(完整版)圆周运动习题及答案
- 格式:doc
- 大小:173.41 KB
- 文档页数:8
《圆周运动》练习(二)1.如图所示,两个质量均为 m 的小木块 a 和 b(可视为质点 )放在水平圆盘上, a 与转轴 OO ′的距离为 l , b 与转轴的距离为 2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )A . b 一定比 a 先开始滑动B .a 、 b 所受的摩擦力始终相等C .ω=kg是 b 开始滑动的临界角速度2lD .当 ω=2kg时, a 所受摩擦力的大小为 kmg3l2.如图所示,一质量为 M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为 m 的小环 (可视为质点 ),从大环的最高处由静止滑下.重力加速度大小为 g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为 ()A . Mg - 5mgB . Mg + mgC .Mg + 5mgD . Mg + 10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M 点出发经 P 点到达 N 点,已知弧长 MP 大于弧长 PN ,质点由 M 点运动到 P 点与从 P 点运动到 N 点所用的时间相等.则下列说法 中正确的是 ()A .质点从 M 到 N 过程中速度大小保持不变B .质点在这两段时间内的速度变化量大小相等,方向相同C .质点在这两段时间内的速度变化量大小不相等,但方向相同D .质点在 M 、 N 间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在 A 、 B 盘的边缘, A 、 B 两盘的半径之比为 2∶ 1,a 、 b 分别是与 A 盘、 B 盘同轴的轮, a 、 b 轮半径之比为 1∶ 2.当 a 、 b 两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为 ( )A . 2∶ 1B . 4∶ 1C .1∶ 4D . 8∶ 15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为 L 的细线系一质量为m 的小球,两线上端系于水平横杆上的A 、B 两点, A 、 B 两点相距也为 L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为 ( )A . 2 3mgB . 3mg73mgC.2.5mg D. 26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离3(设最大静摩擦力等于2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为 2滑动摩擦力 ),盘面与水平面的夹角为30°, g 取 10 m/s2.则ω的最大值是 ()A. 5 rad/sB. 3 rad/sC.1.0 rad/s D.0.5 rad/ s7.如图所示,在竖直平面内有xOy 坐标系,长为 l 的不可伸长细绳,一端固定在 A 点,A 点的坐标为 (0,l2),另一端系一质量为m 的小球.现在x 坐标轴上 (x>0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.5(1) 当钉子在 x=4 l 的 P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2) 为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h= 0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离 B 点所在平面的高度H= 1.2 m.有一半径为R 的光滑圆轨道与斜面AB 在 B 点相切连接,已知 cos 53 °= 0.6, sin 53 =°0.8, g 取 10 m/s2.求:(1)小物块水平抛出的初速度v0是多少;(2) 若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的 AB 段轨道与四分之一光滑圆弧轨道 BC 在 B 点水平相切.点 A 距水面的高度为 H ,圆弧轨道 BC 的半径为 R ,圆心 O 恰在水面.一质量为m 的游客 (视为质点 )可从轨道 AB 的任意位置滑下,不计空气阻力.(1) 若游客从 A 点由静止开始滑下,到 B 点时沿切线方向滑离轨道落在水面D 点, OD = 2R ,求游客滑到 B 点时的速度 v B 大小及运动过程轨道摩擦力对其所做的功 W f ;(2) 某游客从 AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求 P 点离水面的高度 h.(提示:在圆周运动过程中任一点,质点所2受的向心力与其速率的关系为 F 向 =m v )R10.如图所示, 一块足够大的光滑平板放置在水平面上,能绕水平固定轴 MN 调节其与水平面的倾角. 板上一根长为 l = 0.6 m 的轻细绳,它的一端系住一质量为m 的小球 P ,另一端固定在板上的O 点.当平板的倾角固定为 α时,先将轻绳平行于水平轴 MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0= 3 m/s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内 (取重力加速度 g =10 m/ s 2)?11.半径为 R 的水平圆盘绕过圆心O 的竖直轴匀速转动, A 为圆盘边缘上一点.在 O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径 OA 方向恰好与 v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在 A 点,重力加速度为g,则小球抛出时距O 的高度 h= ________,圆盘转动的角速度大小ω= ________.12.一长 l= 0.80 m 的轻绳一端固定在O 点,另一端连接一质量m= 0.10 kg 的小球,悬点O 距离水平地面的高度H= 1.00 m.开始时小球处于 A 点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到 B 点时,轻绳碰到悬点O 正下方一个固定的钉子P 时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g= 10 m/s2.求:(1)当小球运动到 B 点时的速度大小;(2) 绳断裂后球从 B 点抛出并落在水平地面上的 C 点,求 C 点与 B 点之间的水平距离;(3)若 OP= 0.6 m,轻绳碰到钉子 P 时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.4答案1. 答案 AC解析小木块 a 、 b 做圆周运动时,由静摩擦力提供向心力,即f = m ω 2R.