高考常考数学考点总结
- 格式:docx
- 大小:37.16 KB
- 文档页数:3
高三数学重要知识点总结1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的____次幂,____次幂,____次幂,____次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这____个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N____或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.(4)有的数列的通项公式,形式上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:序号:1234567项:45678910这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N____(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特殊的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.5.递推数列一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。
高中数学考试必备的知识点整理温馨提示:在复习的同时,也要结合课本上的例题去复习,重点是课本,而不是题目应该怎样去做,所以在考前的一天必须回归课本复习,心中无公式,是解不出任何题目来的,只要心中有公式,中等的题目都可以解决。
必修一:一、集合的运算:交集:定义:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B 并集:定义:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为A B补集:定义:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为C UA 二、指数与指数函数1、幂的运算法则:(1)a m •a n =a m + n ,(2)a m ÷a n =a m -n ,(3)(a m )n =a m n (4)(ab )n = a n •b nn -11a n⎛a ⎫nm-n (5) ⎪=n (6)a 0 = 1 ( a ≠0)(7)a =n (8)am=a(9)am=mna b ⎝b ⎭a 2、根式的性质⎧a ,a ≥0n n n n n n n n (1)(a )=a .(2)当为奇数时,a =a ;当为偶数时,a =|a |=⎨.-a ,a <0⎩n n 5.指数式与对数式的互化:log aN =b ⇔a b =N (a >0,a ≠1,N >0).6、对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N = N (6)log a (MN) = log a M + log a N(7)log a (log b N M ) = log a M -log a N(8)log a N b = b log a N (9)换底公式:log a N =Nlog banlog a b (a >0,且a >1,m ,n >0,且m ≠1,n ≠1,N >0).m (10)推论:log a m b n =(11)log a N =1(12)常用对数:lg N = log 10N(13)自然对数:ln A = log e Alog Na必修4:1、特殊角的三角函数值角α0°30°45°60°πππ角α的弧度数643Sinα12223290°π21180°π0270°3π2-1360°2π0321Cosα12220-101tanα03313不存在0不存在02、诱导公式:函数名不变,符号看象限(把α看成锐角)公式一:Sin(α+2kπ)=Sinα公式二:Sin(α+π)=-SinαCos(α+2kπ)=Cosα Cos(α+π)=-Cosαtan(α+2kπ)=tanα tan(α+π)=tanα公式三:Sin(-α)=-Sinα公式四:Sin(π-α)=SinαCos(-α)= Cosα Cos(π-α)=-Cosαtan(-α)=-tanα tan(π-α)=-tanα公式五:Sin(π2-α)=Cosα公式六:Sin(π2+α)=CosαCos(ππ2-α)=Sinα Cos(2+α)=-Sinα3、两角和与角差的正弦、余弦和正切公式①sin(α+β)=sin αcos β+cos αsin β②sin(α-β)=sin αcos β-cos αsin β③cos(α+β)=cos αcos β-sin αsin β④cos(α-β)=cos αcos β+sin αsin β⑤tan(α+β)=tan α+tan β1-tan αtan β⑥tan(α-β)=tan α-tan β1+tan αtan β4.