三角函数数值对照表
- 格式:pdf
- 大小:81.31 KB
- 文档页数:12
高中三角函数常用数值表
1. 正弦函数Sin(x) 值表
x(度)0°30°45°60°90°180°270°360°
Sin(x)00.5√2/2√3/210-10
2. 余弦函数Cos(x) 值表
x(度)0°30°45°60°90°180°270°360°
Cos(x)1√3/2√2/20.50-101
3. 正切函数Tan(x) 值表
x(度)0°30°45°60°90°180°270°360°
Tan(x)0√3/31√3不存在0不存在0
4. 余切函数Cot(x) 值表
x(度)0°30°45°60°90°180°270°360°Cot(x)不存在√31√3/30不存在0不存在
在数学上,三角函数是中学数学中的重要内容之一,它们
的数值表可以帮助我们更好地理解三角函数在不同角度下的值。
通过这些数值表,我们可以方便地求解各种三角函数的数值,进而解决相关数学问题。
三角函数常用的角度有0°、30°、45°、60°、90°、180°、270°和360°,这些角度下的三角函数数值表格如上所示。
通
过观察这些数值表,我们可以发现各个三角函数在不同角度下的变化规律,从而更好地掌握三角函数的特性和应用。
物理常用三角函数值表大全
在物理学中,三角函数是一种非常重要的数学工具,用来描述角度之间的关系和各种物理现象。
在物理学中,我们经常会用到一些特定角度的三角函数值,因此掌握这些数值是非常有必要的。
下面是一份物理常用三角函数值表,供大家参考和学习。
正弦函数值表
角度(度)030456090180270360
正弦值00.5√2/2√3/210-10
余弦函数值表
角度(度)030456090180270360
余弦值1√3/2√2/20.50-101
正切函数值表
角度(度)030456090180270360
正切值0√3/31√3无穷大0无穷大0
除了上面列出的一些常见角度的三角函数值,我们在物理学中还会经常用到其他角度的三角函数值,所以在学习物理的过程中,尽量熟练掌握各种角度的三角函数值,将有助于我们更好地理解和运用数学知识解决物理问题。
希望这份三角函数值表能对大家有所帮助!
现在,大家可以根据这份物理常用三角函数值表进行练习和学习,加深对三角函数的理解,提高物理学习的效率。
这份三角函数值表是物理学中常用的,掌握好这些值对于解决各种物理问题非常有帮助,希望大家能够认真学习,掌握好这些知识。
三角函数数值常用表
三角函数数值常用表
三角函数是初中数学中重要的内容,在数学领域也是相当重要的研究课题之一。
它的形式和性质密切相关,其特点是可以快速计算出一组有限的数值,这被称为三角函数数值常用表。
三角函数数值常用表的主要内容包括:正弦函数、余弦函数和正切函数三个主要的函数,它们的数值表格中各有不同的数值。
一、正弦函数
正弦函数⿊橘数值表:
弧度数正弦值
________________________________
0° 0
30° 0.5
45° 0.70710678
60° 0.86602540
90° 1
二、余弦函数
余弦函数数值表:
弧度数余弦值
________________________________
0° 1
30° 0.86602540
45° 0.70710678
60° 0.5
90° 0
三、正切函数
正切函数数值表:
弧度数正切值
________________________________
0° 0
30° 0.57735027
45° 1
60° 1.73205080
90° ∞
以上三类函数列出的数值表就是三角函数数值常用表,在学习或使用三角函数时,只要找出相应的数值表,就可以迅速计算出结果。
三角函数的数值表不但适用于三角函数的运算,而且也可以应用于几何、物理和其他领域的计算,是数学应用的重要工具之一。
常用三角函数值表
正弦函数(Sine Function)
正弦函数是数学中常用的三角函数之一,通常表示为
sin(x)。
在数学中,正弦函数是一个周期函数,其值在一个周期内始终在-1到1之间变化。
下面是常用角度对应的正弦函数值表:
角度(度)弧度(rad)正弦值(sin)
000
30π/61/2
45π/4√2/2
60π/3√3/2
90π/21
180π0
2703π/2-1
3602π0
余弦函数(Cosine Function)
余弦函数是另一个重要的三角函数,通常用cos(x)表示。
余弦函数也是一个周期函数,其值在一个周期内的变化范围为-1到1。
下表列出了一些常用角度对应的余弦函数值:
角度(度)弧度(rad)余弦值(cos)
001
30π/6√3/2
45π/4√2/2
60π/31/2
90π/20
180π-1
2703π/20
3602π1
正切函数(Tangent Function)
正切函数是另一个常见的三角函数,通常表示为tan(x)。
正切函数的定义域是所有实数,其值域是实数集。
下表展示了一些常用角度对应的正切函数值:
角度(度)弧度(rad)正切值(tan)
000
30π/6√3/3
45π/41
60π/3√3
90π/2无穷大
180π0
2703π/2无穷大
3602π0
通过这个三角函数值表,我们可以更方便地在数学问题中
使用常用的三角函数值,有助于加深对三角函数的理解和运用。
常用三角函数值表格
三角函数在数学中扮演着至关重要的角色,是各种数学问
题和实际应用中常见的工具。
常用的三角函数包括正弦函数、余弦函数和正切函数等。
我们可以通过计算三角函数在特定角度上的值,来解决各种三角函数相关的问题。
为了方便计算和查询,下面给出了常用角度的三角函数数值表格。
正弦函数值表格
角度(°)030456090
sin(θ)00.5√2/2√3/21
余弦函数值表格
角度(°)030456090
cos(θ)1√3/2√2/20.50
正切函数值表格
角度(°)030456090
tan(θ)0√3/31√3无穷大
以上表格中列出了常用角度下正弦、余弦和正切函数的数值,这些数值对于解决三角函数相关问题有着重要的参考意义。
在实际运用中,可以根据这些数值表格来快速计算出特定角度下的三角函数值,为数学问题的解决提供便利。
常用的九个三角函数值表
在数学中,三角函数是描述角的函数,共有六个基础三角函数:正弦、余弦、正切、余切、正割和余割。
这些函数在数学和科学领域中具有广泛的应用。
在本文中,我们将列出常用的九个三角函数值表,包括正弦、余弦、正切、余切、正割、余割、余弦、余切、余割函数的计算结果。
常用的九个三角函数值表
正弦函数值表
角度(°)正弦值
00
301/2
45√2/2
60√3/2
901
余弦函数值表
角度(°)余弦值
01
30√3/2
45√2/2
601/2
900
正切函数值表
角度(°)正切值
00
30√3/3
451
60√3
90无穷大
余切函数值表
角度(°)余切值
0无穷大
30√3
451
60√3/3
900
正割函数值表
角度(°)正割值
0无穷大
302/√3
45√2
602
901
余割函数值表
角度(°)余割值
01
30√3/3
45√2
602/√3
90无穷大
总结
在数学中,三角函数是非常重要的概念,它们在各种科学和工程领域中均有广泛的应用。
通过熟练掌握常用的九个三角
