图像如图所示,下列结论:①0abc >,②20a b +=,③930a b c ++>,④方程20ax bx c ++=的解是-2和4,⑤不等式20ax bx c ++>的解集是24x -<<,其中正确的结论有( )A .2个B .3个C .4个D .5个70.小明从如图所示的二次函数y=ax 2+bx+c (a≠0)的图象中,观察得出了下面五条信息:①ab >0;②a+b+c <0;③b+2c >0;④a ﹣2b+4c >0;⑤32ab . 你认为其中正确信息的个数有( )A. 2个B. 3个C. 4个D. 5个71.已知二次函数2y ax bx c =++(0)a ≠的图象如图所示,下列说法错误的是( )A .图象关于直线1x =对称B .函数2y ax bx c =++(0)a ≠的最小值是-4C .当1x <时,y 随x 的增大而增大D .-1和3是方程20ax bx c ++=(0)a ≠的两个根72.给出下列四个命题:(1)将一个n (n≥4)边形的纸片剪去一个角,则剩下的纸片是n+1或n-1边形;(2)若31x x --=,则x=1或x=3;(3)若函数32(23)k y k x x-=-+是关于x 的反比例函数,则32k =;(4)已知二次函数2y ax bx c =++,且a >0,a-b+c <0,则240b ac -≤。
中考数学总复习《二次函数图像与系数的关系》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a-b+c>1;③abc>0;④4a-2b+c<0;⑤c-a>1其中所有正确结论的序号是()A.①②B.①③④C.①②③⑤D.①②③④⑤2.已知二次函数y=ax2+bx+c的图象如图所示,那么下列结论中正确的是()A.ac>0B.b>0C.a+c<0D.a+b+c=03.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示.下列结论:①abc<0;②3a+c=0;③当y>0时,x的取值范围是﹣1≤x<3;④方程ax2+bx+c﹣3=0有两个不相等的实数根;⑤点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是().A.1个B.2个C.3个D.4个4.在平面直角坐标系xOy中,开口向下的抛物线y=ax2+bx+c的一部分图象如图所示,它与x轴交于A(1,0),与y轴交于点B(0,3),则a的取值范围是()A.a<0B.-3<a<0C.a<−32D.−92<a<−325.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是A.B.C.D.6.已知b<0时,二次函数y=ax2+bx+a2-1的图象如下列四个图之一所示.根据图象分析,a的值等于()A.-2B.-1C.1D.27.对于二次函数y=﹣(x+1)2﹣3,下列结论正确的是()A.函数图象的顶点坐标是(﹣1,﹣3)B.当x>﹣1时,y随x的增大而增大C.当x=﹣1时,y有最小值为﹣3D.图象的对称轴是直线x=18.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x…-5-4-3-2-10…y…40-2-204…A.抛物线的开口向下B.当时,y随x的增大而增大C.二次函数的最小值是D.抛物线的对称轴是直线9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.当x≥1时,y随x的增大而增大C.c<0D.当﹣1<x<3时,y>010.如图,在同一平面直角坐标系中,函数y=ax+2(a≠0)与y=−ax2−2x(a≠0)的图象可能是().A.B.C.D.11.已知二次函数y=﹣(x+k)2+h,当x>﹣2时,y随x的增大而减小,则函数中k的取值范围是()A.k≥﹣2B.k≤﹣2C.k≥2D.k≤212.已知:二次函数y=ax2+bx+c的图象如图,则下列答案正确的是()A.a>0,b>0,c>0,△<0B.a<0,b>0,c<0,△>0C.a>0,b<0,c<0,△>0D.a<0,b<0,c>0,△<0二、填空题13.二次函数y=ax2+bx+c(a≠0)的图象如图(虚线部分为对称轴),给出以下6个结论:①abc>0;②a﹣b+c>0;③4a+2b+c>0;④2a<3b;⑤x<1时,y随x的增大而增大;⑥a+b<m(am+b)(m为实数且m≠1)其中正确的结论有(填上所有正确结论的序号)14.已知二次函数y=ax2+bx+c的图象如图所示,则由此可得a0,b0,c 0.(填“<”或“>”)15.老师给出一个二次函数,甲,乙,丙三位同学各指出这个函数的一个性质:甲:函数的图象经过第一、二、四象限;乙:当x<2时,y随x的增大而减小.丙:函数的图象与坐标轴只有两个交点.已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数.16.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为.17.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确的有。
第一讲 二次函数的图像与性质目录必备知识点.....................................................................................................................................................1考点一 y=ax 2(a ≠0)图像与性质............................................................................................................3考点二 y=a(x-h)2+k (a ≠0)的图像与性质...............................................................................................5考点三 y=ax 2+bx+c (a ≠0)的图像与性质 (13)必备知识点1.的图像)0(a 2≠=a x y 函数2x y =2x y -=225x y x y ==与大致图像开口方向向上向下向上对称轴0=x (y 轴)0=x (y 轴)0=x (y 轴)增减性当x <0时,y 随x 的增大而减小当x >0时,y 随x 的增大而增大当x <0时,y 随x 的增大而增大当x >0时,y 随x 的增大而减小当x <0时,y随x 的增大而减小当x>0时,y 随x 的增大而增大顶点(0,0)(0,0)(0,0)最值最小值y=0最大值y=0最小值y=0【总结】:①a >0,开口方向向上,有最小值;a <0,开口方向向下,有最大值 ②|a|越大,开口越小,函数值变化越快2.的图像)0()(a 2≠-=a h x y 函数22)2(22-==x y x y 与22)2(22+==x y x y 与22)2(2--2+==x y x y 与知识导航大致图像开口方向向上向上向下对称轴2=x -2=x -2=x 增减性当x <2时,y 随x 的增大而减小当x >2时,y 随x 的增大而增大当x <-2时,y 随x 的增大而减小当x >-2时,y 随x 的增大而增大当x <-2时,y 随x 的增大而减大当x >-2时,y 随x 的增大而增小顶点(2,0)(-2,0)(-2,0)最值最小值y=0最大值y=0最小值y=0【总结】:①函数的对称轴为x=h②仍满足函数的平移规则:左加右减3.的图像)0()(a 2≠+-=a k h x y 函数21-22+==)(与x y x y 4-122)(与+==x y x y 41--22++==)(与x y x y大致图像开口方向向上向上向上对称轴1=x -1=x -1=x 顶点(1,2)(-1,-4)(-1,4)最值最小值y=2最小值y=-4最大值y=4【总结】:①函数的对称轴为x=h ,最大值为k ,顶点为(h ,k )②仍满足函数的平移规则:左加右减,上加下减4.的图像)0(a 2≠++=a c bx x y 函数32-2+=x x y 3-22x x y +=32--2+=x x y大致图像开口方向向上向上向下对称轴1=x -1=x -1=x 与y 轴交点(0,3)(0,-3)(0,3)顶点(1,2)(-1,-4)(-1,4)最值最小值y=2最小值y=-4最大值y=4将32-2+=x x y 转化为k h x y +-=2)(a 的形式为:2)1(2+-=x y ,那么将)0(a 2≠++=a c bx x y 转化为)(0a )(a 2≠+-=k h x y 的形式为:)(0a 442b (a 22≠-++=a b ac a x y 即)()(0a 442b --a 22≠-+⎥⎦⎤⎢⎣⎡=a b ac a x y 【总结】:①a 决定抛物线开口方向及大小 ②c 决定抛物线与y 轴交点③抛物线的对称轴:ax 2b -=④抛物线的顶点)442b -(2ab ac a -,考点一 y=ax 2(a ≠0)图像与性质1.关于函数y=3x2的性质表述,正确的一项是( )A.无论x为何实数,y的值总为正B.当x值增大时,y的值也增大C.它的图象关于y轴对称D.它的图象在第一、三象限内【解答】解:∵y=3x2,∴函数图象的开口向上,对称轴是y轴,顶点是原点,∴函数图象在第一、二象限内,当x>0时,y随x的增大而增大,故C正确,A、B、D错误.故选:C.2.抛物线y=﹣2x2不具有的性质是( )A.对称轴是y轴B.开口向下C.当x<0时,y随x的增大而增大D.顶点是抛物线的最低点【解答】解:∵抛物线y=﹣2x2,∴该函数的对称轴是直线x=0,也就是y轴,故选项A不符合题意,a=﹣2,该函数图象开口向下,故选项B不符合题意,当x<0时,y随x的增大而增大,故选项C不符合题意,顶点式抛物线的最高点,故选项D符合题意,故选:D.3.抛物线y=x2,y=﹣2x2,y=x2共有的性质是( )A.开口向下B.顶点是坐标原点C.都有最低点D.当x>0时,y随x的增大而增大【解答】解:抛物线y=x2,开口向上,对称轴y轴,有最低点,在对称轴左侧y随着x的增大而减小,右侧y随着x的增大而增大;抛物线y=﹣2x2,开口向下,对称轴y轴,有最高点,在对称轴左侧y随着x的增大而增大,右侧y 随着x 的增大而减小;抛物线y =x 2,开口向上,对称轴y 轴,有最低点,在对称轴左侧y 随着x 的增大而减小,右侧y随着x 的增大而增大.故选:B .4.如图为221x y =图像,那么251-x y =可能是如下( )图A .B .C .D .【解答】解:开口方向向下,且|51-|<21,所以开口越大,故选:C .考点二 y=a(x-h)2+k (a ≠0)的图像与性质1.抛物线y =﹣(x ﹣1)2+3的顶点坐标是( )A .(﹣1,3)B .(1,3)C .(﹣1,﹣3)D .(1,﹣3)【解答】解:∵y =﹣(x ﹣1)2+3,∴抛物线顶点坐标为(1,3),故选:B.2.若二次函数y=2(x﹣1)2﹣1的图象如图所示,则坐标原点可能是( )A.点A B.点B C.点C D.点D【解答】解:∵y=2(x﹣1)2﹣1,∴抛物线顶点坐标为(1,﹣1),∴坐标原点可能是点A,故选:A.3.关于二次函数y=3(x+1)2﹣7的图象及性质,下列说法正确的是( )A.对称轴是直线x=1B.当x=﹣1时,y取得最小值,且最小值为﹣7C.顶点坐标为(﹣1,7)D.当x<﹣1时,y的值随x值的增大而增大【解答】解:∵y=3(x+1)2﹣7,∴函数的对称轴为直线x=﹣1,故选项A错误,不符合题意;顶点坐标为(﹣1,﹣7),故选项C错误,不符合题意;∵开口向上,∴当x=﹣1时,y取得最小值,且最小值为﹣7,故选项B正确,符合题意;当x<﹣1时,y的值随x的增大而减小,故选项D错误,不符合题意;故选:B.4.