二倍角的正弦、余弦和正切公式①sin 2α=2sin αcos α②cos 2α=cos 2α-sin 2α=1-2sin 2α=2cos α2-1③tan 2α=2tan α1-tan 2α④sin 2α=1-cos 2α2⑤cos 2α=1+cos 2α2sin αcos α=12sin 2α5、向量公式:→→→→①a ∥b ⇔x 1x =y 1(x 2,y 2≠0)(a ∥b ⇔x 1y 2-x 2,y 1=0)2y2→→→→→②a +b =(a +b )2=a 2+2a →⋅b →→+b 2=→2a +2a →⋅b →⋅cos θ+b→2→→③cos θ=a ⋅b =x 1x 2+y 1y2→(求向量的夹角)a ⋅→bx21+y2x2212+y2⑥④a ⊥b ⇔a ⋅b =0⑥平面内两点间的距离公式:设a =(x ,y ),则→2→→→→→a =x +y 或a =x 2+y 2→22→⑦平面内两点间的距离公式:a =(x 1-x 2)+(y 1-y 2)2222高中数学必修5知识点归纳第一章解三角形1、正弦定理:在∆AB C 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为∆AB C 的外接圆的a b c半径,则有===2R .sin A sin B sin C2、正弦定理的变形公式:①a =2R sin A ,b =2R sin B ,c =2R sin C ;a b c②sin A =,sin B =,sin C =;③a :b :c =sin A :sin B :sin C ;2R 2R 2R a +b +c a b c④.===sin A +sin B +sin C sin A sin B sin C(正弦定理用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。
高考数学考点总结与备考技巧数学是高考三大科目之一,也是很多考生担心的科目。
数学考试主要考察数学知识和思维能力。
本文将对高考数学的考点进行总结,并提供备考技巧。
一、数学考点1.函数函数是高考数学考试中的重要考点。
函数的概念、性质、图像、反函数等都需要掌握。
特别是函数的图像,需要能准确地画出各种函数的图像,例如一次函数、二次函数、指数函数、对数函数等。
2.三角函数三角函数也是高考数学的重要考点。
需要掌握正弦、余弦、正切等三角函数的基本概念、性质、图像、变化规律等。
同时,需要掌握三角函数的复合函数和反函数。
3.数列与数学归纳法数列是高考数学中的基础考点,需要掌握等差数列、等比数列及其前n项和公式。
同时,还需要掌握数学归纳法,能够独立完成数列题目。
4.导数与微积分导数和微积分也是高考数学考试的重点考点。
需要掌握导数的概念、求导法则及其应用,了解微积分的基本概念,包括定积分和不定积分的概念、性质、计算方法和应用。
5.平面向量平面向量也是数学考试中的重要考点之一。
需要掌握向量的基本概念、向量的坐标表示法、向量之间的运算、平面向量的模、方向角、共面、垂直等性质,了解向量的应用。
二、备考技巧1.掌握数学基础知识数学考试需要掌握扎实的数学基础知识,能够准确地理解和应用数学概念和定理,同时能够熟练地使用各种数学公式和计算方法。
2.积累做题经验高考数学考试不仅考查数学知识,还考验考生的解题能力和考场应变能力。
因此,平时需要多做数学题,积累做题经验,提高解题速度和正确率。
3.养成良好的复习习惯高考数学考试不能临时抱佛脚,需要平时持续地进行复习和巩固。
要养成良好的复习习惯,每天安排一定的复习时间,按照计划有序地进行复习。
4.注意考试策略高考数学考试一般建议从易到难顺序答题,先做易题,留出时间做难题。
同时,需要掌握一些答题技巧,如画图、分类讨论、化简等,提高解题效率。
总之,数学是高考的重要科目之一,需要考生在平时的备考中认真总结归纳考点,熟练掌握各种数学知识和解题技巧,做好充分的准备,才能在高考中取得好成绩。
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)
素养拓展01柯西不等式(精讲+精练)
1.二维形式的柯西不等式
.),,,,,()())((22222等号成立时当且仅当bc ad R d c b a bd ac d c b a =∈+≥++2.二维形式的柯西不等式的变式
bd ac d c b a +≥+⋅+2222)1( .),,,,,(等号成立时当且仅当bc ad R d c b a =∈bd ac d c b a +≥+⋅+2222)2(
.),,,,,(等号成立时当且仅当bc ad R d c b a =∈.)
,0,,,(())()(3(2等号成立,时当且仅当bc ad d c b a bd ac d c b a =≥+≥++3.