函数的数值表,我们可以更好地理解和解决与角度和三角函数相关的问题。
希望这份三角函数值表可以帮助您更好地理解这一内容。
以上就是我整理的常用的九个三角函数值表,希望对您有所帮助!。
初中常用三角函数值对照表初中常用的三角函数有正弦函数、余弦函数和正切函数等等,接下来分享具体的三角函数值表,供参考。
常用三角函数值对照表sin0=sin0°=0cos0=cos0°=1tan0=tan0°=0sin15=0.650;sin15°=0.259cos15=-0.759;cos15°=0.966tan15=-0.855;tan15°=0.268sin30°=1/2cos30°=0.866;tan30°=0.577;sin45°=0.707;cos45°=0.707tan45=1.620;tan45°=1sin60=-0.305;sin60°=0.866cos60=-0.952;cos60°=1/2tan60=0.320;tan60°=1.732sin75=-0.388;sin75°=0.966cos75=0.922;cos75°=0.259tan75=-0.421;tan75°=sin75°/cos75°=3.732sin90=0.894;sin90°=cos0°=1cos90=-0.448;cos90°=sin0°=0tan90=-1.995;tan90°不存在sin105=-0.971;sin105°=cos15°cos105=-0.241;cos105°=-sin15°tan105=4.028;tan105°=-cot15°sin120=0.581;sin120°=cos30°cos120=0.814;cos120°=-sin30°tan120=0.713;tan120°=-tan60°sin135=0.088;sin135°=sin45°cos135=-0.996;cos135°=-cos45°tan135=-0.0887;tan135°=-tan45°sin150=-0.7149;sin150°=sin30°cos150=-0.699;cos150°=-cos30°tan150=-1.022;tan150°=-tan30°sin165=0.998;sin165°=sin15°cos165=-0.066;cos165°=-cos15°tan165=-15.041;tan165°=-tan15°sin180=-0.801;sin180°=sin0°=0cos180=-0.598;cos180°=-cos0°=-1tan180=1.339;tan180°=0sin195=0.219;sin195°=-sin15°cos195=0.976;cos195°=-cos15°tan195=0.225;tan195°=tan15°sin360=0.959;sin360°=sin0°=0cos360=-0.284;cos360°=cos0°=1tan360=-3.380;tan360°=tan0°=0三角函数值的特点(1)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)。
三角函数值大全(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--三角函数值大全(1)特殊角三角函数值sin0=0,sin15=(√6-√2)/4 ,sin30=1/2,sin45=√2/2,sin60=√3/2,sin75=(√6+√2)/2 ,sin90=1,sin105=√2/2*(√3/2+1/2)sin120=√3/2sin135=√2/2sin150=1/2sin165=(√6-√2)/4sin180=0sin270=-1sin360=0cos0=1cos30= 二分之根号3cos45= 二分之根号2cos60=cos90=0tan0=0tan30= 三分之根号3tan45=1tan60= 根号3tan90=无cot0=无cot30= 根号3cot45=1cot60= 三分之根号3cot90=0(2)0°~90°的任意角的三角函数值,查三角函数表。
(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°<α<90°间变化时,tanα>0, cotα>0.附:三角函数值表sin1= sin2= sin3=sin4= sin5= sin6=sin7= sin8= sin9=sin10= sin11= sin12=sin13= sin14= sin15=sin16= sin17= sin18=sin19=0. sin20=0. sin21= sin22= sin23= sin24=sin25= sin26= sin27=sin28= sin29= sin30=sin31= sin32= sin33=sin34= sin35= sin36=0. sin37= sin38= sin39=0. sin40=0. sin41=0. sin42= sin43= sin44= sin45=sin46= sin47= sin48=sin49= sin50= sin51=sin52= sin53= sin54=sin55= sin56=0. sin57=0. sin58= sin59= sin60=0.sin61= sin62=0. sin63=sin64= sin65=0. sin66=sin67=0. sin68= sin69=0. sin70= sin71= sin72=sin73=0. sin74= sin75=0. sin76=0. sin77=0. sin78= sin79= sin80= sin81=sin82=0. sin83= sin84=sin85= sin86= sin87=0.sin88=0. sin89=0.sin90=1cos1=0. cos2=0. cos3=0. cos4= cos5= cos6=cos7= cos8=0. cos9=cos10= cos11= cos12=cos13=0. cos14=0. cos15=0. cos16= cos17=0. cos18=cos19= cos20= cos21=0.cos22= cos23=0. cos24=cos25=0. cos26= cos27=cos28= cos29= cos30=0.cos31= cos32= cos33=cos34=0. cos35= cos36=cos37= cos38= cos39=cos40= cos41= cos42=cos43= cos44= cos45=cos46= cos47= cos48=cos49=0. cos50=0. cos51=0. cos52= cos53= cos54=0.cos55=0. cos56= cos57=0. cos58= cos59= cos60=cos61= cos62= cos63=0.cos64= cos65= cos66=0.cos67= cos68=0. cos69=cos70=0. cos71= cos72=cos73= cos74= cos75=cos76= cos77= cos78=cos79= cos80= cos81=cos82= cos83= cos84=cos85= cos86= cos87=cos88