顶点为(﹣2,1),且开口方向、形状与函数y=﹣2x2的图象相同的抛物线是( )A.y=﹣2(x﹣2)2﹣1B.y=2(x+2)2+1C.y=﹣2(x+2)2﹣1D.y=﹣2(x+2)2+1【解答】解:根据题意得y=﹣2(x+2)2+1.故选:D.5.对于任何实数h,抛物线y=﹣x2与抛物线y=﹣(x﹣h)2的相同点是( )A.顶点相同B.对称轴相同C.形状与开口方向相同D.都有最低点【解答】解:∵抛物线y=﹣x2是由抛物线y=﹣(x﹣h)2向右平移h个单位得到,∴抛物线y=﹣x2与抛物线y=﹣(x﹣h)2的开口方向及形状相同,故选:C.6.抛物线y=(x﹣a)2+a﹣1的顶点一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵y=(x﹣a)2+a﹣1,∴该抛物线的顶点坐标为(a,a﹣1),当a﹣1>0时,a>0,此时顶点在第一象限,故选项A不符合题意;当0<a<1时,此时顶点在第四象限,故选项D不符合题意;当a<0时,a﹣1<0,此时顶点在第三象限,故选项C不符合题意;故选:B.7.一次函数y=hx+k的图象过一、三、四象限,则二次函数y=a(x﹣h)2+k的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵一次函数y=hx+k的图象过一、三、四象限,∴h>0,k<0,∵二次函数y=a(x﹣h)2+k的顶点为(h,k),∴二次函数y=a(x﹣h)2+k的顶点在第四象限,故选:D.8.抛物线y=x2+1的图象大致是( )A.B.C.D.【解答】解:抛物线y=x2+1的图象开口向上,且顶点坐标为(0,1).故选C.9.在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是( )A.B.C.D.【解答】解:二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,故选:D.10.已知函数y=a(x﹣h)2+k,其中a<0,h>0,k<0,则下列图象正确的是( )A.B.C.D.【解答】解:∵y=a(x﹣h)2+k,a<0,∴图象开口向下,A、B选项错误;∵对称轴x=h>0,顶点坐标(h,k),k<0,∴C选项错误,D选项正确.故选:D.11.已知二次函数y=a(x﹣h)2+k的图象如图所示,直线y=ax+hk的图象经过第几象限( )A.一、二、三B.一、二、四C.一、三、四D.二、三、四【解答】解:由函数图象可知,y=a(x﹣h)2+k中的a<0,h<0,k>0,∴直线y=ax+hk中的a<0,hk<0,∴直线y=ax+hk经过第二、三、四象限,故选:D.12.已知二次函数y=a(x﹣h)2+k(a,h,k为常数)在坐标平面上的图象通过(0,5)、(15,8)两点.若a<0,0<h<10,则h之值可能为下列何值?( )A.5B.6C.7D.8【解答】解:∵抛物线的对称轴为直线x=h,而(0,5)、(15,8)两点在抛物线上,∴h﹣0>15﹣h,解得h>7.5.故选:D.13.在平面直角坐标系中,直线y=ax+h与抛物线y=a(x﹣h)2的图象不可能是( )A.B.C.D.【解答】解:A、∵直线y=ax+h经过第一、二、四象限,∴a<0,h>0,∴抛物线y=a(x﹣h)2开口向下,对称轴为直线x=h在y轴的右侧,顶点为(h,0),∴该选项图象符合题意;B、直线y=ax+h经过第一、二、三象限,∴a>0,h>0,∴抛物线y=a(x﹣h)2开口向上,称轴为直线x=h在y轴的右侧,顶点为(h,0),∴该选项图象符合题意;C、直线y=ax+h经过第一、二、三象限,∴a>0,h>0,∴抛物线y=a(x﹣h)2开口向上,称轴为直线x=h在y轴的右侧,顶点为(h,0),∴该选项图象不符合题意;D、∵直线y=ax+h经过第一、三、四象限,∴a>0,h<0,∴抛物线y=a(x﹣h)2开口向上,称轴为直线x=h在y轴的左侧,顶点为(h,0),∴该选项图象符合题意;故选:C.14.在同一平面直角坐标系中,一次函数y=﹣kx+1与二次函数y=x2+k的大致图象可以是( )A.B.C.D.【解答】解:由y=x2+k可知抛物线的开口向上,故B不合题意;∵二次函数y=x2+k与y轴交于负半轴,则k<0,∴﹣k>0,∴一次函数y=﹣kx+1的图象经过经过第一、二、三象限,A选项符合题意,C、D不符合题意;故选:A.15.在同一平面直角坐标系中,一次函数y=mx+n与二次函数y=nx2+m的大致图象可以是( )A.B.C.D.【解答】解:A、由直线过一、二、三象限可知,m>0,由抛物线可知,图象与y轴交于负半轴,则m<0,矛盾,故此选项错误;B、由直线过二、三、四象限可知,n<0,由抛物线可知,开口向上,n>0,矛盾,故此选项错误;C、由直线过一、三、四象限可知,n<0,由抛物线可知,开口向上,n>0,矛盾,故此选项错误;D、由直线过一、三、四象限可知,m>0,n<0,由抛物线可知,开口向上,n>0,图象与y轴交于正半轴,则m<0,一致,故此选项正确;故选:D.16.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过( )象限.A.一、二、三B.一、二、四C.二、三、四D.一、三、四【解答】解:∵抛物线的顶点(﹣m,n)在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选:C.17.已知抛物线y=a(x﹣h)2+k(a、h、k为常数,a≠0)经过图中A(2,2)和B(9,9)两点,则下列判断正确的是( )A.若h=3,则a<0B.若h=6,则a>0C.若h=4,则k<2D.若h=5,则k>9【解答】解:由四个选项中h的取值可知,A、B在抛物线的对称轴的两侧,当a>0时,∵抛物线的对称轴为直线x=h,而A(2,2)和B(9,9)两点在抛物线上,∴h﹣2<9﹣h,解得h<5.5,k<2,当a<0时,∵抛物线的对称轴为直线x=h,而A(2,2)和B(9,9)两点在抛物线上,∴h﹣2>9﹣h,解得h>5.5,k>9,故选:C.18.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,( )A.若h=4,则a<0B.若h=5,则a>0C.若h=6,则a<0D.若h=7,则a>0【解答】解:当x=1时,y=1;当x=8时,y=8;代入函数式得:,∴a(8﹣h)2﹣a(1﹣h)2=7,整理得:a(9﹣2h)=1,若h=4,则a=1,故A错误;若h=5,则a=﹣1,故B错误;若h=6,则a=﹣,故C正确;若h=7,则a=﹣,故D错误;故选:C.考点三y=ax2+bx+c(a≠0)的图像与性质1.用配方法将二次函数y=x2﹣2x﹣4化为y=a(x﹣h)2+k的形式为( )A.y=(x﹣2)2﹣4B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣5D.y=(x﹣2)2﹣6【解答】解:y=x2﹣2x﹣4=(x﹣2)2﹣6,故选:D.2.二次函数y=﹣x2+4x+7的顶点坐标和对称轴分别是( )A.(2,11),x=2B.(2,3),x=2C.(﹣2,11),x=﹣2D.(﹣2,3),x=2【解答】解:∵y=﹣x2+4x+7=﹣(x﹣2)2+11,∴抛物线对称轴为直线x=2,顶点坐标为(2,11).故选:A.3.已知抛物线y=x2+mx的对称轴为直线x=2,则关于x的方程x2+mx=5的根是( )A.0,4B.1,5C.1,﹣5D.﹣1,5【解答】解:∵抛物线y=x2+mx的对称轴为直线x=2,∴﹣=2,解得m=﹣4,∴方程x2+mx=5可以写成x2﹣4x=5,∴x2﹣4x﹣5=0,∴(x﹣5)(x+1)=0,解得x1=5,x2=﹣1,故选:D.4.已知二次函数y=mx2﹣4mx(m为不等于0的常数),当﹣2≤x≤3时,函数y的最小值为﹣2,则m的值为( )A.±B.﹣或C.﹣或D.或2【解答】解:∵二次函数为y=mx2﹣4mx,∴对称轴为x===2,①当m>0时,∵二次函数开口向上,∴当﹣2≤x≤3时,函数在x=2取得最小值﹣2,将x=2,y=﹣2代入y=mx2﹣4mx中,解得:m=,②当m<0时,∵二次函数开口向下,∴当﹣2≤x≤3时,函数在x=﹣2取得最小值﹣2,将x=﹣2,y=﹣2代入y=mx2﹣4mx中,解得:m=﹣,综上,m的值为或﹣,故选:B.5.已知二次函数y=﹣x2+2x+1,当a≤x≤0时,y取得最小值为﹣2,则a的值为( )A.﹣1B.0C.1D.2【解答】解:∵二次函数y=﹣x2+2x+1=﹣(x﹣1)2+2,∴二次函数图像的对称轴为x=1,∵﹣1<0,开口向下,∴在对称轴x=1的左侧,y随x的增大而增大,∵当a≤x≤0时,即在对称轴左侧,y取得最小值为﹣2,∴当x=a时,y=﹣2,∴﹣a2+2a+1=﹣2,解得:a=﹣1或a=3(舍去),故a的值为﹣1.故选:A.6.二次函数y=ax2+b的图象如图所示,则一次函数y=ax+b的图象可能是( )A.B.C.D.【解答】解:如图所示:抛物线开口向下,交y轴的正半轴,则a<0,b>0,故一次函数y=ax+b的图象经过第一、二、四象限.故选:C.7.一次函数y=ax+b与二次函数y=ax2+bx在同一平面直角坐标系中的大致图象可能是( )A.B.C.D.【解答】解:A、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项不符合题意;B、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b<0,故本选项符合题意;C、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a>0,b>0,故本选项不符合题意;D、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a>0,b<0,故本选项不符合题意.故选:B.8.一次函数y=kx+k与二次函数y=ax2的图象如图所示,那么二次函数y=ax2﹣kx﹣k的图象可能为( )A.B.C.D.【解答】解:由二次函数y=ax2的图象知:开口向上,a>0,一次函数y=kx+k图象可知k>0,∴二次函数y=ax2﹣kx﹣k的图象开口向上,对称轴x=﹣在y轴的右侧,交y轴的负半轴,∴B选项正确,故选:B.9.已知二次函数y=ax2+bx﹣c(a≠0),其中b>0、c>0,则该函数的图象可能为( )A.B.C.D.【解答】解:∵c>0,∴﹣c<0,故A,D选项不符合题意;当a>0时,∵b>0,∴对称轴x=<0,故B选项不符合题意;当a<0时,b>0,∴对称轴x=>0,故C选项符合题意,故选:C.10.二次函数y=4ax2+4bx+1与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是( )A.B.C.D.【解答】解:∵二次函数y=4ax2+4bx+1,∴对称轴为直线x=﹣=﹣,∵一次函数y=2ax+b,∴当y=0,则x=﹣,∴直线y=2ax+b与二次函数y=4ax2+4bx+1的对称轴交于x轴上同一点,故A、B、C不合题意,D、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b<0,故本选项正确;故选:D.。