当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块 a : f a2 l ,当a2 aaa=m ω f =kmg 时, kmg = m ωl , ω=kg2 b2 bkg;对木块 b : f bbb,所以 b 先达到最大静摩l =m ω ·2l ,当 f = kmg 时, kmg = m ω ·2l , ω =2l擦力,选项 A 正确;两木块滑动前转动的角速度相同,则f a2 b 2 a b=m ω l , f = m ω ·2l , f <f ,选项 B 错误;kg2kg2 当 ω=2l 时 b 刚开始滑动,选项C 正确;当 ω= 3l 时, a 没有滑动,则f a = m ω2l = 3kmg ,选项 D 错误. 2. 答案 C解析 设大环半径为 R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以122mv = mg ·2R.小环滑mv 2到大环的最低点时的速度为v =2 gR ,根据牛顿第二定律得F N - mg = R ,所以在最低点时大环对小mv2环的支持力 F N = mg + R = 5mg.根据牛顿第三定律知, 小环对大环的压力F N ′= F N = 5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力 T = Mg + F N ′ = Mg + 5mg.根据牛顿第三定律,大环对轻杆拉力的大小为 T ′ =T = Mg + 5mg ,故选项 C 正确,选项 A 、 B 、D 错误.3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律 F = ma ,所以加速度不变,根据v =a t 可得在相同时间内速度的变化量相同,故 B 正确, C 错误;因加速度不变,故质点做匀变速运动,所以 D 错误.4. 答案 D解析皮带传送,边缘上的点线速度大小相等,所以v a = v b ,因为 a 轮、 b 轮半径之比为 1∶ 2,根据线 速度公式 ωa 2v = ωr 得: b= ,共轴的点, 角速度相等, 两个钢球的角速度分别与共轴轮子的角速度相等,2 ω 1 a 1 8 F 1 8 ω1 2 则 ω2=1.根据向心加速度 a = r ω,则 a 2= 1,由 F = ma 得F 2=1,故 D 正确, A 、 B 、C 错误.5. 答案 A 2解析小球恰好过最高点时有:mg = m v 1R解得 v 1 =32 gL ①根据动能定理得:1 2 1 2mg · 3L = 2mv 2 - 2mv 1②2由牛顿第二定律得:v 23T - mg =m③5联立 ①②③ 得, T = 2 3mg故 A 正确, B 、C 、 D 错误.6. 答案 C解析当小物体转动到最低点时为临界点,由牛顿第二定律知,μmgcos 30 °- mgsin 30 °= m ω2r解得 ω=1.0 rad/s ,故选项 C 正确.7. 审题突破(1)由数学知识求出小球做圆周运动的轨道半径, 由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围.解析 (1) 当钉子在 x = 5l2 +x 24 l 的 P 点时,小球绕钉子转动的半径为: R 1= l -2小球由静止到最低点的过程中机械能守恒:mg( l + R )= 1mv 211222v 1在最低点细绳承受的拉力最大,有:F - mg =m R 1联立求得最大拉力F = 7mg.(2) 小球绕钉子做圆周运动恰好到达最高点时,有:2 v 2mg = m R 2运动中机械能守恒: mg( l - R 2)= 1mv 222 2钉子所在位置为 x ′ = l - R 2 2l 2- 2联立解得 x ′ =76 l因此钉子所在位置的范围为75 6 l ≤ x ≤ 4 l .答案 (1)7 mg (2)756 l ≤ x ≤4 l8. 解析 (1) 小物块自平台做平抛运动, 由平抛运动知识得: v y = 2gh = 2× 10× 0.032 m/s = 0.8 m/ s(2分 )由于物块恰好沿斜面下滑,则tan 53 =°v y(3 分 )v 0得 v 0= 0.6 m/s.(2 分 )(2) 设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为 N.v 2则由向心力公式得: N + mg = m R (2 分)μ mgHcos 53 °1 2 1 2由动能定理得: mg(H + h)- sin 53 °- mg(R + Rcos 53)°=2mv - 2mv 0 (5 分 )小物块能过圆轨道最高点,必有 N ≥ 0(1 分 )联立以上各式并代入数据得:88R ≤21 m ,即 R 最大值为 21 m . (2 分 )答案(1)0.6 m/s(2) 8m219. 答案(1) 2gR - (mgH - 2mgR) (2)2R3解析(1) 游客从 B 点做平抛运动,有2R =v B t ①1 R =2gt2 ②由 ①② 式得v B = 2gR ③从 A 到 B ,根据动能定理,有1 2mg(H - R)+W f = 2mv B - 0④由 ③④ 式得W f =- (mgH - 2mgR)⑤(2) 设 OP 与 OB 间夹角为 θ,游客在 P 点时的速度为 v P ,受到的支持力为 N ,从 B 到 P由机械能守恒定律,有1 mg(R - Rcos θ)= mv2 - 0⑥P2过 P 点时,根据向心力公式,有2 v Pmgcos θ- N = m R ⑦N =0⑧hcos θ=R⑨2由 ⑥⑦⑧⑨ 式解得 h =3R ⑩10. 答案 α≤ 30°解析小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mgsin α,小球在最高点时, 由绳子的拉力和重力分力的合力提供向心力:T + mgsin2 mv 1α= l ①研究小球从释放到最高点的过程,据动能定理:1212 - mglsin α= 2mv 1 - 2mv 0② 若恰好通过最高点绳子拉力 F T2= 0,v 321联立 ①② 解得: sin α= 03gl = 3× 10× 0.6 = 2.故 α最大值为 30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤ 30°.11.答案gR22nπv2v2R (n= 1,2,3,⋯ )解析小球做平抛运,在直方向:12 h=gt ①2在水平方向R= vt②gR2由①②两式可得h=2v2③小球落在 A 点的程中, OA 的角度θ=2nπ=ωt (n=1,2,3,⋯ )④2nπv由②④两式得ω=R(n= 1,2,3,⋯ )12.答案 (1)4 m/s (2)0.80 m (3)9 N解析(1) 小球运到 B 点的速度大小v B,由机械能守恒定律得12=mgl2mvB解得小球运到 B 点的速度大小v B=2gl= 4 m/s(2)小球从 B 点做平抛运,由运学律得x= v B t1y= H- l= gt2解得 C 点与 B 点之的水平距离x= v B 2 H - l= 0.80 m g(3) 若碰到子,拉力恰好达到最大F m,由牛定律得2v BF m-mg=m rr = l- OP由以上各式解得F m= 9 N。
第六章圆周运动圆周运动课后篇巩固提升合格考达标练1.如图所示,在圆规匀速转动画圆的过程中()A.笔尖的速率不变B.笔尖做的是匀速运动9C.任意相等时间内通过的位移相等D.两相同时间内转过的角度不同,匀速圆周运动的速度大小不变,也就是速率不变,但速度的方向时刻改变,故A 正确,B错误;做匀速圆周运动的物体在任意相等时间内通过的弧长相等,但位移还要考虑方向,C错误;相同时间内转过角度相同,D错误。
2.如图所示为行星传动示意图。