= cos89=cos90=0tan1= tan2= tan3=tan4= tan5= tan6=tan7= tan8= tan9=tan10= tan11= tan12=tan13=0. tan14= tan15=0. tan16=0. tan17= tan18=tan19= tan20= tan21=0.tan22=0. tan23=0. tan24=0. tan25=0. tan26=0. tan27=0. tan28= tan29= tan30=0.tan31=0. tan32=0. tan33=0. tan34=0. tan35=0. tan36=0. tan37= tan38= tan39=0.tan40=0. tan41=0. tan42=0. tan43= tan44=0. tan45=0. tan46= tan47= tan48=tan49= tan50= tan51=tan52= tan53=1. tan54=tan55= tan56=1. tan57=1. tan58=1. tan59=1. tan60=1. tan61=1. tan62=1. tan63= tan64= tan65= tan66=tan67= tan68=2. tan69=2. tan70=2. tan71= tan72=tan73=3. tan74= tan75=3. tan76= tan77= tan78=tan79= tan80= tan81=tan82= tan83= tan84=tan85= tan86= tan87=tan88= tan89=tan90=无取值。
高中三角函数tan对照表sin(0°)=0.000000,cos(0°)=1.000000,tan(0°)=0.000000 sin(1°)=0.017452,cos(1°)=0.999848,tan(1°)=0.017455 sin(2°)=0.034899,cos(2°)=0.999391,tan(2°)=0.034921 sin(3°)=0.052336,cos(3°)=0.998630,tan(3°)=0.052408 sin(4°)=0.069756,cos(4°)=0.997564,tan(4°)=0.069927 sin(5°)=0.087156,cos(5°)=0.996195,tan(5°)=0.087489 sin(6°)=0.104528,cos(6°)=0.994522,tan(6°)=0.105104 sin(7°)=0.121869,cos(7°)=0.992546,tan(7°)=0.122785 sin(8°)=0.139173,cos(8°)=0.990268,tan(8°)=0.140541 sin(9°)=0.156434,cos(9°)=0.987688,tan(9°)=0.158384 sin(10°)=0.173648,cos(10°)=0.984808,tan(10°)=0.176327 sin(11°)=0.190809,cos(11°)=0.981627,tan(11°)=0.194380 sin(12°)=0.207912,cos(12°)=0.978148,tan(12°)=0.212557 sin(13°)=0.224951,cos(13°)=0.974370,tan(13°)=0.230868 sin(14°)=0.241922,cos(14°)=0.970296,tan(14°)=0.249328 sin(15°)=0.258819,cos(15°)=0.965926,tan(15°)=0.267949 sin(16°)=0.275637,cos(16°)=0.961262,tan(16°)=0.286745 sin(17°)=0.292372,cos(17°)=0.956305,tan(17°)=0.305731 sin(18°)=0.309017,cos(18°)=0.951057,tan(18°)=0.324920 sin(19°)=0.325568,cos(19°)=0.945519,tan(19°)=0.344328 sin(20°)=0.342020,cos(20°)=0.939693,tan(20°)=0.363970sin(21°)=0.358368,cos(21°)=0.933580,tan(21°)=0.383864 sin(22°)=0.374607,cos(22°)=0.927184,tan(22°)=0.404026 sin(23°)=0.390731,cos(23°)=0.920505,tan(23°)=0.424475 sin(24°)=0.406737,cos(24°)=0.913545,tan(24°)=0.445229 sin(25°)=0.422618,cos(25°)=0.906308,tan(25°)=0.466308 sin(26°)=0.438371,cos(26°)=0.898794,tan(26°)=0.487733 sin(27°)=0.453990,cos(27°)=0.891007,tan(27°)=0.509525 sin(28°)=0.469472,cos(28°)=0.882948,tan(28°)=0.531709 sin(29°)=0.484810,cos(29°)=0.874620,tan(29°)=0.554309 sin(30°)=0.500000,cos(30°)=0.866025,tan(30°)=0.577350 sin(31°)=0.515038,cos(31°)=0.857167,tan(31°)=0.600861 sin(32°)=0.529919,cos(32°)=0.848048,tan(32°)=0.624869 sin(33°)=0.544639,cos(33°)=0.838671,tan(33°)=0.649408 sin(34°)=0.559193,cos(34°)=0.829038,tan(34°)=0.674509 sin(35°)=0.573576,cos(35°)=0.819152,tan(35°)=0.700208 sin(36°)=0.587785,cos(36°)=0.809017,tan(36°)=0.726543 sin(37°)=0.601815,cos(37°)=0.798636,tan(37°)=0.753554 sin(38°)=0.615661,cos(38°)=0.788011,tan(38°)=0.781286 sin(39°)=0.629320,cos(39°)=0.777146,tan(39°)=0.809784 sin(40°)=0.642788,cos(40°)=0.766044,tan(40°)=0.839100 sin(41°)=0.656059,cos(41°)=0.754710,tan(41°)=0.869287 sin(42°)=0.669131,cos(42°)=0.743145,tan(42°)=0.900404sin(43°)=0.681998,cos(43°)=0.731354,tan(43°)=0.932515 sin(44°)=0.694658,cos(44°)=0.719340,tan(44°)=0.965689 