第二十二章 二次函数22.1.4 二次函数y=a x 2+bx+c 图象和性质精选练习答案一、单选题(共10小题)1.(2019·湖南师大附中博才实验中学初二期末)抛物线y =x 2﹣4x +5的顶点坐标是( ) A.(2,1) B.(﹣2,1) C.(2,5) D.(﹣2,5)【答案】A【分析】先把抛物线的解析式配成顶点式得到y =(x ﹣2)2+1,然后根据抛物线的性质即可求解. 【详解】∵y =x 2﹣4x +5=(x ﹣2)2+1, ∴抛物线的顶点坐标为(2,1). 故选A .【点睛】本题考查了二次函数的性质,二次函数y=a (x -h )2+k 的顶点坐标为(h ,k ),对称轴为x=h ,本题还考查了利用配方法化二次函数的一般式化为顶点式.2.将抛物线23(2)y x =-向右平移1个单位,再向上平移2个单位后,得到的抛物线的顶点坐标是( )A .(3,2)B .(0,2)C .(-3,0)D .(2,1)-【答案】A【分析】根据平移的规律:左加右减,上加下减,可得答案.【详解】y=3(x -2)2向右平移1个单位,再向上平移2个单位后,得y=3(x -2-1)2+2, 即y=3(x -3)2+2,抛物线的顶点坐标是(3,2), 故选A .【点睛】本题考查了二次函数图象与几何变换,熟记平移的规律:左加右减,上加下减是解题关键.3.(2019·重庆中考真题)抛物线2362y x x =-++的对称轴是( )A .直线2x =B .直线2x =-C .直线1x =D .直线1x =-【答案】C【分析】将抛物线的一般式配方成为顶点式,可确定顶点坐标及对称轴. 【详解】解:∵223623(1)5y x x x =-++=--+, ∴抛物线顶点坐标为(1,5),对称轴为1x =. 故选:C .【点睛】本题考查了二次函数的性质.抛物线2()y a x h k =-+的顶点坐标为(h ,k ),对称轴为x =h .4.直线y=ax+b (ab≠0)不经过第三象限,那么y=ax 2+bx+3的图象大致为( )A .B .C .D .【答案】D【分析】首先根据直线y=ax+b (ab≠0)不经过第三象限判断出a 、b 的取值范围,再根据a 的取值范围可判断出开口方向,再加上b 的取值范围可判断出对称轴,最后根据c=3判断出与y 轴交点,进而可得答案. 【详解】解:∵直线y=ax+b (ab≠0)不经过第三象限, ∴a <0,b >0,∴y=ax 2+bx+3的图象开口向下,对称轴y 轴右侧,与y 轴交于(0,3), ∴D 符合. 故选:D .【点睛】此题主要考查了一次函数和二次函数图象,关键是掌握一次函数y=kx+b 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.5.(2018·中山大学附属中学初三期中)某同学在用描点法画二次函数y=ax 2+bx+c 的图象时,列出下面的表格:由于粗心,他算错了其中一个y 值,则这个错误的数值是( ) A.-11 B.-2 C.1 D.-5【答案】D【分析】由已知可得函数图象关于y 轴对称,则错误应出现在x=-2或x=2时,根据正确的数据求出函数的解析式,进而可得答案.【详解】解:由已知中的数据,可得函数图象关于y 轴对称, 则错误应出现在x=-2或x=2时, 故函数的顶点坐标为(0,1), y=ax 2+1,当x=±1时,y=a+1=-2, 故a=-3, 故y=-3x 2+1,当x=±2时,y=4a+1=-11, 故错误的数值为-5, 故选:D .【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.6.(2019·四川中考真题)如图,二次函数2y ax bx c =++的图象经过点()1,0A ,()5,0B ,下列说法正确的是( )A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =【答案】D【分析】根据二次函数的图像与性质即可求解.【详解】由图象可知图象与y 轴交点位于y 轴正半轴,故c>0. A 选项错误; 函数图象与x 轴有两个交点,所以24b ac ->0,B 选项错误;观察图象可知x =-1时y=a -b +c >0,所以a -b +c >0,C 选项错误; 根据图象与x 轴交点可知,对称轴是(1,0).(5,0)两点的中垂线,152x +=, x =3即为函数对称轴,D 选项正确; 故选D【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知二次函数的图像.7.(2017·湖北卓刀泉中学建和分校初三月考)二次函数y =x 2﹣2x +2的顶点坐标是( )A .(1,1)B .(2,2)C .(1,2)D .(1,3)【答案】A【分析】根据顶点坐标公式,可得答案.【详解】解:2y x 2x 2=-+的顶点横坐标是212--=,纵坐标是2412(2)141⨯⨯--=⨯, 2y x 2x 2=-+的顶点坐标是()1,1.故选:A .【点睛】本题考查了二次函数的性质,二次函数的顶点坐标是2b 4ac b ,.2a 4a ⎛⎫-- ⎪⎝⎭8.(2019·山东省五莲县第二中学初三期末)在同一坐标系内,一次函数y=ax+b 与二次函数y=ax 2+8x+b 的图象可能是( )A .B .C .D .【答案】C【分析】令x=0,求出两个函数图象在y 轴上相交于同一点,再根据抛物线开口方向向上确定出a >0,然后确定出一次函数图象经过第一三象限,从而得解. 【详解】解:x=0时,两个函数的函数值y=b ,所以,两个函数图象与y 轴相交于同一点,故B 、D 选项错误; 由A 、C 选项可知,抛物线开口方向向上, 所以,a >0,则一次函数y=ax+b 经过第一三象限, 所以,A 选项错误,C 选项正确, 故选:C .【点睛】本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y=kx+b 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.9.(2019·山东省五莲县第二中学初三期末)二次函数2y ax bx c =++的图象如图所示,则点,c Q a b ⎛⎫ ⎪⎝⎭在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】 由图像可知,,则c Q a b ⎛⎫ ⎪⎝⎭,在第三象限。
4.1 二次函数的图像1、函数y=x2与函数y=ax2(a≠0)的图像间的关系1.在初中已学习过二次函数,那么二次函数是如何定义的?它的定义域是什么?【提示】函数y=ax2+bx+c(a≠0)叫做二次函数,它的定义域为R.2.由y=x2的图像如何得到y=2x2和y=-x2的图像?【提示】把y=x2图像上各点的纵坐标变为原来的2倍即可得到y=2x2的图像;把y=x2图像上各点的纵坐标变为原来的相反数,即可得到y=-x2的图像.二次函数y=ax2(a≠0)的图像可由y=x2的图像各点的纵坐标变为原来的a倍得到.此时,a决定了图像的开口方向和在同一直角坐标系中的开口大小.2、函数y=ax2(a≠0)与函数y=a(x+h)2+k(a≠0)的变换1.函数y=x2的图像与函数y=(x-1)2的图像有怎样的关系?如何由y=x2的图像得到y=(x-1)2的图像?【提示】它们的形状相同,位置不同.把y=x2的图像向右平移1个单位就可得到y=(x -1)2的图像.2.如何由y=x2的图像得到y=x2-1的图像?【提示】把y=x2的图像向下平移1个单位.3.如何由y=x2的图像得到y=x2-2x-1的图像?【提示】y=x2-2x-1=(x-1)2-2,故只需把y=x2的图像先向右平移1个单位,再向下平移2个单位.1.二次函数y=a(x+h)2+k的图像可由y=ax2向左平移h个单位长度(h>0),再向上平移k 个单位长度(k>0)得到.2.二次函数y=a(x+h)2+k的图像可由y=ax2向右平移|h|个单位长度(h<0),再向下平移|k|个单位长度(k<0)得到.在二次函数y=a(x+h)2+k(a≠0)中,a决定了二次函数图像的开口大小及方向.3.将二次函数y=ax2+bx+c(a≠0)通过配方化为y=a(x+h)2+k(a≠0)的形式,然后通过函数y=ax2(a≠0)的图像左右、上下平移得到函数y=ax2+bx+c(a≠0)的图像3、二次函数图像的画法画出函数y=2x2-4x-6的草图.【思路探究】选取二次函数上的特殊点及特殊的直线确定函数的草图.【自主解答】y=2x2-4x-6=2(x2-2x)-6=2(x2-2x+1-1)-6=2[(x-1)2-1]-6=2(x-1)2-8.函数图像的开口向上,顶点坐标为(1,-8),对称轴为直线x=1.令y=0得2x2-4x-6=0,即x2-2x-3=0,∴x=-1或x=3,故函数图像与x轴的交点坐标为(-1,0),(3,0).画法步骤:(1)描点画线:在平面直角坐标系中,描出点(1,-8),(-1,0),(3,0),画出直线x=1;(2)连线:用光滑的曲线连点(1,-8),(-1,0),(3,0),在连线的过程中,要保持关于直线x =1对称,即得函数y=2x2-4x-6的草图,如图所示.画二次函数的图像重点体现图像的特征“三点一线一开口”:1.“三点”中有一个点是顶点,另两个点是关于对称轴对称的两个点,常取与x轴的交点;2.“一线”是指对称轴这条直线;3.“一开口”是指抛物线的开口方向.练习:画出函数y=x2-4x-12的图像.【解】y=x2-4x-12=(x-2)2-16.函数图像开口向上,对称轴为x=2,顶点坐标为(2,-16).令y=0,即x2-4x-12=0得x=-2或x=6.故图像与x轴的交点坐标为(-2,0),(6,0).图像如图所示:4、二次函数图像的变换在同一坐标系中作出下列函数的图像,并分析如何把y =x 2的图像变换成y =2x 2-4x 的图像.(1)y =x 2;(2)y =x 2-2;(3)y =2x 2-4x .【思路探究】 解答本题可就每个函数列表、描点、连线,作出相应图像,然后利用图像以及二次函数的平移变换规律分析y =x 2与y =2x 2-4x 的图像之间的关系.【自主解答】 (1)列表:x -3 -2 -1 0 1 2 3 y =x 2 9 4 1 0 1 4 9 y =x 2-2 7 2 -1 -2 -1 2 7 y =2x 2-4x30166-26描点、连线即得相应函数的图像,如图所示.(2)y =2x 2-4x =2(x 2-2x ) =2(x 2-2x +1-1) =2(x -1)2-2.由y =x 2到y =2x 2-4x 的变化过程如下:法一 先把y =x 2的图像横坐标不变,纵坐标变为原来的2倍得到y =2x 2的图像,然后把y =2x 2的图像向下平移2个单位长度得到y =2x 2-2的图像,最后把y =2x 2-2的图像向右平移1个单位长度得到y =2(x -1)2-2,即y =2x 2-4x 的图像.法二 先把y =x 2的图像向右平移1个单位长度得到y =(x -1)2的图像,然后把y =(x -1)2的图像横坐标不变,纵坐标变为原来的2倍得到y =2(x -1)2的图像,最后把y =2(x -1)2的图像向下平移2个单位长度便可得到y =2(x -1)2-2,即y =2x 2-4x 的图像.所有二次函数的图像均可以由函数y =x 2的图像经过变换得到,变换前,先将二次函数的解析式化为顶点式,再确定变换的步骤.常用的变换步骤如下:y =x 2――→横不变纵变为原来的a 倍y =ax 2――→k >0,上移k <0,下移y =ax 2+k ――→h >0,左移h <0,右移y =a (x +h )2+k ,其中a 决定开口方向及开口大小(或纵坐标的拉伸);h 决定左、右平移,k 决定上、下平移.(1)由y =-2x 2的图像,如何得到y =-2(x +1)2-3的图像?(2)把y =2x 2的图像,向右平移3个单位长度,再向上平移4个单位长度,能得到哪个函数的图像?(3)将函数y =4x 2+2x +1写成y =a (x +h )2+k 的形式,并说明它的图像是由y =4x 2的图像经过怎样的变换得到的?【解】 (1)把y =-2x 2的图像向左平移1个单位长度,再向下平移3个单位长度就得到y =-2(x +1)2-3的图像.(2)把y =2x 2的图像,向右平移3个单位长度,再向上平移4个单位长度,就得到函数y =2(x -3)2+4,即y =2x 2-12x +22的图像.(3)y =4x 2+2x +1 =4(x 2+12x )+1=4(x 2+12x +116-116)+1=4[(x +14)2-116]+1=4(x +14)2+34.