中心“太阳轮”的转动轴固定,其半径为R1,周围四个“行星轮”的转动轴固定,半径均为R2,“齿圈”的半径为R3,其中R1=1.5R2,A、B、C分别是“太阳轮”“行星轮”和“齿圈”边缘上的点,齿轮传动过程中不打滑,那么()A.A点与B点的角速度相同B.A点与B点的线速度相同C.B点与C点的转速之比为7∶2D.A点与C点的周期之比为3∶5,A、B两点的线速度大小相等,方向不同,B错误;由v=rω知,线速度大小相等时,角速度和半径成反比,A、B两点的转动半径不同,因此角速度不同,A错误;B点和C点的线速度大小相等,由v=rω=2πnr可知,B点和C点的转速之比为n B∶n C=r C∶r B,r B=R2,r C=1.5R2+2R2=3.5R2,故n B∶n C=7∶2,C正确;根据v=2πr可知,T A∶T C=r A∶r C=3∶7,D错误。
T3.(多选)如图所示,在冰上芭蕾舞表演中,演员展开双臂单脚点地做着优美的旋转动作,在他将双臂逐渐放下的过程中,他转动的速度会逐渐变快,则它肩上某点随之转动的()A.转速变大B.周期变大C.角速度变大D.线速度变大,即转速变大,角速度变大,周期变小,肩上某点距转动圆心的半径r不变,因此线速度也变大。
4.(2020海南华侨中学高一上学期期末)如图所示是一个玩具陀螺,a、b和c是陀螺上的三个点。
当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()A.a、b和c三点的线速度大小相等B.a、b和c三点的角速度相等C.a、b的角速度比c的大D.c的线速度比a、b的大、b、c三点共轴,角速度相同,B正确,C错误;a、b、c三点半径不等,所以三点的线速度大小不等,A错误;R a=R b>R c,a、b、c三点角速度相同,故a、b两点的线速度大于c点线速度,D错误。
1.在观看双人花式溜冰表演时,观众有时会看到女运动员被男运动员拉着走开冰面在空中做水平方向的匀速圆周运动.已知经过目测预计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力加快度为g= 10 m/s2,若已知女运动员的体重为35 k g,据此可估量该女运动员()A .遇到的拉力约为350 2 NB .遇到的拉力约为350 NC.向心加快度约为10 m/s2 D .向心加快度约为10 2 m/s2图 4-2-111.分析:此题考察了匀速圆周运动的动力学剖析.以女运动员为研究对象,受力剖析如图.依据题意有 G=mg= 350 N;则由图易得女运动员遇到的拉力约为350 2 N,A 正确;向心加快度约为10 m/s2,C 正确.答案:AC2.中央电视台《今天说法》栏目近来报导了一同发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭受了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲入李先生家,造成三死一伤和房子严重损毁的血腥惨案.经公安部门和交通部门合力调查,画出的现场表示图如图4-2- 12 所示.交警依据图示作出以下判断,你以为正确的选项是()A.由图可知汽车在拐弯时发生侧翻是因为车做离心运动B.由图可知汽车在拐弯时发生侧翻是因为车做向心运动C.公路在设计上可能内 (东 )高外 (西 )低D.公路在设计上可能外 (西) 高内 (东 )低图 4-2-12 2分析:由题图可知发惹祸故时,卡车在做圆周运动,从图能够看出卡车冲入民宅时做离心运动,故选项 A 正确,选项 B 错误;假如外侧高,卡车所受重力和支持力供给向心力,则卡车不会做离心运动,也不会发惹祸故,应选项 C 正确.答案: AC3. (2010 湖·北部分要点中学联考)如图 4- 2- 13 所示,质量为m 的小球置于正方体的圆滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加快度为 g,空气阻力不计,要使在最高点时盒子与小球之间恰巧无作使劲,则()A .该盒子做匀速圆周运动的周期必定小于2πR gB.该盒子做匀速圆周运动的周期必定等于2πR gC.盒子在最低点时盒子与小球之间的作使劲大小可能小于2mgD.盒子在最低点时盒子与小球之间的作使劲大小可能大于2mg图 4-2-133 分析: 要使在最高点时盒子与小球之间恰巧无作使劲,则有mg = mv 2R ,解得该盒子做匀速圆周运动的速2πR R度 v = gR ,该盒子做匀速圆周运动的周期为T = v= 2πg .选项 A 错误, B 正确;在最低点时,盒子mv2与小球之间的作使劲和小球重力的合力供给小球运动的向心力,由F - mg = R ,解得 F = 2mg ,选项 C 、D 错误. 答案: B4.图示所示 , 为某一皮带传动装置.主动轮的半径为r 1 ,从动轮的半径为 r 2.已知主动轮做顺时针转动,转速为 n ,转动过程中皮带不打滑.以下说法正确的选项是()A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r1 D .从动轮的转速为 r 2nnr2r 14 分析: 此题考察的知识点是圆周运动.因为主动轮顺时针转动,从动轮经过皮带的摩擦力带动转动,所以从动轮逆时针转动,选项A 错误B 正确;因为经过皮带传动,皮带与轮边沿接触处的速度相等,n 为频次, 2πn 为角速度,得从动轮的转速为nr 1所以由 2πnr 1= 2πn 2r 2 n 2= r 2 ,选项 C 正确D 错误. 答案: BC5.质量为 m 的石块从半径为 R 的半球形的碗口下滑到碗的最低点的过程中,假如摩擦力的作用使得石块的速度大小不变,如图 4- 2-17 所示,那么 ()A .因为速率不变,所以石块的加快度为零B .石块下滑过程中受的合外力愈来愈大C .石块下滑过程中受的摩擦力大小不变D .石块下滑过程中的加快度大小不变,方向一直指向球心图 4-2-175 分析:因为石块做匀速圆周运动, 只存在向心加快度, 大小不变, 方向一直指向球心, D 对,A 错.由 F 合=F向 =ma向知合外力大小不变,B 错,又因石块在运动方向(切线方向)上合力为零,才能保证速率不变,在该方向重力的分力不停减小,所以摩擦力不停减小,答案: DC 错.6.2008 年 4 月 28 日清晨,山东境内发生两列列车相撞事故,造成了大批人员伤亡和财富损失.引起事 故的主要原由是此中一列列车转弯时超速行驶.如图 4- 2- 18 所示,是一种新式高速列车,当它转弯 时,车厢会自动倾斜, 供给转弯需要的向心力; 假定这类新式列车以 360 km/h 的速度在水平面内转弯, 弯道半径为 1.5 km ,则质量为 75 kg 的乘客在列车转弯过程中所遇到的合外力为 ()A . 500 NB .1 000 NC .500 2 ND .0图 4-2- 186 分析:360 km/h = 100 m/s ,乘客在列车转弯过程中所受的合外力供给向心力 F =mv 21002r = 75×1.5× 103 N= 500 N.答案: A7.如图 4- 2- 19 甲所示,一根细线上端固定在 S 点,下端连一小铁球 A ,让小铁球在水平面内做匀速圆周运动,此装置组成一圆锥摆 (不计空气阻力 ).以下说法中正确的选项是 ( )A .小球做匀速圆周运动时,遇到重力、绳索的拉力和向心力作用gB .小球做匀速圆周运动时的角速度必定大于 l (l 为摆长 )C .还有一个圆锥摆,摆长更大一点,二者悬点相同,如图 4- 2- 19 乙所示,假如改变两小球的角速 度,使二者恰幸亏同一水平面内做匀速圆周运动,则 B 球的角速度大于 A 球的角速度D .假如两个小球的质量相等,则在图乙中两条细线遇到的拉力相等图 4- 2-197 分析: 以以下图所示,小铁球做匀速圆周运动时,只遇到重力和绳索的拉力,而向心力是由重力和拉力的合力供给,故 A 项错误.