sin(45°)=0.707107,cos(45°)=0.707107,tan(45°)=1.000000 sin(46°)=0.719340,cos(46°)=0.694658,tan(46°)=1.035530 sin(47°)=0.731354,cos(47°)=0.681998,tan(47°)=1.072369 sin(48°)=0.743145,cos(48°)=0.669131,tan(48°)=1.110613 sin(49°)=0.754710,cos(49°)=0.656059,tan(49°)=1.150368 sin(50°)=0.766044,cos(50°)=0.642788,tan(50°)=1.191754 sin(51°)=0.777146,cos(51°)=0.629320,tan(51°)=1.234897 sin(52°)=0.788011,cos(52°)=0.615661,tan(52°)=1.279942 sin(53°)=0.798636,cos(53°)=0.601815,tan(53°)=1.327045 sin(54°)=0.809017,cos(54°)=0.587785,tan(54°)=1.376382 sin(55°)=0.819152,cos(55°)=0.573576,tan(55°)=1.428148 sin(56°)=0.829038,cos(56°)=0.559193,tan(56°)=1.482561 sin(57°)=0.838671,cos(57°)=0.544639,tan(57°)=1.539865 sin(58°)=0.848048,cos(58°)=0.529919,tan(58°)=1.600335 sin(59°)=0.857167,cos(59°)=0.515038,tan(59°)=1.664279 sin(60°)=0.866025,cos(60°)=0.500000,tan(60°)=1.732051 sin(61°)=0.874620,cos(61°)=0.484810,tan(61°)=1.804048 sin(62°)=0.882948,cos(62°)=0.469472,tan(62°)=1.880726 sin(63°)=0.891007,cos(63°)=0.453990,tan(63°)=1.962611 sin(64°)=0.898794,cos(64°)=0.438371,tan(64°)=2.050304sin(66°)=0.913545,cos(66°)=0.406737,tan(66°)=2.246037 sin(67°)=0.920505,cos(67°)=0.390731,tan(67°)=2.355852 sin(68°)=0.927184,cos(68°)=0.374607,tan(68°)=2.475087 sin(69°)=0.933580,cos(69°)=0.358368,tan(69°)=2.605089 sin(70°)=0.939693,cos(70°)=0.342020,tan(70°)=2.747477 sin(71°)=0.945519,cos(71°)=0.325568,tan(71°)=2.904211 sin(72°)=0.951057,cos(72°)=0.309017,tan(72°)=3.077684 sin(73°)=0.956305,cos(73°)=0.292372,tan(73°)=3.270853 sin(74°)=0.961262,cos(74°)=0.275637,tan(74°)=3.487414 sin(75°)=0.965926,cos(75°)=0.258819,tan(75°)=3.732051 sin(76°)=0.970296,cos(76°)=0.241922,tan(76°)=4.010781 sin(77°)=0.974370,cos(77°)=0.224951,tan(77°)=4.331476 sin(78°)=0.978148,cos(78°)=0.207912,tan(78°)=4.704630 sin(79°)=0.981627,cos(79°)=0.190809,tan(79°)=5.144554 sin(80°)=0.984808,cos(80°)=0.173648,tan(80°)=5.671282 sin(81°)=0.987688,cos(81°)=0.156434,tan(81°)=6.313752 sin(82°)=0.990268,cos(82°)=0.139173,tan(82°)=7.115370 sin(83°)=0.992546,cos(83°)=0.121869,tan(83°)=8.144346 sin(84°)=0.994522,cos(84°)=0.104528,tan(84°)=9.514364 sin(85°)=0.996195,cos(85°)=0.087156,tan(85°)=11.430052 sin(86°)=0.997564,cos(86°)=0.069756,tan(86°)=14.300666sin(88°)=0.999391,cos(88°)=0.034899,tan(88°)=28.636253 sin(89°)=0.999848,cos(89°)=0.017452,tan(89°)=57.289962 sin(90°)=1.000000,cos(90°)=0.000000,tan(90°)=无意义sin(91°)=0.999848,cos(91°)=-0.017452,tan(91°)=-57.289962 sin(92°)=0.999391,cos(92°)=-0.034899,tan(92°)=-28.636253 sin(93°)=0.998630,cos(93°)=-0.052336,tan(93°)=-19.081137 sin(94°)=0.997564,cos(94°)=-0.069756,tan(94°)=-14.300666 sin(95°)=0.996195,cos(95°)=-0.087156,tan(95°)=-11.430052 sin(96°)=0.994522,cos(96°)=-0.104528,tan(96°)=-9.514364 sin(97°)=0.992546,cos(97°)=-0.121869,tan(97°)=-8.144346 sin(98°)=0.990268,cos(98°)=-0.139173,tan(98°)=-7.115370 sin(99°)=0.987688,cos(99°)=-0.156434,tan(99°)=-6.313752 sin(100°)=0.984808,cos(100°)=-0.173648,tan(100°)=-5.671282 sin(101°)=0.981627,cos(101°)=-0.190809,tan(101°)=-5.144554 sin(102°)=0.978148,cos(102°)=-0.207912,tan(102°)=-4.704630 sin(103°)=0.974370,cos(103°)=-0.224951,tan(103°)=-4.331476 