把y =4x 2的图像向左平移14个单位长度,再向上平移34个单位长度,就可得到函数y =4x 2+2x +1的图像.5、求二次函数的解析式根据下列条件,求二次函数y =f (x )的解析式. (1)图像过点(2,0),(4,0),(0,3); (2)图像顶点为(1,2)并且过点(0,4); (3)过点(1,1),(0,2),(3,5).【思路探究】 设二次函数的解析式→列出含参数的方程(组)→解方程(组)→写出解析式 【自主解答】 (1)设二次函数解析式为y =a (x -2)·(x -4). 整理得y =ax 2-6ax +8a ,∴8a =3,∴a =38. ∴解析式为y =38(x -2)(x -4);(2)设二次函数解析式为y =a (x -1)2+2. 整理得y =ax 2-2ax +a +2, ∴a +2=4,∴a =2. ∴解析式为y =2(x -1)2+2; (3)设函数解析式为y =ax 2+bx +c ,由题设知⎩⎪⎨⎪⎧ a +b +c =1,c =2,9a +3b +c =5,⇒⎩⎪⎨⎪⎧a =1,b =-2,c =2.∴函数解析式为y =x 2-2x +2.求二次函数解析式的方法,应根据已知条件的特点,选择解析式的形式,利用待定系数法求解.1.若已知条件是图像上的三个点,则设所求二次函数为一般式y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)的形式.2.若已知二次函数图像的顶点坐标或对称轴方程与最大(小)值,则设所求二次函数为顶点式y =a (x -h )2+k (其中顶点为(h ,k ),a 为常数,a ≠0).3.若已知二次函数图像与x 轴的两个交点的坐标为(x 1,0),(x 2,0),则设所求二次函数为两根式y =a (x -x 1)(x -x 2)(a 为常数,且a ≠0).二次函数的顶点坐标是(2,3),且经过点(3,1),求这个二次函数的解析式.【解】 法一 设所求二次函数为y =ax 2+bx +c .由已知函数图像经过点(2,3)和点(3,1),函数图像的对称轴是-b2a=2. 得方程组⎩⎨⎧9a +3b +c =1,4a +2b +c =3,-b 2a =2.解这个方程组,得a =-2,b =8,c =-5. ∴二次函数解析式为y =-2x 2+8x -5.法二 二次函数的顶点式是y =a (x -h )2+k ,而顶点坐标是(2,3), 故有y =a (x -2)2+3,这样只需确定a 的值.因为图像经过点(3,1),所以x =3,y =1满足关系式y =a (x -2)2+3, 从而有1=a (3-2)2+3,解得a =-2. ∴函数解析式为y =-2(x -2)2+3,即y =-2x 2+8x -5.6、数形结合思想在二次函数问题中的应用若方程x 2-2x -3=a 有两个不相等的实数解,求实数a 的取值范围.【思路点拨】 令f (x )=x 2-2x -3,g (x )=a ,将方程有两个不相等的实数解转化为两个函数的图像有两个不同的交点.【规范解答】 令f (x )=x 2-2x -3,g (x )=a .2分 作出f (x )的图像如图所示.∵f(x)与g(x)图像的交点个数即为方程x2-2x-3=a解的个数.由图可知①当a<-4时,f(x)与g(x)无交点,即方程x2-2x-3=a无实根;6分②当a=-4时,f(x)与g(x)有一个公共点,即方程x2-2x-3=a有一个实根;8分③当a>-4时,f(x)与g(x)有两个公共点,即方程x2-2x-3=a有两个实根.10分综上所述,当方程x2-2x-3=a有两个实数解时,实数a的取值范围是(-4,+∞).12分1.所谓数形结合就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.2.巧妙运用数形结合的思想方法解决一些抽象的数学问题,可以起到事半功倍的效果,数形结合的重点是“以形助数”.小结:1.y=ax2(a≠0)的图像与y=ax2+bx+c(a≠0)的图像之间进行变换时应先将y=ax2+bx+c进行配方,平移时应注意平移的方向及单位长度.2.求二次函数的解析式一般采用待定系数法,当抛物线过三点时,可选用一般式;当已知条件与顶点坐标和对称轴有关时,可选用顶点式;当已知条件与x轴的交点坐标有关时,可选用两根式.3.在利用数形结合的思想解决与二次函数的图像有关的问题时,只需要画出二次函数的大致图像(画出开口方向、对称轴、与坐标轴的交点、特殊点)即可.一、选择题1.二次函数y=x2的图像上各点的纵坐标变为原来的2倍,得到的新图像的二次函数是()A.y=x2+2B.y=2x2C.y=12x2D.y=x2-22.将二次函数的图像向下、向右各平移2个单位得到图像的解析式为y=-x2,则原二次函数的解析式是()A.y=-(x-2)2+2 B.y=-(x+2)2+2C.y=-(x+2)2-2 D.y=-(x-2)2-23.已知抛物线与x轴交于点(-1,0),(1,0),并且与y轴交于点(0,1),则抛物线的解析式为()A.y=-x2+1 B.y=x2+1C.y=-x2-1 D.y=x2-14.如果二次函数y=ax2+bx+1图像的对称轴是x=1,并且通过点A(-1,7),则a,b的值分别是()A.2,4 B.2,-4C.-2,4 D.-2,-45.(2013·东城区高一检测)设abc>0,二次函数f(x)=ax2+bx+c的图像可能是()二、填空题6.将函数y=2(x+1)2-2向________平移________个单位,再向________平移________个单位可得到函数y=2x2的图像.7.把函数y=-x2上各点的纵坐标变为原来的3倍,再向右平移1个单位,然后再向上平移k(k>0)个单位,所得函数仍过原点,则k=__________.三、解答题9.对于二次函数y=-x2+4x+3,(1)指出图像的开口方向、对称轴、顶点坐标;(2)说明其图像是由y=-x2的图像经过怎样的平移得来.10.将二次函数y=ax2+bx+c的图像向左平移2个单位,再向上平移3个单位,便得到函数y=x2-2x+1的图像,求a,b与c.11.已知二次函数当x=4时有最小值-3,且它的图像与x轴两交点间的距离为6,求这个二次函数的解析式.1、【解析】将二次函数y=x2的图像上各点的纵坐标变为原来的2倍,得到的新图像对应的解析式为y=2x2.【答案】 B2、【解析】将函数y=-x2的图像进行逆变换,即将y=-x2的图像向左平移2个单位,可得y=-(x+2)2的图像,然后再将其向上平移2个单位可得y =-(x+2)2+2的图像,即原函数的图像.【答案】 B3、【解析】由题意知抛物线的对称轴是y轴且开口向下,顶点为(0,1),故抛物线方程为y=-x2+1.【答案】 A4、【解析】∵对称轴为x=1,∴-b2a=1①∵通过点A(-1,7),∴a-b+1=7②联立①②解得a=2,b=-4.【答案】 B5、【解析】 若a >0,b <0,c <0,则对称轴x =-b2a >0,函数f (x )的图像与y 轴的交点(0,c )在x 轴下方.【答案】 D6、【答案】 右 1 上 27、【解析】 依题意y =-3(x -1)2+k ,∵该函数仍过原点,∴-3×(0-1)2+k =0,∴k =3.8.设函数f (x )=x 2+bx +c ,若f (-4)=f (0),f (-2)=-2,则f (x )=________. 8、【解析】 ∵f (-4)=f (0),f (-2)=-2,∴⎩⎨⎧(-4)2-4b +c =c ,(-2)2-2b +c =-2.解得b =4,c =2. ∴f (x )=x 2+4x +2.9、【解】 (1)∵y =-(x -2)2+7,∴开口向下;对称轴为x =2;顶点坐标为(2,7);(2)先将y =-x 2的图像向右平移2个单位,然后再向上平移7个单位,即可得到y =-x 2+4x +3的图像.10、【解】 ∵函数y =x 2-2x +1可变形为y =(x -1)2, ∴抛物线y =x 2-2x +1的顶点坐标为(1,0).根据题意把此抛物线反向平移,得到抛物线y =ax 2+bx +c 的图像,即把抛物线y =x 2-2x +1向下平移3个单位,再向右平移2个单位就可得到抛物线y =ax 2+bx +c ,此时顶点(1,0)平移至(3,-3)处.∴抛物线y =ax 2+bx +c 的顶点是(3,-3).即y =(x -3)2-3=x 2-6x +6,对照y =ax 2+bx +c ,得a =1,b =-6,c =6.11、【解】 法一 设二次函数解析式为y =ax 2+bx +c (a ≠0),由已知条件,可得抛物线的顶点为(4,-3),且过(1,0)与(7,0)两点,将三个点的坐标代入,得⎩⎨⎧-3=16a +4b +c ,0=a +b +c ,0=49a +7b +c ,解得⎩⎪⎨⎪⎧a =13,b =-83,c =73.∴所求二次函数解析式为y =13x 2-83x +73.法二 ∵抛物线与x 轴的两个交点坐标是(1,0)与(7,0),∴设二次函数的解析式为y =a (x -1)·(x -7),把顶点(4,-3)代入,得-3=a (4-1)(4-7),解得a =13.∴二次函数解析式为y =13(x -1)(x -7), 即y =13x 2-83x +73.法三 ∵抛物线的顶点为(4,-3),且过点(1,0), ∴设二次函数解析式为y =a (x -4)2-3. 将(1,0)代入,得0=a (1-4)2-3, 解得a =13.∴二次函数的解析式为y =13(x -4)2-3, 即y =13x 2-83x +73.。
二次函数的图像(选择题:较难)1、如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积是()A.2 B.4 C.8 D.162、如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()3、已知二次函数y=x ²-2mx(m为常数),当-1≤x≤2时,函数y的最小值为-2,则m的值是()A. B. C.或 D.-或4、二次函数()的图像如图所示,下列结论:①;②当时,y随x的增大而减小;③;④;⑤,其中正确的个数是()A.1 B.2 C.3 D.45、如图,抛物线(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②3a+c>0;③方程的两个根是x1=﹣1,x2=3;④当y>0时,x的取值范围是﹣1<x<3⑤当x>0时,y随x的增大而减小.其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个6、二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论①abc>0;②4a+b=0;③9a+c>3b;④当x>﹣1时,y的值随x值的增大而增大,其中正确的结论有()A.1个 B.2个 C.3个 D.4个7、已知函数y=x2﹣2mx+2016(m为常数)的图象上有三点:A(x1,y1),B(x2,y2),C(x3,y3),其中x1=﹣+m,x2=+m,x3=m﹣1,则y1、y2、y3的大小关系是()A.y1<y3<y2 B.y3<y1<y2 C.y1<y2<y3 D.y2<y3<y18、已知二次函数y=-3x2+1的图象如图所示,将其沿x轴翻折后得到的抛物线的表达式为()A.y=-3x2-1 B.y=3x2 C.y=3x2+1 D.y=3x2-19、在直角坐标系中,函数y= 3x与y= -x2+1的图像大致是()A. B. C. D.10、在同一坐标系中,一次函数y=ax+b与二次函数y=ax2﹣b的图象可能是()A. B.C. D.11、定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是()A. B. C.1 D.012、函数 (ab<0)的图象在下列四个示意图中,可能正确的是()A.A B.B C.C D.D13、二次函数y=mx2+2mx-(3-m)的图象如下图所示,那么m的取值范围是()A.m>0 B.m>3C.m<0 D.0<m<314、已知二次函数y=ax2+bx+c的图象如右图所示,则()A.a>0,c>0,b2-4ac<0B.a>0,c<0,b2-4ac>0C.a<0,c>0,b2-4ac<0D.a<0,c<0,b2-4ac>015、在直角坐标系中,函数y= 3x与y= -x2+1的图像大致是()A. B. C. D.16、在直角坐标系中,函数y= 3x与y= -x2+1的图像大致是()A. B. C. D.17、已知二次函数y=3(x-1)2+k的图象上有三点A(,y1)、B(2,y2)、C(,y3),则的大小关系为()A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y118、已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②3a+c>0;③4a+2b+c >0;④2a+b=0;⑤b2>4ac.