二维形式的柯西不等式的向量形式
.),,,(等号成立时使或存在实数是零向量当且仅当βαβk k =≤注:有条件要用;没有条件,创造条件也要用。
比如,对2
2
2
c b a ++,并不是不等式的形状,但变成
()()
2222221113
1
c b a ++∙++∙就可以用柯西不等式了。
4.扩展:()()233221122322212
2322
21)(n n n n b a b a b a b a b b b b a a a a ++++≥++++++++ ,当且仅当n n b a b a b a :::2211=== 时,等号成立.
【题型训练1-刷真题】
二、题型精讲精练
一、知识点梳理。
高考数学考点大全总结概括高考数学必考知识点一一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
高考数学必考知识点总结归纳高考数学必考知识点总结直线、平面、简单多面体1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线.3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心.5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥三棱柱平行六面体6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.7.球体积公式。
球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.高考数学备考知识点任一x=A,x=B,记做ABAB,BAA=BAB={x|x=A,且x=B}AB={x|x=A,或x=B}Card(AB)=card(A)+card(B)—card(AB) (1)命题原命题若p则q逆命题若q则p否命题若p则q逆否命题若q,则p(2)AB,A是B成立的充分条件BA,A是B成立的必要条件AB,A是B成立的充要条件1、集合元素具有①确定性;②互异性;③无序性2、集合表示方法①列举法;②描述法;③韦恩图;④数轴法(3)集合的运算①A∩(B∪C)=(A∩B)∪(A∩C)②Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB(4)集合的性质n元集合的字集数:2n真子集数:2n—1;非空真子集数:2n—2高考数学重要知识点表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式公式运用可用于某些分母含有根号的分式:1/(3-4倍根号2)化简:1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23[解方程]x^2-y^2=1991[思路分析]利用平方差公式求解[解题过程]x^2-y^2=1991(x+y)(x-y)=1991因为1991可以分成1×1991,11×181所以如果x+y=1991,x-y=1,解得x=996,y=995如果x+y=181,x-y=11,x=96,y=85同时也可以是负数所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85有时应注意加减的过程。
75个高中数学高考知识点总结高中数学高考知识点总结(共75个)1.数集与函数:数集的性质,集合的表示方法,集合的运算,函数的定义及性质,一元二次函数的图像与性质,复合函数的概念与性质等。
2.数论与代数:整数与有理数的运算性质,整式的运算性质,整式的因式分解与化简,多项式函数的概念与性质,复数的概念与运算性质等。
4.空间几何与立体几何:空间直线及其方程,空间平面及其方程,空间曲线及其方程,球面的定义与性质,空间几何体的表面积与体积等。
5.三角函数与三角恒等式:二次角与辅助角的概念,三角函数的定义及性质,三角函数的图像与变换,三角函数的基本恒等式等。
6.三角函数的应用:三角函数在坐标系中的应用,三角函数在三角恒等式中的应用,三角函数在物理问题中的应用等。
7.数列与数列的极限:数列的概念及性质,数列的极限及其性质,数列极限的运算法则,常用数列的极限等。