依据牛顿第二定律和向心力公式可得: mgtan θ=ml ω2sin θ,即 ω= g/lcos θ.当小铁球做匀速圆周运动时, θ必定大于零,即 cos θ必定小于 1,所以,当小铁球做匀速圆周运动时角速度必定大于g/l ,故 B 项正确.设点 S 到点 O 的距离为 h ,则 mgtan θ=mh ω2tan θ,即 ω= g/h ,若两圆锥摆的悬点相同,且二者恰幸亏同一水平面内做匀速圆周运动时,它们的角速度 大小必定相等,即C 项错误.如右上图所示,细线遇到的拉力大小为F T =mg,当两个小球的质量相cos θ等时,因为 θABABB 球遇到的拉力,从而能够判断两条< θ,即 cos θ> cos θ,所示 A 球遇到的拉力小于细线遇到的拉力大小不相等,故 D 项错误. 答案: B8.汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿 半径方向遇到的摩擦力分别为 Ff 甲 和 Ff 乙. 以下说法正确的选项是 ( )A . Ff 甲 小于 Ff 乙B .Ff 甲 等于 Ff 乙C . Ff 甲大于 Ff 乙D . Ff 甲和 Ff 乙 大小均与汽车速率没关8 分析: 此题要点考察的是匀速圆周运动中向心力的知识.依据题中的条件可知,两车在水平面做匀速圆周运动,则地面对车的摩擦力来供给其做圆周运动的向心力,则F 向= f ,又有向心力的表达式F mv 2向= ,因为两车的质量相同, r两车运转的速率相同, 所以轨道半径大的车的向心力小,即摩擦力小,A 正确.答案: A9. 在高速公路的拐弯处,往常路面都是外高内低.如图 4- 2- 20 所示,在某路段汽车向左拐弯,司机左侧的路面比右边的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为 h ,路 基的水平宽度为 d ,路面的宽度为 L.已知重力加快度为g.要使车轮与路面之间的横向摩擦力(即垂直于行进方向 )等于零,则汽车转弯时的车速应等于 ()A.gRhB.gRh C.gRL D.gRdLdhh图 4-2- 209 分析: 考察向心力公式.汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力供给,且向心力的方向水平,向心力大小F 向= mgtan θ,依据牛顿第二定律:F 向=m v2hv =gRh R , tan θ= ,解得汽车转弯时的车速d,B 对.d答案: B 10.如图 4- 2- 24 所示,一个竖直搁置的圆锥筒可绕此中心 OO ′转动,筒内壁粗拙,筒口半径和筒高分别为 R 和 H ,筒内壁 A 点的高度为筒高的一半. 内壁上有一质量为m 的小物块随圆锥筒一同做匀速转动,则以下说法正确的选项是 ( ) A .小物块所受合外力指向 O 点B .当转动角速度ω= 2gH时,小物块不受摩擦力作用RC .当转动角速度ω>2gH 时,小物块受摩擦力沿AO 方向RD .当转动角速度ω<2gH 时,小物块受摩擦力沿AO 方向R图 4-2-2410 分析: 匀速圆周运动物体所受合外力供给向心力,指向物体圆周运动轨迹的圆心, A 项错;当小物块在 A 点随圆锥筒做匀速转动,且其所遇到的摩擦力为零时,小物块在筒壁 A 点时遇到重力和支持力的作用,它们的合力供给向心力,设筒转动的角速度为2R,由几何关系得: tan θω,有: mgtan θ= m ω ·2= H R ,联立以上各式解得 ω= 2gH R , B 项正确;当角速度变大时,小物块所需向心力增大,故摩擦力沿 AO 方向,其水平方向分力供给部分向心力,C 项正确;当角速度变小时,小物块所需向心力减小,故摩擦力沿 OA 方向,抵消部分支持力的水均分力, D 项错.答案: BC11. 如图 4- 2- 25 所示,一水平圆滑、距地面高为h 、边长为 a 的正方形 MNPQ 桌面上,用长为 L 的不行伸长的轻绳连结质量分别为m A 、m B 的 A 、B 两小球,两小球在绳索拉力的作用下,绕绳索上的某点 O 以不一样的线速度做匀速圆周运动, 圆心 O 与桌面中心重合, 已知 m A = 0.5 kg ,L = 1.2 m ,L AO = 0.8 m ,a = 2.1 m , h = 1.25 m , A 球的速度大小 v A = 0.4 m/s ,重力加快度 g 取 10 m/s 2,求:(1) 绳索上的拉力 F 以及 B 球的质量 m B ;(2) 若当绳索与 MN 平行时忽然断开,则经过 1.5 s 两球的水平距离; (与地面撞击后。
《圆周运动》练习(二)1.如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg2.如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mgC.Mg+5mg D.Mg+10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点所用的时间相等.则下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在M、N间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在A、B盘的边缘,A、B两盘的半径之比为2∶1,a、b 分别是与A盘、B盘同轴的轮,a、b轮半径之比为1∶2.当a、b两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为()A.2∶1 B.4∶1C.1∶4 D.8∶15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上的A、B两点,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.23mg B.3mgC .2.5mg D.73mg26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( ) A. 5 rad/s B. 3 rad/s C .1.0 rad /s D .0.5 rad/s7.如图所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求: (1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R )10.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m /s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内(取重力加速度g =10 m/s 2)?11.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度h=________,圆盘转动的角速度大小ω=________.12.一长l=0.80 m的轻绳一端固定在O点,另一端连接一质量m=0.10 kg的小球,悬点O距离水平地面的高度H=1.00 m.开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g=10 m/s2.求:(1)当小球运动到B点时的速度大小;(2)绳断裂后球从B点抛出并落在水平地面上的C点,求C点与B点之间的水平距离;(3)若OP=0.6 m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案1. 