其中正确的结论的有()A.1个 B.2个 C.3个 D.4个19、如图,在等边△中,,当直角三角板的角的顶点在上移动时,斜边始终经过边的中点,设直角三角板的另一直角边与相交于点E.设,,那么与之间的函数图象大致是( )A. B. C. D.20、如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M 方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是().A. B.C. D.21、下列图形中阴影部分面积相等的是()A.①② B.②③ C.①④ D.③④22、如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段PD B.线段PC C.线段PE D.线段DE23、如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.24、如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的A.线段DE B.线段PD C.线段PC D.线段PE25、如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是( )A. B. C. D.26、如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积与容器内水深间的函数关系的图象可能是()A. B. C. D.27、如图,四边形ABCD中,为中点,AB="2cm,BC=2cm," CD=0.5cm,点p在四边形ABCD的边上沿运动,速度为1cm/s,则的面积与点P经过的路程cm之间的函数关系用图象表示大致是下图中的( )28、如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从点B出发,沿着B-A-D 在菱形ABCD的边上运动,运动到点D停止,点是点P关于BD的对称点,交BD于点M,若BM=x,的面积为y,则y与x之间的函数图象大致为( )29、如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()A. B.C. D.30、如图,正方形ABCD中,AB=8,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以的速度沿BC,CD运动,到点C,D时停止运动.设运动时间为,△OEF的面积为S(),则S()与的函数关系可用图象表示为()31、如图,正三角形ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止.设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()32、(2015•包头一模)如图,直线y=kx+c与抛物线y=ax2+bx+c的图象都经过y轴上的D点,抛物线与x 轴交于A、B两点,其对称轴为直线x=1,且OA=OD.直线y=kx+c与x轴交于点C(点C在点B的右侧).则下列命题中正确命题的个数是()①abc>0;②3a+b>0;③﹣1<k<0;④k>a+b;⑤ac+k>0.A.1 B.2 C.3 D.433、如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A. B. C.3 D.434、如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC-CD-DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()35、小李从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面四条信息:①b2﹣4ac>0;②c>1;③ab>0;④a﹣b+c<0.你认为其中正确的有().A.1个 B.2个 C.3个 D.4个36、如图,在Rt△OAB中,∠AOB=90°,OA=4,OB=3.⊙O的半径为2,点P是线段AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点.设AP=x,PQ2=y,则y与x的函数图象大致是().A. B. C. D.37、如图,,,,AB=8,以为边长的正方形DEFG的一边GD在直线AB上,且点D与点A重合.现将正方形DEFG沿A→B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与⊿ABC的重合部分的面积与运动时间之间的函数关系图像大致是()38、在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m 从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M,N,直线m运动的时间为t(秒).设△OMN的面积为S,那么能反映S与t之间函数关系的大致图象是()A. B. C. D.39、如图,在平面直角坐标系xOy中,以点A(2,3)为顶点任作一直角∠PAQ,使其两边与分别与x轴、y 轴的正半轴交于点P、Q,连接PQ,过点A作AH⊥PQ于点H,设点P的横坐标为x,AH的长为y,则下列图象中,能表示y与x的函数关系的图象大致是()40、如图,直角梯形AOCD的边OC在x轴上,O为坐标原点,CD垂直于x轴,D(5,4),AD=2.若动点E、F同时从点O出发,E点沿折线OA→AD→DC运动,到达C点时停止;F点沿OC运动,到达C 点是停止,它们运动的速度都是每秒1个单位长度.设E运动秒x时,△EOF的面积为y(平方单位),则y关于x的函数图象大致为()41、如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从点B出发,沿着B-A -D在菱形ABCD的边上运动,运动到点D停止,点P′是点P关于BD的对称点,PP′交BD于点M,若BM=x,△OPP′的面积为y,则y与x之间的函数图象大致为( )A. B. C. D.42、如图(1),点E为矩形ABCD边AD上一点,点P,Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P,Q出发ts时,△BPQ的面积为ycm2,已知y与t的函数关系的图象如图(2)则下列正确的是()A.AE=6cmB.sin∠EBC=C.当0<t≤10时,D.当t=12时,△BPQ是等腰三角形43、如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从点B出发,沿着B-A-D 在菱形ABCD的边上运动,运动到点D停止,点是点P关于BD的对称点,交BD于点M,若BM=x,的面积为y,则y与x之间的函数图象大致为()44、如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(),则s()与t(s)的函数关系可用图像表示为()45、如图,在直角坐标系xoy中,已知,,以线段为边向上作菱形,且点在y轴上.若菱形以每秒2个单位长度的速度沿射线滑行,直至顶点落在轴上时停止.设菱形落在轴下方部分的面积为,则表示与滑行时间的函数关系的图象为46、如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D.F分别在AC.BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()47、已知M、N两点关于y轴对称,且点M在双曲线上,点N在直线上,设点M的坐标为(a,b),则二次函数A.有最大值-4.5 B.有最大值4.5C.有最小值4.5 D.有最小值-4.48、如图,已知二次函数与一次函数的图像相交于点A(-3,5),B(7,2),则能使成立的x的取值范围是()A. B. C. D.49、如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()50、已知二次函数y =ax 2 + bx + c ( a ≠0)的图像如图所示,下列结论:①abc >0;②b <a + c ;③2 a +b =0;④a + b >m ( am + b )( m 为不等于1的实数),其中正确的结论有().A.1个 B.2个 C.3个 D.4个51、如图,点A、B、C、D为圆O的四等分点,动点P从圆心O出发,沿线段OC--线段DO的路线作匀速运动.设运动时间为秒,∠APB的度数为y度,则下列图象中表示y与t的函数关系最恰当的是()52、如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积是()A.2 B.4 C.8 D.1653、如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一条直线上,开始时点C与点D重合,让△ABC沿直线向右平移,直到点A与点E重合为止。
考点七二次函数的图像与性质知识点整合一、二次函数的概念一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.二、二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.三、二次函数的图象及性质1.二次函数的图象与性质解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2ba 时,y 最小值=244ac b a-当x =–2ba时,y 最大值=244ac b a-最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小2.二次函数图象的特征与a ,b ,c 的关系字母的符号图象的特征aa >0开口向上a <0开口向下b b =0对称轴为y 轴ab >0(a 与b 同号)对称轴在y 轴左侧ab <0(a 与b 异号)对称轴在y轴右侧c c =0经过原点c >0与y 轴正半轴相交c <0与y 轴负半轴相交b 2–4ac b 2–4ac =0与x 轴有唯一交点(顶点)b 2–4ac >0与x 轴有两个交点b 2–4ac <0与x 轴没有交点四、抛物线的平移1.将抛物线解析式化成顶点式y =a (x –h )2+k ,顶点坐标为(h ,k ).2.保持y =ax 2的形状不变,将其顶点平移到(h ,k )处,具体平移方法如下:3.注意二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.考向一二次函数的有关概念1.二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零.2.一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化.典例引领变式拓展考向二二次函数的图象与性质二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.二次函数的解析式中,a决定抛物线的形状和开口方向,h、k仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等.典例引领1x=时有最小值2-,即a-当2x=-时有最大值6,即4解得:89a=,109b=-,∴1118110 333939 a b⎛-=⨯-⨯-⎝②a<0时,如图,1x =时有最大值6,即26a a b -+=当2x =-时有最小值2-,即44a a +解得:89a =-,469b =,∴11181462333939a b ⎛⎫-=⨯--⨯=- ⎪⎝⎭,故答案为:23或2-.4.定义:两个不相交的函数图象在竖直方向上的最短距离,抛物线223y x x =-+与直线y x =-【答案】114【分析】此题考查了一次函数,二次函数的性质以及新定义问题,变式拓展【答案】②③④【分析】本题考查了二次函数图象与系数的关系,①根据抛物线开口向下可得在y轴右侧,得0b>,抛物线与x=,即对称轴是直线1【答案】②④/④②【分析】本题考查二次函数的图象和性质,结合的数学思想是解题的关键.【详解】解:将点(11933b c b c ++=⎧⎨++=⎩,。