sin(104°)=0.970296,cos(104°)=-0.241922,tan(104°)=-4.010781 sin(105°)=0.965926,cos(105°)=-0.258819,tan(105°)=-3.732051 sin(106°)=0.961262,cos(106°)=-0.275637,tan(106°)=-3.487414 sin(107°)=0.956305,cos(107°)=-0.292372,tan(107°)=-3.270853 sin(108°)=0.951057,cos(108°)=-0.309017,tan(108°)=-3.077684sin(109°)=0.945519,cos(109°)=-0.325568,tan(109°)=-2.904211 sin(110°)=0.939693,cos(110°)=-0.342020,tan(110°)=-2.747477 sin(111°)=0.933580,cos(111°)=-0.358368,tan(111°)=-2.605089 sin(112°)=0.927184,cos(112°)=-0.374607,tan(112°)=-2.475087 sin(113°)=0.920505,cos(113°)=-0.390731,tan(113°)=-2.355852 sin(114°)=0.913545,cos(114°)=-0.406737,tan(114°)=-2.246037 sin(115°)=0.906308,cos(115°)=-0.422618,tan(115°)=-2.144507 sin(116°)=0.898794,cos(116°)=-0.438371,tan(116°)=-2.050304 sin(117°)=0.891007,cos(117°)=-0.453990,tan(117°)=-1.962611 sin(118°)=0.882948,cos(118°)=-0.469472,tan(118°)=-1.880726 sin(119°)=0.874620,cos(119°)=-0.484810,tan(119°)=-1.804048 sin(120°)=0.866025,cos(120°)=-0.500000,tan(120°)=-1.732051 sin(121°)=0.857167,cos(121°)=-0.515038,tan(121°)=-1.664279 sin(122°)=0.848048,cos(122°)=-0.529919,tan(122°)=-1.600335 sin(123°)=0.838671,cos(123°)=-0.544639,tan(123°)=-1.539865 sin(124°)=0.829038,cos(124°)=-0.559193,tan(124°)=-1.482561 sin(125°)=0.819152,cos(125°)=-0.573576,tan(125°)=-1.428148 sin(126°)=0.809017,cos(126°)=-0.587785,tan(126°)=-1.376382 sin(127°)=0.798636,cos(127°)=-0.601815,tan(127°)=-1.327045 sin(128°)=0.788011,cos(128°)=-0.615661,tan(128°)=-1.279942 sin(129°)=0.777146,cos(129°)=-0.629320,tan(129°)=-1.234897 sin(130°)=0.766044,cos(130°)=-0.642788,tan(130°)=-1.191754sin(131°)=0.754710,cos(131°)=-0.656059,tan(131°)=-1.150368 sin(132°)=0.743145,cos(132°)=-0.669131,tan(132°)=-1.110613 sin(133°)=0.731354,cos(133°)=-0.681998,tan(133°)=-1.072369 sin(134°)=0.719340,cos(134°)=-0.694658,tan(134°)=-1.035530 sin(135°)=0.707107,cos(135°)=-0.707107,tan(135°)=-1.000000 sin(136°)=0.694658,cos(136°)=-0.719340,tan(136°)=-0.965689 sin(137°)=0.681998,cos(137°)=-0.731354,tan(137°)=-0.932515 sin(138°)=0.669131,cos(138°)=-0.743145,tan(138°)=-0.900404 sin(139°)=0.656059,cos(139°)=-0.754710,tan(139°)=-0.869287 sin(140°)=0.642788,cos(140°)=-0.766044,tan(140°)=-0.839100 sin(141°)=0.629320,cos(141°)=-0.777146,tan(141°)=-0.809784 sin(142°)=0.615661,cos(142°)=-0.788011,tan(142°)=-0.781286 sin(143°)=0.601815,cos(143°)=-0.798636,tan(143°)=-0.753554 sin(144°)=0.587785,cos(144°)=-0.809017,tan(144°)=-0.726543 sin(145°)=0.573576,cos(145°)=-0.819152,tan(145°)=-0.700208 sin(146°)=0.559193,cos(146°)=-0.829038,tan(146°)=-0.674509 sin(147°)=0.544639,cos(147°)=-0.838671,tan(147°)=-0.649408 sin(148°)=0.529919,cos(148°)=-0.848048,tan(148°)=-0.624869 sin(149°)=0.515038,cos(149°)=-0.857167,tan(149°)=-0.600861 sin(150°)=0.500000,cos(150°)=-0.866025,tan(150°)=-0.577350 sin(151°)=0.484810,cos(151°)=-0.874620,tan(151°)=-0.554309 sin(152°)=0.469472,cos(152°)=-0.882948,tan(152°)=-0.531709sin(153°)=0.453990,cos(153°)=-0.891007,tan(153°)=-0.509525 sin(154°)=0.438371,cos(154°)=-0.898794,tan(154°)=-0.487733 sin(155°)=0.422618,cos(155°)=-0.906308,tan(155°)=-0.466308 sin(156°)=0.406737,cos(156°)=-0.913545,tan(156°)=-0.445229 