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa=kgl;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb = kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误. 2. 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误. 3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误. 4. 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误. 5. 答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3T -mg =m v 2232L ③联立①②③得,T =23mg 故A 正确,B 、C 、D 错误. 6. 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.7. 审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围. 解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2 小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l因此钉子所在位置的范围为76l ≤x ≤54l .答案 (1)7mg (2)76l ≤x ≤54l8. 解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m /s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v yv 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为N .则由向心力公式得:N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821 m9. 答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得 v B =2gR ③从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩10. 答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:T +mg sinα=m v 21l ①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°.11. 答案 gR 22v 2 2n πvR(n =1,2,3,…)解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR (n =1,2,3,…)12. 答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s (2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离 x =v B2(H -l )g=0.80 m (3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。
高中物理必修二第6章圆周运动练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 某活动中有个游戏节目,在水平地面上画一个大圆,甲、乙两位同学(图中用两个点表示)分别站在圆周上两个位置,两位置的连线为圆的一条直径,如图所示,随着哨声响起,他们同时开始按图示方向沿圆周追赶对方.若甲、乙做匀速圆周运动的速度大小分别为v1和v2,经时间t乙第一次追上甲,则该圆的直径为()A.t(v2−v1)πB.2t(v2−v1)πC.t(v1+v2)πD.2t(v1+v2)π2. 如图所示,光滑水平面上,小球在绳拉力作用下做匀速圆周运动,若小球运动到P 点时,绳突然断裂,小球将()A.将沿轨迹Pa做离心运动B.将沿轨迹Pb做离心运动C.将沿轨迹Pc做离心运动D.将沿轨迹Pd做离心运动3. 如图所示,用长为l的细绳拴着质量为m的小球在竖直平面内做圆周运动,则下列说法中正确的是()A.小球在圆周最高点时所受的向心力一定为小球的重力B.小球在最高点时绳子的拉力可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为零D.小球过最低点时绳子的拉力一定等于小球重力4. 如图所示,一个小球绕圆心O做匀速圆周运动,已知圆周半径为r,该小球运动的角速度大小为ω,则它运动线速度的大小为()A.ωrB.ωr C.ω2rD.ωr25. 关于做圆周运动的物体,下列说法中正确的是()A.所受合力一定指向圆心B.汽车通过凹形桥时处于超重状态C.汽车水平路面转弯时由重力提供向心力D.物体做离心运动是因为物体运动过慢6. 下列关于离心运动的说法错误的是()A.汽车转弯时限制速度,铁路转弯处轨道的外轨高于内轨都是为了更好地做离心运动B.脱水机的脱水原理是对离心原理的应用C.游乐场中高速转动磨盘把人甩到边缘上去是属于离心现象D.把低轨道卫星发射发射到高轨道上去,需要加速,是应用了离心原理7.如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘面间的动摩擦因数相同.当匀速转动的圆盘转速恰为两物体刚好未发生滑动时的转速,烧断细绳,则两物体的运动情况将是()A.两物体沿切线方向滑动B.两物体沿半径方向滑动,离圆盘圆心越来越远C.两物体仍随圆盘一起做匀速圆周运动,不发生滑动D.物体A仍随圆盘一起做匀速圆周运动,物体B发生滑动,离圆盘圆心越来越远8. 如图所示,一偏心轮绕O点做匀速转动.偏心轮边缘上A、B两点的()A.线速度大小相同B.角速度大小相同C.向心加速度大小相同D.向心加速度方向相同9. 下列关于圆周运动的说法正确的是()=k,公式中的k值对所有行星和卫星都相等A.开普勒行星运动的公式R3T2B.做匀速圆周运动的物体,其加速度一定指向圆心C.在绕地做匀速圆周运动的航天飞机中,宇航员对座椅产生的压力大于自身重力D.相比较在弧形的桥底,汽车在弧形的桥顶行驶时,陈旧的车轮更不容易爆胎10. 甲、乙做匀速圆周运动的物体,它们的半径之比为3:1,周期之比是1:2,则()A.甲与乙的线速度之比为1:3B.甲与乙的线速度之比为6:1C.甲与乙的角速度之比为6:1D.甲与乙的角速度之比为1:211. 请对下列实验探究与活动进行判断,说法正确的题后括号内打“√”,错误的打“×”.(1)如图甲所示,在“研究滑动摩擦力的大小”的实验探究中,必须将长木板匀速拉出________(2)如图乙所示的实验探究中,只能得到平抛运动在竖直方向的分运动是自由落体运动,而不能得出水平方向的运动是匀速直线运动________(3)如图丙所示,在“研究向心力的大小与质量、角速度和半径之间的关系”的实验探究中,采取的主要物理方法是理想实验法________.12. 物体以4m/s的速度在半径为8m的水平圆周上运动,它的向心加速度是________m/s2,如果物体的质量是5kg,则需要________N的向心力才能维持它在圆周上的运动.13. 如图所示,A、B为啮合传动的两齿轮,已知R A=2R B,则A、B两轮边缘上两点角速度之比ωA:ωB=________,向心加速度之比a A:a B=________.14. 