一元二次函数的图象和性质一、【课程要求】1.掌握二次函数的图像和性质,结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2.通过三个“二次”掌握函数、方程、不等式之间的关系二、【重点难点】①二次函数的图象和性质,②一元二次方程根的存在性及根的个数,函数最值问题。
三、【命题规律】从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。
本节在高考中,重点考察数形结合与等价转化数学思想,通过三个“二次”之间的相互转化,考查函数的方程思想,对于二次函数的区间最值,尤其是含有参数的区间最值问题,要求选择合理的标准分类讨论,。
四、【知识回顾】(一) 二次函数基本知识1.二次函数的定义:形如2(0,,)y ax bx c a a b c =++≠且为常数的函数叫关于x 的二次函数。
2.二次函数的解析式的三种形式(1)一般式(三点式):2(0)y ax bx c a =++≠,配方后为 。
其中顶点坐标为 ,对称轴为 。
(2)顶点式(配方式):20()()y a x h k a ≠=-+,其中顶点坐标为 ,对称轴为 。
(3)两根式(零点式):120()()()y a x x x x a ≠=--,其中12,x x 是方程20ax bx c ++=的两个根,同时也是二次函数的图像与x 轴交点()()12,00x x ,,的横坐标。
求函数解析式时,一般采用 待定系数法3.二次函数的图像和性质(1)二次函数2(0)y ax bx c a =++≠的图像是一条 ,其对称轴为 ,顶点坐标为 ,开口方向由 决定。
(2)二次函数2(0)y ax bx c a =++≠的单调性以对称轴为分界。
当0a >时,函数图像开口向 ,当x ∈ 时,()f x 单调递增,当x ∈ 时,()f x 单调递减,当x = 时,()f x 有最小值。
二次函数图表信息题一.选择题(共18小题)1.已知二次函数y=x2+bx+c的图象过点A(1,m),B(3,m),若点M(﹣2,y1),N (﹣1,y2),K(8,y3)也在二次函数y=x2+bx+c的图象上,则下列结论准确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y22.抛物线y=x2﹣2x+1与坐标轴交点为()A.二个交点B.一个交点C.无交点D.三个交点3.已知a≠0,在统一向角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.4.抛物线y=2x2,y=﹣2x2,共有的性质是()A.启齿向下B.对称轴是y轴C.都有最高点D.y随x的增大而增大5.如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac; ②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x≥3.5;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述4个断定中,准确的是()A.①②B.①④C.①③④D.②③④6.抛物线y=ax2+bx+c的极点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.个中准确结论的个数为()A.1个B.2个C.3个D.4个7.已知抛物线y=ax2+bx+c(a≠0)经由点(1,1)和(﹣1,0).下列结论:①a﹣b+c=0②b2>4ac③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.个中结论准确的个数有()A.4个B.3个C.2个D.1个8.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),个中准确结论的个数是()A.4个B.3个C.2个D.1个9.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列断定:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,个中准确的是()A.①②③B.①③④C.①②④D.②③④10.(2014•天津)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.个中,准确结论的个数是()A.0B.1C.2D.311.如图,二次函y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经由点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(,y2)是抛物线上的两点,则y1<y2,个中说法准确的是()A.①②④B.③④C.①③④D.①②12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).个中准确的个数是()A.1B.2C.3D.413.二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.个中准确的有()A.①②③B.②④C.②⑤D.②③⑤14.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.个中准确的结论有()A.1个B.2个C.3个D.4个15.已知二次函数y=ax2+bx+c(a≠0)的图象如图,剖析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,个中准确的结论有()A.1个B.2个C.3个D.4个16.已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2个中准确的个数有()A.1B.2C.3D.417.二次函数y=ax2+bx+c图象如图,下列准确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A.2B.3C.4D.518.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0个中准确结论的有()A.①②③B.①②④C.①③④D.②③④参考答案与试题解析一.选择题(共18小题)1.(2014•承德二模)已知二次函数y=x2+bx+c的图象过点A(1,m),B(3,m),若点M(﹣2,y1),N(﹣1,y2),K(8,y3)也在二次函数y=x2+bx+c的图象上,则下列结论准确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2考点:二次函数图象上点的坐标特点.专题:盘算题.剖析:应用A点与B点为抛物线上的对称点得到对称轴为直线x=2,然后依据点M.N.K离对称轴的远近求解.解答:解:∵二次函数y=x2+bx+c的图象过点A(1,m),B(3,m), ∴抛物线启齿向上,对称轴为直线x=2,∵M(﹣2,y1),N(﹣1,y2),K(8,y3),∴K点离对称轴最远,N点离对称轴比来,∴y2<y1<y3.故选B.点评:本题考核了二次函数图象上点的坐标特点:二次函数图象上点的坐标特点知足其解析式.2.(2014•宁波一模)抛物线y=x2﹣2x+1与坐标轴交点为()A.二个交点B.一个交点C.无交点D.三个交点考点:抛物线与x轴的交点.剖析:因为x2﹣2x+1=0中,△=(﹣2)2﹣4×1×1=0,有两个相等的实数根,图象与x轴有一个交点,再加当y=0时的点即可.解答:解:当x=0时y=1,当y=0时,x=1∴抛物线y=x2﹣2x+1与坐标轴交点有两个.故选:A.点评:解答此题要明白抛物线y=x2﹣2x+1的图象与x轴交点的个数与方程x2﹣2x+1=0解的个数有关,还得斟酌与y 轴订交.3.(2014•宁夏)已知a≠0,在统一向角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.考点:二次函数的图象;正比例函数的图象.专题:数形联合.剖析:本题可先由一次函数y=ax图象得到字母系数的正负,再与二次函数y=ax2的图象比拟较看是否一致.(也可以先固定二次函数y=ax2图象中a的正负,再与一次函数比较.)解答:解:A.函数y=ax中,a>0,y=ax2中,a>0,但当x=1时,两函数图象有交点(1,a),故A错误;B.函数y=ax中,a<0,y=ax2中,a>0,故B错误;C.函数y=ax中,a<0,y=ax2中,a<0,但当x=1时,两函数图象有交点(1,a),故C准确;D.函数y=ax中,a>0,y=ax2中,a<0,故D错误.故选:C.点评:函数中数形联合思惟就是:由函数图象肯定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致外形.4.(2014•毕节地区)抛物线y=2x2,y=﹣2x2,共有的性质是()A.启齿向下B.对称轴是y轴C.都有最高点D.y随x的增大而增大考点:二次函数的性质.剖析:依据二次函数的性质解题.解答:解:(1)y=2x2启齿向上,对称轴为y轴,有最低点,极点为原点;(2)y=﹣2x2启齿向下,对称轴为y轴,有最高点,极点为原点;(3)y=x2启齿向上,对称轴为y轴,有最低点,极点为原点.故选:B.点评:考核二次函数极点式y=a(x﹣h)2+k的性质.二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的启齿向上,x <﹣时,y随x的增大而减小;x >﹣时,y随x的增大而增大;x=﹣时,y 取得最小值,即极点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的启齿向下,x <﹣时,y随x的增大而增大;x >﹣时,y随x的增大而减小;x=﹣时,y 取得最大值,即极点是抛物线的最高点.5.(2014•达州)如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x≥3.5;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述4个断定中,准确的是()A.①②B.①④C.①③④D.②③④考点:二次函数图象与系数的关系;二次函数图象上点的坐标特点;二次函数与不等式(组).专题:数形联合.剖析:依据抛物线与x轴有两个交点可得b2﹣4ac>0,进而断定①准确;依据题中前提不克不及得出x=﹣2时y的正负,因而不克不及得出②准确;假如设ax2+bx+c=0的两根为α.