8.函数的极限与连续:函数的极限的定义及性质,函数的极限的运算法则,函数的连续性及其性质,连续函数的运算与初等函数的连续性等。
9.导数与导数应用:导数的定义及性质,函数的导数与函数的图像,导数的四则运算法则,函数的单调性与极值点等。
10.积分与定积分:定积分的概念及性质,定积分的计算方法,不定积分的概念与性质,不定积分的计算方法等。
11.微分方程:微分方程的基本概念与解法,可分离变量的微分方程,一阶线性微分方程,二阶齐次线性微分方程等。
12.概率与统计:随机事件与概率,随机变量及其分布,频率与概率的估计,统计图表的绘制与分析等。
13.线性规划:线性规划问题的建模,线性规划的基本概念与性质,线性规划的图形解法与解的存在性等。
14.解析几何:平面解析几何的基本概念与性质,平面曲线的方程与性质,空间解析几何的基本概念与性质等。
15.逻辑与集合论:命题与命题的连接词,逻辑等价命题,简单命题与复合命题,命题的充分必要条件与等价条件等。
以上是高中数学高考的主要知识点总结,包含了数学的基本概念、性质和应用。
高考真题考点分布数学近年来,随着高考考试趋势的变化,数学作为高考的一门重要科目,考查的内容也逐渐有了一些变化。
了解高考数学真题的考点分布,可以帮助考生更有针对性地进行复习和备考。
下面将对高考数学真题的考点分布进行分析,帮助考生更好地应对高考。
一、选择题选择题在高考数学试卷中占有相当大的比重,考查的范围比较广。
在选择题考点的分布中,通常包括代数、几何、概率与统计、函数、三角等方面的内容。
在代数中,常考的内容包括方程与不等式、函数、数列等方面;在几何中,常考的内容包括平面几何、立体几何、向量等方面;在概率与统计中,通常考查的是概率、统计等基本概念;在函数中,常考的内容包括函数的性质、图像等方面;在三角中,通常考查的是三角函数的性质、三角函数的应用等方面。
二、填空题填空题在高考数学试卷中也占有一定比重,主要考察考生对基本概念和运算方法的掌握。
填空题考点的分布较为广泛,包括代数、几何、函数、三角、概率与统计等方面。
填空题往往是考查考生对知识点的熟练掌握和灵活运用,因此在备考时应该注重基础知识的积累和运算方法的训练。
三、解答题解答题在高考数学试卷中通常占有一定的比重,主要考查考生的综合运用能力和解决问题的能力。
解答题考点的分布较为灵活,包括代数、几何、函数、三角、概率与统计等方面。
解答题往往是考查考生的综合运用能力和解决问题的能力,因此在备考时应该注重综合能力的培养和问题解决能力的训练。
总的来说,高考数学试卷考点的分布比较广泛,涉及到代数、几何、函数、三角、概率与统计等多个方面的内容。
在备考时,考生应该全面复习,注重基础知识的积累和运算方法的训练,同时注重综合能力的培养和问题解决能力的训练,这样才能更好地应对高考数学试卷。
希望广大考生在备考过程中认真总结高考数学真题的考点分布,做到有的放矢,取得更好的成绩。
祝愿所有考生在高考中取得优异的成绩,实现自己的理想和目标!。
关于高考数学常考重要知识点总结高考数学必考知识点1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h 为其高,3、正方体a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3 15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)高考数学必考公式知识点1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
天津高考数学必考知识点归纳总结数学是高考的一门必考科目,对于天津高考来说,掌握数学必考知识点至关重要。
下面将对天津高考数学必考知识点进行归纳总结,帮助考生更好地备考。
一、函数与方程1. 函数的基本概念:定义域、值域、奇偶性等。
2. 初等函数及其性质:常数函数、幂函数、指数函数、对数函数、三角函数等。
3. 二次函数:顶点坐标、对称轴、图像特征、解析式等。
4. 对数与指数方程:基本性质、求解方法等。
5. 三角函数与三角方程:基本性质、周期性、解析式等。
6. 幂函数与指数方程:性质、解析式等。
二、解析几何1. 坐标系与坐标变换:直角坐标系、极坐标系、空间直角坐标系等。