某中学的高一同学在学习了圆周运动的知识后,设计了一个课外探究性的课题,名称为:快速测量自行车的骑行速度.自行车的结构如图所示,他的设想是:通过计算踏脚板转动的角速度,推算自行车的骑行速度.经过骑行,他得到如下的数据:在时间t秒内踏脚板转动的圈数为N,那么脚踏板转动的角速度=________;为了推算自行车的骑行速度,这位同学还测量自行车的半径为R,计算了牙盘的齿数为m,飞轮齿数为n,则自行车骑行速度的计算公式可用以上已知数据表示为v=________.15. 一质点做半径为1m的匀速圆周运动,在1s的时间内转过30∘,则质点的角速度为________,线速度为________,向心加速度为________.16. 如图所示,在“用圆锥摆验证向心力表达式”的实验中,若测得小球质量为m,圆半径为r,小球到悬点大竖直高度为ℎ,则小球所受向心力大小为________.17. 汽车过平直桥、拱形桥、凹形桥,分别画出受力分析示意图并列出方程.18. 摩托车手在水平地面转弯时为了保证安全,将身体及车身倾斜,车轮与地面间的动摩擦因数为μ,车手与车身总质量为M,转弯半径为R.为不产生侧滑,转弯时速度应不大于________;设转弯、不侧滑时的车速为v,则地面受到摩托车的作用力大小为________.19. 自行车的大齿轮、小齿轮、后轮是相互关联的三个转动部分,三个轮子的半径不一样,它们的边缘有三个点分别为A、B、C,如图所示,当自行车运动时A、B、C三点中角速度最小的是________,向心加速度最大的是________.20. 某兴趣小组用如图甲所示的装置与传感器结合验证向心力表达式.实验时用手拨动旋臂产生圆周运动,力传感器和光电门固定在实验器上,实时测量角速度和向心力.(1)电脑通过光电门测量挡光杆通过光电门的时间,并由挡光杆的宽度d、挡光杆通过光电门的时间Δt、挡光杆做圆周运动的半径r自动计算出砝码做圆周运动的角速度,则其计算角速度的表达式为________.(2)图乙中取①②两条曲线为相同半径、不同质量下向心力与角速度的关系图线,由图可知.曲线①对应的砝码质量________(填“大于”或“小于”)曲线②对应的砝码质量.21. 如图所示,竖直平面内粗糙水平轨道AB与光滑半圆轨道BC相切于B点,一质量m1=1kg的小滑块P(视为质点)在水平向右的力F作用下,从A点以v0=0.5m/s的初速度滑向B点,当滑块P滑到AB正中间时撤去力F,滑块P运动到B点时与静止在B点的质量m2=2kg的小滑块Q(视为质点)发生弹性碰撞(碰撞时间极短),碰撞后小滑块Q恰好能滑到半圆轨道的最高点C,并且从C点飞出后又恰好落到AB的中点,小滑块P恰好也能回到AB的中点.已知半圆轨道半径R=0.9m,重力加速度g=10m/s2,求:(1)与Q碰撞前的瞬间,小滑块P的速度大小;(2)力F所做的功.22. 如图所示,长为L的轻绳下端连着质量为m的小球,上端悬于天花板上。
描述圆周运动的物理量知识梳理:一、描述圆周运动的物理量1、线速度和角速度:2、周期和频率(转速):3、相关模型:共轴传动: 皮带传动:齿轮传动:n 1、n 2分别表示齿轮的齿数v A =v B ,T A T B = r 1r 2 = n 1n 2,ωA ωB = r 2r 1 = n 2n 1. 基本概念( 圆周运动是 运动。
填匀速或变速 )1.下列四组物理量中,都是矢量的一组是( )A .线速度、转速B .角速度、角度C .时间、路程D .线速度、位移2.多选 当物体做匀速圆周运动时,下列说法中正确的是( )A .物体处于平衡状态B .物体由于做匀速圆周运动而没有惯性C .物体的速度由于发生变化而会有加速度D .物体由于速度发生变化而受合力作用3.多选 做匀速圆周运动的物体,下列各物理量中不变的是( )A .线速度B .角速度C .周期D .转速4.下列关于甲乙两个做匀速圆周运动的物体的有关说法中正确的是( )A .若甲乙两物体的线速度大小相等,则角速度一定相等B .若甲乙两物体的角速度大小相等,则线速度一定相等C .若甲乙两物体的周期相等,则角速度一定相等D .若甲乙两物体的周期相等,则线速度一定相等相关模型的应用1.如图所示,皮带转动装置转动时,皮带上A 、B 点及轮上C 点的运动情况是( )A .v A =vB ,v B >vC B .ωA =ωB ,v B >v C C .v B =v C ,ωA =ωBD .ωA >ωB , v B =v C2.如图所示,O 1为皮带传动装置的主动轮的轴心,轮的半径为r 1;O 2为从动轮的轴心,轮的半径为r 2;r 3为与从动轮固定在一起的大轮的半径.已知r 2=1.5r 1,r 3=2r 1.A 、B 、C 分别是三个轮边缘上的点,那么质点A 、B 、C 的线速度之比是 ,角速度之比是 ,周期之比是 .3.两个小球1、2固定在一根长为l 的杆的两端,绕杆上的O 点做圆周运动,如图所示,当小球1的速度为υ1时,小球2的速度为υ2,则转轴O 到小球1的距离是( ).A .112l υυυ+B .212l υυυ+C .121()l υυυ+D .122()l υυυ+ 4.多选 如图所示,有一个环绕中心线OO' ,以角速度ω转动的球,则有关球面上的A ,B 两点的线速度和角速度的说法正确的是( )A .A ,B 两点的角速度相等 B .A ,B 两点的线速度相等C .若θ=30°,则v A :v B =:2D .以上答案都不对5.如图所示,一个环绕中心线AB 以一定的角速度转动,P 、Q 为环上两点,位置如图,下列说法正确的是( )A .P 、Q 两点的角速度相同B .P 、Q 两点的线速度相同C .P 、Q 两点的角速度之比为3:1D .P 、Q 两点的线速度之比为3:16.多选 如图所示,当正方形薄板绕着过其中心O 并与板垂直的转动轴转动时,板上A 、B 两点的 ( )A .角速度之比ωA ∶ωB =1∶B .角速度之比ωA ∶ωB =1∶1C .线速度之比v A ∶v B =1∶D .线速度之比v A ∶v B =∶17.如图所示是一个玩具陀螺.a 、b 和c 是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是( )A .a 、b 和c 三点的角速度相等B .a 、b 和c 三点的线速度大小相等A B C8.如图所示,A 、B 是两只相同的齿轮,A 被固定不能转动。
高中物理必修二第六章圆周运动知识点总结归纳完整版单选题1、如图所示为走时准确的时钟面板示意图,M、N为秒针上的两点。
以下判断正确的是()A.M点的周期比N点的周期大B.N点的周期比M点的周期大C.M点的角速度等于N点的角速度D.M点的角速度大于N点的角速度答案:C由于M、N为秒针上的两点,属于同轴转动的两点,可知M与N两点具有相同的角速度和周期。
故选C。
2、如图所示,一杂技演员驾驶摩托车沿半径为R的圆周做线速度大小为v的匀速圆周运动。
若杂技演员和摩托车的总质量为m,其所受向心力大小为()A.mvR B.mv2RC.mv2R2D.mvR2答案:B根据向心力公式得F 向=mv2R故选B。
3、如图,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮块随圆盘一起转动(俯视为逆时针)。
某段时间内圆盘转速不断增大,但橡皮块仍相对圆盘静止,在这段时间内,关于橡皮块所受摩擦力F f的方向的四种表示(俯视图)中,正确的是()A.B.C.D.答案:C因为圆盘转速不断增大,所以橡皮块将随圆盘一起进行加速圆周运动,此时摩擦力F f既要提供指向圆心的向心力,又要提供与运动方向相同的切向力,所以合力方向应该在轨道内侧且与速度成锐角,故选C。