β(α<β),那么依据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,由此断定③错误;先依据抛物线的对称性可知x=﹣2与x=4时的函数值相等,再依据二次函数的增减性即可断定④准确.解答:解:①∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故①准确;②x=﹣2时,y=4a﹣2b+c,而题中前提不克不及断定此时y的正负,即4a﹣2b+c可能大于0,可能等于0,也可能小于0,故②错误;③假如设ax2+bx+c=0的两根为α.β(α<β),那么依据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,故③错误;④∵二次函数y=ax2+bx+c的对称轴是直线x=1,∴x=﹣2与x=4时的函数值相等,∵4<5,∴当抛物线启齿向上时,在对称轴的右边,y随x的增大而增大,∴y1<y2,故④准确.故选:B.点评:重要考核图象二次函数图象与系数的关系,二次函数图象上点的坐标特点,二次函数的性质,以及二次函数与不等式的关系,根的判别式的闇练应用.6.(2014•孝感)抛物线y=ax2+bx+c的极点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.个中准确结论的个数为()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系;抛物线与x轴的交点.专题:数形联合.剖析:由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线极点坐标得到抛物线的对称轴为直线x=﹣1,则依据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的极点为D(﹣1,2)得a﹣b+c=2,由抛物线的对称轴为直线x=﹣=﹣1得b=2a,所以c﹣a=2;依据二次函数的最大值问题,当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,所以说方程ax2+bx+c﹣2=0有两个相等的实数根.解答:解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,所以①错误;∵极点为D(﹣1,2),∴抛物线的对称轴为直线x=﹣1,∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间, ∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②准确;∵抛物线的极点为D(﹣1,2),∴a﹣b+c=2,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,∴a﹣2a+c=2,即c﹣a=2,所以③准确;∵当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④准确.故选:C.点评:本题考核了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线启齿向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.7.(2014•十堰)已知抛物线y=ax2+bx+c(a≠0)经由点(1,1)和(﹣1,0).下列结论:①a﹣b+c=0;②b2>4ac;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.个中结论准确的个数有()A.4个B.3个C.2个D.1个考点:二次函数图象与系数的关系.专题:通例题型.剖析:将点(﹣1,0)代入y=ax2+bx+c,即可断定①准确;将点(1,1)代入y=ax2+bx+c,得a+b+c=1,又由①得a﹣b+c=0,两式相加,得a+c=,两式相减,得b=.由b2﹣4ac=﹣4a(﹣a)=﹣2a+4a2=(2a﹣)2,当a=时,b2﹣4ac=0,即可断定②错误;③由b2﹣4ac=(2a﹣)2>0,得出抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,依据一元二次方程根与系数的关系可得﹣1•x==﹣1,即x=1﹣,再由a<0得出x>1,即可断定③准确;④依据抛物线的对称轴公式为x=﹣,将b=代入即可断定④准确.解答:解:①∵抛物线y=ax2+bx+c(a≠0)经由点(﹣1,0),∴a﹣b+c=0,故①准确;②∵抛物线y=ax2+bx+c(a≠0)经由点(1,1),∴a+b+c=1,又a﹣b+c=0,两式相加,得2(a+c)=1,a+c=,两式相减,得2b=1,b=.∵b2﹣4ac=﹣4a(﹣a)=﹣2a+4a2=(2a﹣)2,当2a﹣=0,即a=时,b2﹣4ac=0,故②错误;③当a<0时,∵b2﹣4ac=(2a﹣)2>0,∴抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,则﹣1•x===﹣1,即x=1﹣,∵a<0,∴﹣>0,∴x=1﹣>1,即抛物线与x轴必有一个交点在点(1,0)的右侧,故③准确;④抛物线的对称轴为x=﹣=﹣=﹣,故④准确.故选:B.点评:本题考核了二次函数图象上点的坐标特点,二次函数图象与系数的关系,二次函数与一元二次方程的关系,一元二次方程根与系数的关系及二次函数的性质,不等式的性质,难度适中.8.(2014•资阳)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),个中准确结论的个数是()A.4个B.3个C.2个D.1个考点:二次函数图象与系数的关系.专题:数形联合.剖析:应用二次函数图象的相干常识与函数系数的接洽,须要依据图形,一一断定.解答:解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①准确;∵对称轴是直线x=﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间, ∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b+2c<0,∴③准确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④准确;即准确的有3个,故选:B.点评:此题重要考核了二次函数图象与系数的关系,在解题时要留意二次函数的系数与其图象的外形,对称轴,特别点的关系,也要控制在图象上暗示一元二次方程ax2+bx+c=0的解的办法,同时留意特别点的应用.9.(2014•聊城)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列断定:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,个中准确的是()A.①②③B.①③④C.①②④D.②③④考点:二次函数图象与系数的关系.专题:数形联合.剖析:应用二次函数图象的相干常识与函数系数的接洽,须要依据图形,一一断定.解答:解:∵抛物线的对称轴是直线x=﹣1,∴﹣=﹣1,b=2a,∴b﹣2a=0,故①准确;∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点是(2,0),∴抛物线和x轴的另一个交点是(﹣4,0),∴把x=﹣2代入得:y=4a﹣2b+c>0,故②错误;∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0,又∵b=2a,∴c=﹣4a﹣2b=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,故③准确;依据图象,可知抛物线对称轴的右边y随x的增大而减小,∵抛物线和x轴的交点坐标是(2,0)和(﹣4,0),抛物线的对称轴是直线x=﹣1, ∴点(﹣3,y1)关于对称轴的对称点的坐标是((1,y1),∵(,y2),1<,∴y1>y2,故④准确;即准确的有①③④,故选:B.点评:此题重要考核了二次函数图象与系数的关系,在解题时要留意二次函数的系数与其图象的外形,对称轴,特别点的关系,也要控制在图象上暗示一元二次方程ax2+bx+c=0的解的办法.同时留意特别点的应用.10.(2014•天津)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.个中,准确结论的个数是()A.0B.1C.2D.3考点:二次函数图象与系数的关系.专题:数形联合.剖析:由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而断定①;先依据抛物线的启齿向下可知a<0,由抛物线与y轴的交点断定c与0的关系,依据对称轴在y轴右侧得出b与0的关系,然后依据有理数乘法轨则断定②;一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以懂得为y=ax2+bx+c和y=m没有交点,即可求出m的取值规模,断定③即可.解答:解:①∵二次函数y=ax2+bx+c与x轴有两个交点, ∴b2﹣4ac>0,故①准确;②∵抛物线的启齿向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴x=﹣>0,∴ab<0,∵a<0,∴b>0,∴abc<0,故②准确;③∵一元二次方程ax2+bx+c﹣m=0没有实数根, ∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③准确.故选:D.点评:本题重要考核图象与二次函数系数之间的关系,会应用对称轴的规模求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的闇练应用.11.(2014•齐齐哈尔)如图,二次函y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经由点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣2,y1),(,y2)是抛物线上的两点,则y1<y2,个中说法准确的是()A.①②④B.③④C.①③④D.①②考点:二次函数图象与系数的关系.专题:数形联合.剖析:①依据抛物线启齿偏向.对称轴地位.抛物线与y轴交点地位求得a.b.c的符号;②依据对称轴求出b=﹣a;③把x=2代入函数关系式,联合图象断定函数值与0的大小关系;④求出点(﹣2,y1)关于直线x=的对称点的坐标,依据对称轴即可断定y1和y2的大小.解答:解:①∵二次函数的图象启齿向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点, ∴c>0,∵对称轴是直线x=,∴﹣=,∴b=﹣a>0,∴abc<0.故①准确;②∵由①中知b=﹣a,∴a+b=0,故②准确;③把x=2代入y=ax2+bx+c得:y=4a+2b+c, ∵抛物线经由点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵(﹣2,y1)关于直线x=的对称点的坐标是(3,y1), 又∵当x>时,y随x的增大而减小,<3,∴y1<y2.故④准确;综上所述,准确的结论是①②④.故选:A.点评:本题考核了二次函数的图象和系数的关系的应用,留意:当a>0时,二次函数的图象启齿向上,当a<0时,二次函数的图象启齿向下.12.(2014•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).个中准确的个数是()A.1B.2C.3D.4考点:二次函数图象与系数的关系.剖析:由抛物线与y轴的交点断定c与0的关系,然后依据对称轴及抛物线与x轴交点情形进行推理,进而对所得结论进行断定.