2. 曲线与方程:直线方程、圆的方程、椭圆、双曲线、抛物线等。
3. 平面几何与空间几何:直线与平面的位置关系、圆与直线的位置关系、球与直线的位置关系等。
三、数列与数学归纳法1. 等差数列与等比数列:通项公式、求和公式、性质等。
2. 递推数列:通项公式、求和公式等。
3. 数学归纳法:基本思想、应用等。
四、概率与统计1. 随机事件:基本定义、基本性质等。
2. 事件的计算:事件的和、差、交、并、补等。
3. 条件概率与独立事件:基本概念、计算方法等。
4. 排列与组合:排列、组合的基本定义、计算方法等。
5. 统计与抽样调查:样本调查的设计与方法、数据的整理与统计、频数分布等。
五、立体几何1. 空间几何体的性质:点、线、面、体的基本概念等。
2. 平行线与平面:平行线的判定、平面的相交关系等。
3. 空间几何体的计算:体积、表面积的计算公式等。
六、微积分初步1. 函数的极限与连续性:函数极限的定义、性质、连续性的判定等。
2. 导数与微分:导数的定义、性质、求导法则、微分的概念等。
3. 反函数与隐函数:反函数的概念、隐函数的求导法则等。
4. 函数的单调性与最值:函数单调性的判定、最值的求解等。
5. 常见函数的导数与应用:指数函数的导数、三角函数的导数、相关应用等。
高考常考数学考点总结
高考数学考点总结
数学是一门重要的科学学科,也是高考中不可或缺的一门科目。
高考数学考试内容涵盖广泛,考点众多。
为帮助大家整理和掌握高考常考数学考点,下面将对常见的数学考点进行总结。
(一)代数
1.代数式的化简与运算:例如多项式加减乘除、整式化简、因
式分解等的运算。
此类题目主要考察学生的代数运算能力和运算规则的掌握。
2.方程与不等式:例如一元一次方程、一元一次不等式、二次
方程、二次不等式等。
此类题目主要考察学生对方程和不等式的求解能力,以及对应的基本性质的理解。
3.函数与方程:例如一次函数、二次函数、指数函数、对数函数、三角函数等的基本性质及应用。
此类题目主要考察学生对函数概念的理解和对函数性质的运用能力。
4.数列与数列极限:例如等差数列、等比数列、递推数列等的
性质及计算。
此类题目主要考察学生对数列的概念、公式及计算性质的理解和应用。
5.排列组合与概率:例如排列组合、二项式定理、概率计算等。
此类题目主要考察学生对排列组合的基本概念的理解和运用能
力,以及概率计算的方法。
(二)几何
1.平面几何:例如面积、周长、相似与全等、圆及其相关性质、平行线与垂直线等几何基本概念。
此类题目主要考察学生对几何基本概念的理解和应用能力。
2.空间几何与立体几何:例如空间图形的体积、表面积计算,
三视图与展开图,点、线、面在空间中的相互位置等。
此类题目主要考察学生对空间几何知识的掌握和运用能力。
3.三角学与向量:例如三角函数的计算、特殊角关系、向量及
其运算和应用等。
此类题目主要考察学生对三角学和向量的基本概念的理解和运用能力。
4.坐标几何:例如平面直角坐标系中点、线、圆的性质,曲线
的方程及其图像。
此类题目主要考察学生对坐标几何的理解和应用能力。
5.解析几何:例如直线与曲线的方程和性质,二次曲线的方程
及其图像等。
此类题目主要考察学生对解析几何的基本概念和计算能力。
(三)数与量
1.数的性质:例如整数、有理数、无理数、实数及其性质等。
此类题目主要考察学生对数的基本概念和性质的理解和应用能
力。
2.数列与函数:例如等差数列、等比数列及其性质,函数的定义域、值域、逆函数等。
此类题目主要考察学生对数列和函数的基本概念和性质的理解和应用能力。
3.数据与统计:例如抽样调查、数据的整理和分析、概率统计等。
此类题目主要考察学生对数据的处理和分析能力,以及统计和概率知识的掌握。
4.直角坐标系:例如平面直角坐标系的建立、点的坐标、距离公式的应用等。
此类题目主要考察学生对直角坐标系的理解和运用能力。
5.数的运算:例如四则运算、幂运算、根式运算等。
此类题目主要考察学生对数的运算规则和计算方法的掌握和应用。
以上是一些常见的高考数学考点的总结,希望对大家备战高考有所帮助。
在备考过程中,除了熟练掌握这些考点,还要加强对数学概念的理解和运用能力。
通过多做题、多总结,相信大家能够在高考数学中取得好成绩。
加油!。