sin(157°)=0.390731,cos(157°)=-0.920505,tan(157°)=-0.424475 sin(158°)=0.374607,cos(158°)=-0.927184,tan(158°)=-0.404026 sin(159°)=0.358368,cos(159°)=-0.933580,tan(159°)=-0.383864 sin(160°)=0.342020,cos(160°)=-0.939693,tan(160°)=-0.363970 sin(161°)=0.325568,cos(161°)=-0.945519,tan(161°)=-0.344328 sin(162°)=0.309017,cos(162°)=-0.951057,tan(162°)=-0.324920 sin(163°)=0.292372,cos(163°)=-0.956305,tan(163°)=-0.305731 sin(164°)=0.275637,cos(164°)=-0.961262,tan(164°)=-0.286745 sin(165°)=0.258819,cos(165°)=-0.965926,tan(165°)=-0.267949 sin(166°)=0.241922,cos(166°)=-0.970296,tan(166°)=-0.249328 sin(167°)=0.224951,cos(167°)=-0.974370,tan(167°)=-0.230868 sin(168°)=0.207912,cos(168°)=-0.978148,tan(168°)=-0.212557 sin(169°)=0.190809,cos(169°)=-0.981627,tan(169°)=-0.194380 sin(170°)=0.173648,cos(170°)=-0.984808,tan(170°)=-0.176327 sin(171°)=0.156434,cos(171°)=-0.987688,tan(171°)=-0.158384 sin(172°)=0.139173,cos(172°)=-0.990268,tan(172°)=-0.140541 sin(173°)=0.121869,cos(173°)=-0.992546,tan(173°)=-0.122785 sin(174°)=0.104528,cos(174°)=-0.994522,tan(174°)=-0.105104sin(175°)=0.087156,cos(175°)=-0.996195,tan(175°)=-0.087489 sin(176°)=0.069756,cos(176°)=-0.997564,tan(176°)=-0.069927 sin(177°)=0.052336,cos(177°)=-0.998630,tan(177°)=-0.052408 sin(178°)=0.034899,cos(178°)=-0.999391,tan(178°)=-0.034921 sin(179°)=0.017452,cos(179°)=-0.999848,tan(179°)=-0.017455 sin(180°)=0.000000,cos(180°)=-1.000000,tan(180°)=-0.000000 sin(181°)=-0.017452,cos(181°)=-0.999848,tan(181°)=0.017455 sin(182°)=-0.034899,cos(182°)=-0.999391,tan(182°)=0.034921 sin(183°)=-0.052336,cos(183°)=-0.998630,tan(183°)=0.052408 sin(184°)=-0.069756,cos(184°)=-0.997564,tan(184°)=0.069927 sin(185°)=-0.087156,cos(185°)=-0.996195,tan(185°)=0.087489 sin(186°)=-0.104528,cos(186°)=-0.994522,tan(186°)=0.105104 sin(187°)=-0.121869,cos(187°)=-0.992546,tan(187°)=0.122785 sin(188°)=-0.139173,cos(188°)=-0.990268,tan(188°)=0.140541 sin(189°)=-0.156434,cos(189°)=-0.987688,tan(189°)=0.158384 sin(190°)=-0.173648,cos(190°)=-0.984808,tan(190°)=0.176327 sin(191°)=-0.190809,cos(191°)=-0.981627,tan(191°)=0.194380 sin(192°)=-0.207912,cos(192°)=-0.978148,tan(192°)=0.212557 sin(193°)=-0.224951,cos(193°)=-0.974370,tan(193°)=0.230868 sin(194°)=-0.241922,cos(194°)=-0.970296,tan(194°)=0.249328 sin(195°)=-0.258819,cos(195°)=-0.965926,tan(195°)=0.267949 sin(196°)=-0.275637,cos(196°)=-0.961262,tan(196°)=0.286745sin(197°)=-0.292372,cos(197°)=-0.956305,tan(197°)=0.305731 sin(198°)=-0.309017,cos(198°)=-0.951057,tan(198°)=0.324920 sin(199°)=-0.325568,cos(199°)=-0.945519,tan(199°)=0.344328 sin(200°)=-0.342020,cos(200°)=-0.939693,tan(200°)=0.363970 sin(201°)=-0.358368,cos(201°)=-0.933580,tan(201°)=0.383864 sin(202°)=-0.374607,cos(202°)=-0.927184,tan(202°)=0.404026 sin(203°)=-0.390731,cos(203°)=-0.920505,tan(203°)=0.424475 sin(204°)=-0.406737,cos(204°)=-0.913545,tan(204°)=0.445229 sin(205°)=-0.422618,cos(205°)=-0.906308,tan(205°)=0.466308 sin(206°)=-0.438371,cos(206°)=-0.898794,tan(206°)=0.487733 sin(207°)=-0.453990,cos(207°)=-0.891007,tan(207°)=0.509525 sin(208°)=-0.469472,cos(208°)=-0.882948,tan(208°)=0.531709 