解答:解:抛物线与y轴交于原点,c=0,(故①准确);该抛物线的对称轴是:,直线x=﹣1,(故②准确);当x=1时,y=a+b+c∵对称轴是直线x=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③错误);x=m对应的函数值为y=am2+bm+c,x=﹣1对应的函数值为y=a﹣b+c,又∵x=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④准确).故选:C.点评:本题考核了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线启齿偏向.对称轴.抛物线与y轴的交点.抛物线与x轴交点的个数肯定.13.(2014•南充)二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.个中准确的有()A.①②③B.②④C.②⑤D.②③⑤考点:二次函数图象与系数的关系.专题:数形联合.剖析:依据抛物线启齿偏向得a<0,由抛物线对称轴为直线x=﹣=1,得到b=﹣2a>0,即2a+b=0,由抛物线与y轴的交点地位得到c>0,所以abc<0;依据二次函数的性质得当x=1时,函数有最大值a+b+c,则当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm;依据抛物线的对称性得到抛物线与x轴的另一个交点在(﹣1,0)的右侧,则当x=﹣1时,y<0,所以a﹣b+c<0;把ax12+bx1=ax22+bx2先移项,再分化因式得到(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,则a(x1+x2)+b=0,即x1+x2=﹣,然后把b=﹣2a代入盘算得到x1+x2=2.解答:解:∵抛物线启齿向下,∴a<0,∵抛物线对称轴为性质x=﹣=1,∴b=﹣2a>0,即2a+b=0,所以②准确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线对称轴为性质x=1,∴函数的最大值为a+b+c,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm,所以③准确;∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为性质x=1, ∴抛物线与x轴的另一个交点在(﹣1,0)的右侧∴当x=﹣1时,y<0,∴a﹣b+c<0,所以④错误;∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,即x1+x2=﹣,∵b=﹣2a,∴x1+x2=2,所以⑤准确.故选:D.点评:本题考核了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决议抛物线的启齿偏向和大小:当a>0时,抛物线启齿向上;当a<0时,抛物线启齿向下;一次项系数b和二次项系数a配合决议对称轴的地位,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决议抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决议,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.14.(2014•烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.个中准确的结论有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专题:代数几何分解题;数形联合.剖析:依据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;不雅察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;因为x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再依据抛物线启齿向下得a<0,于是有8a+7b+2c>0;因为对称轴为直线x=2,依据二次函数的性质得到当x>2时,y随x的增大而减小.解答:解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①准确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线启齿向下,∴a<0,∴8a+7b+2c>0,(故③准确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大, 当x>2时,y随x的增大而减小,(故④错误).故选:B.点评:本题考核了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决议抛物线的启齿偏向和大小,当a>0时,抛物线向上启齿;当a<0时,抛物线向下启齿;一次项系数b和二次项系数a配合决议对称轴的地位,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c 决议抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决议,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.15.(2014•贵港)已知二次函数y=ax2+bx+c(a≠0)的图象如图,剖析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,个中准确的结论有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.剖析:①由抛物线的启齿偏向,抛物线与y轴交点的地位.对称轴即可肯定a.b.c的符号,即得abc的符号;②由抛物线与x轴有两个交点断定即可;③分离比较当x=﹣2时.x=1时,y的取值,然后解不等式组可得6a+3c<0,即2a+c<0;又因为a<0,所以3a+c<0.故错误;④将x=1代入抛物线解析式得到a+b+c<0,再将x=﹣1代入抛物线解析式得到a﹣b+c>0,两个不等式相乘,依据两数相乘异号得负的取符号轨则及平方差公式变形后,得到(a+c)2<b2,解答:解:①由启齿向下,可得a<0,又由抛物线与y轴交于正半轴,可得c>0,然后由对称轴在y轴左侧,得到b与a 同号,则可得b<0,abc>0,故①错误;②由抛物线与x轴有两个交点,可得b2﹣4ac>0,故②准确;③当x=﹣2时,y<0,即4a﹣2b+c<0 (1)当x=1时,y<0,即a+b+c<0 (2)(1)+(2)×2得:6a+3c<0,即2a+c<0又∵a<0,∴a+(2a+c)=3a+c<0.故③错误;④∵x=1时,y=a+b+c<0,x=﹣1时,y=a﹣b+c>0, ∴(a+b+c)(a﹣b+c)<0,即[(a+c)+b][(a+c)﹣b]=(a+c)2﹣b2<0, ∴(a+c)2<b2,故④准确.综上所述,准确的结论有2个.故选:B.点评:本题考核了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线启齿偏向.对称轴.抛物线与y轴的交点抛物线与x轴交点的个数肯定.16.(2014•莱芜)已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2个中准确的个数有()A.1B.2C.3D.4考点:二次函数图象与系数的关系.专题:数形联合.剖析:由抛物线启齿偏向得a<0,由抛物线对称轴在y轴的左侧得a.b同号,即b<0,由抛物线与y轴的交点在x轴上方得c>0,所以abc>0;依据抛物线对称轴的地位得到﹣1<﹣<0,则依据不等式性质即可得到2a﹣b<0;因为x=﹣2时,对应的函数值小于0,则4a﹣2b+c<0;同样当x=﹣1时,a﹣b+c>0,x=1时,a+b+c<0,则(a﹣b+c)(a+b+c)<0,应用平方差公式睁开得到(a+c)2﹣b2<0,即(a+c)2<b2.解答:解:∵抛物线启齿向下,∴a<0,∵抛物线的对称轴在y轴的左侧,∴x=﹣<0,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,(故①准确);∵﹣1<﹣<0,∴2a﹣b<0,(故②准确);∵当x=﹣2时,y<0,∴4a﹣2b+c<0,(故③准确);∵当x=﹣1时,y>0,∴a﹣b+c>0,∵当x=1时,y<0,∴a+b+c<0,∴(a﹣b+c)(a+b+c)<0,即(a+c﹣b)(a+c+b)<0, ∴(a+c)2﹣b2<0,(故④准确).综上所述,准确的个数有4个;故选:D.点评:本题考核了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线启齿向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.17.(2014•深圳)二次函数y=ax2+bx+c图象如图,下列准确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A.2B.3C.4D.5考点:二次函数图象与系数的关系.剖析:依据抛物线启齿向上可得a>0,联合对称轴在y轴右侧得出b<0,依据抛物线与y轴的交点在负半轴可得c<0,再依据有理数乘法轨则断定①;再由不等式的性质断定②;依据对称轴为直线x=1断定③;依据图象与x轴的两个交点分离在原点的阁下两侧断定④;由x=1时,y<0断定⑤;依据二次函数的增减性断定⑥.解答:解:①∵抛物线启齿向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号即b<0,∵抛物线与y轴的交点在负半轴,∴c<0,∴bc>0,故①准确;②∵a>0,c<0,∴2a﹣3c>0,故②错误;③∵对称轴x=﹣<1,a>0,∴﹣b<2a,∴2a+b>0,故③准确;④由图形可知二次函数y=ax2+bx+c与x轴的两个交点分离在原点的阁下两侧, 即方程ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0,故④准确;⑤由图形可知x=1时,y=a+b+c<0,故⑤错误;⑥∵a>0,对称轴x=1,∴当x>1时,y随x增大而增大,故⑥错误.综上所述,准确的结论是①③④,共3个.故选:B.点评:重要考核图象与二次函数系数之间的关系,二次函数的性质,会应用对称轴的规模求2a与b的关系,以及二次函数与方程之间的转换.18.(2014•黔东南州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0个中准确结论的有()A.①②③B.①②④C.①③④D.②③④考点:二次函数图象与系数的关系.剖析:由抛物线的启齿偏向断定a与0的关系,由抛物线与y轴的交点得出c的值,然后依据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情形进行推理,进而对所得结论进行断定.解答:解:由二次函数的图象启齿向上可得a>0,依据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①准确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a+b+c>0,则b<a+c,故②选项准确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项准确;故选:B.点评:本题考核二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的闇练应用.会应用特别值代入法求得特别的式子,如:y=a+b+c,y=4a+2b+c,然后依据图象断定其值.。