4、如图所示,半径为R的光滑半圆形轨道放在竖直平面内,AB连线为竖直直径,一小球以某一速度冲上轨道,运动到最高点B时对轨道的压力等于重力的2倍。
则小球落地点C到轨道入口A点的距离为()A.2√3R B.3R C.√6R D.2R答案:A在最高点时,根据牛顿第二定律3mg=m v2 R通过B点后做平抛运动2R=12gt2x=vt解得水平位移x=2√3R故选A。
5、质量为m的小明坐在秋千上摆动到最高点时的照片如图所示,此时牵引秋千的轻绳绷直,小明相对秋千静止,下列说法正确的是()A.此时秋千对小明的作用力可能不沿绳的方向B.此时秋千对小明的作用力小于mgC.此时小明的速度为零,所受合力为零D.小明从最低点摆至最高点过程中先处于失重状态后处于超重状态答案:BABC.在最高点,小明的速度为0,设秋千的摆长为l,摆到最高点时摆绳与竖直方向的夹角为θ,秋千对小明的作用力一定沿绳的方向,设为F,则对人,沿摆绳方向受力分析有F−mgcosθ=0得F=mgcosθ<mg沿垂直摆绳方向有F合=mgsinθ=ma显然小明在最高点的合力不为零,加速度为a=gsinθ故B正确,AC错误;D.小明从从最低点摆至最高点过程中,做圆周运动,根据圆周运动的特点可推知小明加速度在竖直方向上的分量方向先向上,后向下,所以小明先处于超重状态后处于失重状态,故D错误。
圆周运动练习题1班别姓名学号一.单项选择题1.关于作匀速圆周运动的物体的向心加速度,下列说法正确的是:()A.向心加速度的大小和方向都不变B.向心加速度的大小和方向都不断变化C.向心加速度的大小不变,方向不断变化D.向心加速度的大小不断变化,方向不变2.对于做匀速圆周运动的质点,下列说法正确的是:()A.根据公式a=v2/r,可知其向心加速度a与半径r成反比B.根据公式a=ω2r,可知其向心加速度a与半径r成正比C.根据公式ω=v/r,可知其角速度ω与半径r成反比D.根据公式ω=2πn,可知其角速度ω与转数n成正比3.机械手表的时针、分针、秒针的角速度之比为()A.1:60:360B.1:12:360C.1:12:720D.1:60:72004.甲、乙两个物体分别放在广州和北京,它们随地球一起转动时,下面说法正确的是()A.甲的线速度大,乙的角速度小B.甲的线速度大,乙的角速度大C.甲和乙的线速度相等D.甲和乙的角速度相等5.一个做匀速圆周运动的物体,如果半径不变,而速率增加到原来速率的三倍,其向心力增加了64牛顿,那么物体原来受到的向心力的大小是()A.16NB.12NC.8ND.6N6.同一辆汽车以同样大小的速度先后开上平直的桥和凸形桥,在桥的中央处有()A.车对两种桥面的压力一样大B.车对平直桥面的压力大C.车对凸形桥面的压力大D.无法判断7.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时:()A.对外轨产生向外的挤压作用B.对内轨产生向外的挤压作用C.对外轨产生向内的挤压作用D.对内轨产生向内的挤压作用8.如图所示,用细绳系着一个小球,使小球在水平面内做匀速圆周运动,不计空气阻力,关于小球受力说法正确的是()A.只受重力B.只受拉力C.受重力、拉力和向心力D.受重力和拉力.钟表上时针、分针都在做圆周运动 A .分针角速度是时针的12倍 B .时针转速是分针的1/60 C .若分针长度是时针的1.5倍,则端点线速度是时针的1.5倍 D .分针角速度是时针的60倍10.如图,一物块以1m/s 的初速度沿曲面由A 处下滑,到达较低的B 点时速度恰好也是1m/s ,如果此物块以2m/s 的初速度仍由A 处下滑,则它达到B 点时的速度A .等于2m/sB .小于2m/sC .大于2m/sD .以上三种情况都有可能11.如图所示,一水平平台可绕竖直轴转动,平台上有a 、b 、c 三个物体,其质量之比m a ︰m b ︰m c =2︰1︰1,它们到转轴的距离之比r a ︰r b ︰r c =1︰1︰2,三物块与平台间的动摩擦因数相同,且最大静摩擦力均与其压力成正比,当平台转动的角速度逐渐增大时,物块将会产生滑动,以下判断正确的是 A .a 先滑B .b 先滑C .c 先滑D .a 、c 同时滑12.一个小球在竖直环内至少做N 次圆周运动,当它第(N -2)次经过环的最低点时,速度是7m/s ;第(N -1)次经过环的最低点时,速度是5m/s ,则小球在第N 次经过环的最低点时的速度一定满足 ( ) A .v >1m/s B .v =1m/s C .v <1m/s D .v =3m/s13.甲、乙两球分别以半径R 1、R 2做匀速圆周运动,M 甲=2M 乙,圆半径R 甲=R 乙/3,甲球每分钟转30周,乙球每分钟转20周,则甲、乙两球所需向心力大小之比为 A .2:3 B .3:2 C .3:1 D .3:414.在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r ,如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过A .g mr m M +B .g mr m M +C .g mr m M -D .mrMg二.多项选择题15.一质点做圆周运动,速度处处不为零,则 ( ) A.任何时刻质点所受的合力一定不为零 C.质点速度的大小一定不断地变化 B.任何时刻质点的加速度一定不为零D.质点速度地方向一定不断地变化ωm16.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是:( )A .受重力、支持力、静摩擦力和向心力的作用B .摩擦力的方向始终指向圆心OC .重力和支持力是一对平衡力D .摩擦力是使物体做匀速圆周运动的向心力17.图中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘 上的一点。
一.角速度 线速度 周期之间的关系1.做匀速圆周运动的物体,10s 内沿半径是20m 的圆周运动了100m ,试求物体做匀速圆周运动时:(1)线速度的大小; (2)角速度的大小; (3)周期的大小.【答案】(1);(2);(3)10/m s 0.5/rad s 12.56s2.如图所示,两个小球固定在一根长为l 的杆的两端,绕杆上的O 点做圆周运动,当小球A 的速度为v A 时,小球B 的速度为v B .则轴心O 到小球B 的距离是( )A .B A B v l v v + B .A A Bv l v v + C . D .A B A v v L v +A BB v v Lv +【答案】A 3.转笔(Pen Spinning )是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示.转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O 做匀速圆周运动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是( )A .笔杆上的点离O 点越近的,角速度越大B .笔杆上的点离O 点越近的,做圆周运动的向心加速度越大C .笔杆上的各点做圆周运动的向心力是由万有引力提供的D .若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做离心运动被甩走【答案】D 二.传动装置4.如图所示,A 、B 是两个靠摩擦传动且接触面没有相对滑动的靠背轮,A 是主动轮,B 是从动轮,它们的半径RA =2R B , a 和b 两点在轮的边缘,c 和d 分别是A 、B 两轮半径的中点,下列判断正确的有 A .v a = 2 v b B .ωb = 2ωaC .v c = v aD .a c =a d【答案】B5.某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为r 1、r 2、r 3,若甲轮的角速度为ω,则丙轮边缘上某点的向心加速度为A .B.C.D.3221r r ω12223r r ω22223r r ω3221r r r ω【答案】A6.如图所示的皮带传动装置中,轮A 和B 同轴,A 、B 、C 分别是三个轮边缘的质点,且RA=RC=2RB ,若传动过程中皮带不打滑,则下列说法正确的是( )A .A 点与C 点的线速度大小相同B .B 点与C 点的角速度相同C .A 点的向心加速度大小是B 点的2倍D .B 点的运行周期大于C 点的运行周期【答案】C7.一部机器由电动机带动,机器皮带轮的半径是电动机皮带轮半径的3倍(如图),皮带与两轮之间不发生滑动。