sin(209°)=-0.484810,cos(209°)=-0.874620,tan(209°)=0.554309 sin(210°)=-0.500000,cos(210°)=-0.866025,tan(210°)=0.577350 sin(211°)=-0.515038,cos(211°)=-0.857167,tan(211°)=0.600861 sin(212°)=-0.529919,cos(212°)=-0.848048,tan(212°)=0.624869 sin(213°)=-0.544639,cos(213°)=-0.838671,tan(213°)=0.649408 sin(214°)=-0.559193,cos(214°)=-0.829038,tan(214°)=0.674509 sin(215°)=-0.573576,cos(215°)=-0.819152,tan(215°)=0.700208 sin(216°)=-0.587785,cos(216°)=-0.809017,tan(216°)=0.726543 sin(217°)=-0.601815,cos(217°)=-0.798636,tan(217°)=0.753554 sin(218°)=-0.615661,cos(218°)=-0.788011,tan(218°)=0.781286sin(219°)=-0.629320,cos(219°)=-0.777146,tan(219°)=0.809784 sin(220°)=-0.642788,cos(220°)=-0.766044,tan(220°)=0.839100 sin(221°)=-0.656059,cos(221°)=-0.754710,tan(221°)=0.869287 sin(222°)=-0.669131,cos(222°)=-0.743145,tan(222°)=0.900404 sin(223°)=-0.681998,cos(223°)=-0.731354,tan(223°)=0.932515 sin(224°)=-0.694658,cos(224°)=-0.719340,tan(224°)=0.965689 sin(225°)=-0.707107,cos(225°)=-0.707107,tan(225°)=1.000000 sin(226°)=-0.719340,cos(226°)=-0.694658,tan(226°)=1.035530 sin(227°)=-0.731354,cos(227°)=-0.681998,tan(227°)=1.072369 sin(228°)=-0.743145,cos(228°)=-0.669131,tan(228°)=1.110613 sin(229°)=-0.754710,cos(229°)=-0.656059,tan(229°)=1.150368 sin(230°)=-0.766044,cos(230°)=-0.642788,tan(230°)=1.191754 sin(231°)=-0.777146,cos(231°)=-0.629320,tan(231°)=1.234897 sin(232°)=-0.788011,cos(232°)=-0.615661,tan(232°)=1.279942 sin(233°)=-0.798636,cos(233°)=-0.601815,tan(233°)=1.327045 sin(234°)=-0.809017,cos(234°)=-0.587785,tan(234°)=1.376382 sin(235°)=-0.819152,cos(235°)=-0.573576,tan(235°)=1.428148 sin(236°)=-0.829038,cos(236°)=-0.559193,tan(236°)=1.482561 sin(237°)=-0.838671,cos(237°)=-0.544639,tan(237°)=1.539865 sin(238°)=-0.848048,cos(238°)=-0.529919,tan(238°)=1.600335 sin(239°)=-0.857167,cos(239°)=-0.515038,tan(239°)=1.664279 sin(240°)=-0.866025,cos(240°)=-0.500000,tan(240°)=1.732051sin(241°)=-0.874620,cos(241°)=-0.484810,tan(241°)=1.804048 sin(242°)=-0.882948,cos(242°)=-0.469472,tan(242°)=1.880726 sin(243°)=-0.891007,cos(243°)=-0.453990,tan(243°)=1.962611 sin(244°)=-0.898794,cos(244°)=-0.438371,tan(244°)=2.050304 sin(245°)=-0.906308,cos(245°)=-0.422618,tan(245°)=2.144507 sin(246°)=-0.913545,cos(246°)=-0.406737,tan(246°)=2.246037 sin(247°)=-0.920505,cos(247°)=-0.390731,tan(247°)=2.355852 sin(248°)=-0.927184,cos(248°)=-0.374607,tan(248°)=2.475087 sin(249°)=-0.933580,cos(249°)=-0.358368,tan(249°)=2.605089 sin(250°)=-0.939693,cos(250°)=-0.342020,tan(250°)=2.747477 sin(251°)=-0.945519,cos(251°)=-0.325568,tan(251°)=2.904211 sin(252°)=-0.951057,cos(252°)=-0.309017,tan(252°)=3.077684 sin(253°)=-0.956305,cos(253°)=-0.292372,tan(253°)=3.270853 sin(254°)=-0.961262,cos(254°)=-0.275637,tan(254°)=3.487414 sin(255°)=-0.965926,cos(255°)=-0.258819,tan(255°)=3.732051 sin(256°)=-0.970296,cos(256°)=-0.241922,tan(256°)=4.010781 sin(257°)=-0.974370,cos(257°)=-0.224951,tan(257°)=4.331476 sin(258°)=-0.978148,cos(258°)=-0.207912,tan(258°)=4.704630 sin(259°)=-0.981627,cos(259°)=-0.190809,tan(259°)=5.144554 sin(260°)=-0.984808,cos(260°)=-0.173648,tan(260°)=5.671282 sin(261°)=-0.987688,cos(261°)=-0.156434,tan(261°)=6.313752 