《圆周运动》练习(二)1.如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg2.如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mgC.Mg+5mg D.Mg+10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点所用的时间相等.则下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在M、N间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在A、B盘的边缘,A、B两盘的半径之比为2∶1,a、b 分别是与A盘、B盘同轴的轮,a、b轮半径之比为1∶2.当a、b两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为()A.2∶1 B.4∶1C.1∶4 D.8∶15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上的A、B两点,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.23mg B.3mgC .2.5mg D.73mg26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( ) A. 5 rad/s B. 3 rad/s C .1.0 rad /s D .0.5 rad/s7.如图所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求: (1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R )10.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m /s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内(取重力加速度g =10 m/s 2)?11.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度h=________,圆盘转动的角速度大小ω=________.12.一长l=0.80 m的轻绳一端固定在O点,另一端连接一质量m=0.10 kg的小球,悬点O距离水平地面的高度H=1.00 m.开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g=10 m/s2.求:(1)当小球运动到B点时的速度大小;(2)绳断裂后球从B点抛出并落在水平地面上的C点,求C点与B点之间的水平距离;(3)若OP=0.6 m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案1. 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa=kgl;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb = kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误. 2. 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误. 3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误. 4. 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误. 5. 答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3T -mg =m v 2232L ③联立①②③得,T =23mg 故A 正确,B 、C 、D 错误. 6. 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.7. 审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围. 解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2 小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l因此钉子所在位置的范围为76l ≤x ≤54l .答案 (1)7mg (2)76l ≤x ≤54l8. 解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m /s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v yv 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为N .则由向心力公式得:N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821 m9. 答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得 v B =2gR ③从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩10. 答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:T +mg sinα=m v 21l ①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°.11. 答案 gR 22v 2 2n πvR(n =1,2,3,…)解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR (n =1,2,3,…)12. 答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s (2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离 x =v B2(H -l )g=0.80 m (3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。