sin(262°)=-0.990268,cos(262°)=-0.139173,tan(262°)=7.115370sin(263°)=-0.992546,cos(263°)=-0.121869,tan(263°)=8.144346 sin(264°)=-0.994522,cos(264°)=-0.104528,tan(264°)=9.514364 sin(265°)=-0.996195,cos(265°)=-0.087156,tan(265°)=11.430052 sin(266°)=-0.997564,cos(266°)=-0.069756,tan(266°)=14.300666 sin(267°)=-0.998630,cos(267°)=-0.052336,tan(267°)=19.081137 sin(268°)=-0.999391,cos(268°)=-0.034899,tan(268°)=28.636253 sin(269°)=-0.999848,cos(269°)=-0.017452,tan(269°)=57.289962 sin(270°)=-1.000000,cos(270°)=-0.000000,tan(270°)=无意义sin(271°)=-0.999848,cos(271°)=0.017452,tan(271°)=-57.289962 sin(272°)=-0.999391,cos(272°)=0.034899,tan(272°)=-28.636253 sin(273°)=-0.998630,cos(273°)=0.052336,tan(273°)=-19.081137 sin(274°)=-0.997564,cos(274°)=0.069756,tan(274°)=-14.300666 sin(275°)=-0.996195,cos(275°)=0.087156,tan(275°)=-11.430052 sin(276°)=-0.994522,cos(276°)=0.104528,tan(276°)=-9.514364 sin(277°)=-0.992546,cos(277°)=0.121869,tan(277°)=-8.144346 sin(278°)=-0.990268,cos(278°)=0.139173,tan(278°)=-7.115370 sin(279°)=-0.987688,cos(279°)=0.156434,tan(279°)=-6.313752 sin(280°)=-0.984808,cos(280°)=0.173648,tan(280°)=-5.671282 sin(281°)=-0.981627,cos(281°)=0.190809,tan(281°)=-5.144554 sin(282°)=-0.978148,cos(282°)=0.207912,tan(282°)=-4.704630 sin(283°)=-0.974370,cos(283°)=0.224951,tan(283°)=-4.331476 sin(284°)=-0.970296,cos(284°)=0.241922,tan(284°)=-4.010781sin(285°)=-0.965926,cos(285°)=0.258819,tan(285°)=-3.732051 sin(286°)=-0.961262,cos(286°)=0.275637,tan(286°)=-3.487414 sin(287°)=-0.956305,cos(287°)=0.292372,tan(287°)=-3.270853 sin(288°)=-0.951057,cos(288°)=0.309017,tan(288°)=-3.077684 sin(289°)=-0.945519,cos(289°)=0.325568,tan(289°)=-2.904211 sin(290°)=-0.939693,cos(290°)=0.342020,tan(290°)=-2.747477 sin(291°)=-0.933580,cos(291°)=0.358368,tan(291°)=-2.605089 sin(292°)=-0.927184,cos(292°)=0.374607,tan(292°)=-2.475087 sin(293°)=-0.920505,cos(293°)=0.390731,tan(293°)=-2.355852 sin(294°)=-0.913545,cos(294°)=0.406737,tan(294°)=-2.246037 sin(295°)=-0.906308,cos(295°)=0.422618,tan(295°)=-2.144507 sin(296°)=-0.898794,cos(296°)=0.438371,tan(296°)=-2.050304 sin(297°)=-0.891007,cos(297°)=0.453990,tan(297°)=-1.962611 sin(298°)=-0.882948,cos(298°)=0.469472,tan(298°)=-1.880726 sin(299°)=-0.874620,cos(299°)=0.484810,tan(299°)=-1.804048 sin(300°)=-0.866025,cos(300°)=0.500000,tan(300°)=-1.732051 sin(301°)=-0.857167,cos(301°)=0.515038,tan(301°)=-1.664279 sin(302°)=-0.848048,cos(302°)=0.529919,tan(302°)=-1.600335 sin(303°)=-0.838671,cos(303°)=0.544639,tan(303°)=-1.539865 sin(304°)=-0.829038,cos(304°)=0.559193,tan(304°)=-1.482561 sin(305°)=-0.819152,cos(305°)=0.573576,tan(305°)=-1.428148 sin(306°)=-0.809017,cos(306°)=0.587785,tan(306°)=-1.376382sin(307°)=-0.798636,cos(307°)=0.601815,tan(307°)=-1.327045 sin(308°)=-0.788011,cos(308°)=0.615661,tan(308°)=-1.279942 sin(309°)=-0.777146,cos(309°)=0.629320,tan(309°)=-1.234897 sin(310°)=-0.766044,cos(310°)=0.642788,tan(310°)=-1.191754 sin(311°)=-0.754710,cos(311°)=0.656059,tan(311°)=-1.150368 sin(312°)=-0.743145,cos(312°)=0.669131,tan(312°)=-1.110613 sin(313°)=-0.731354,cos(313°)=0.681998,tan(313°)=-1.072369 sin(314°)=-0.719340,cos(314°)=0.694658,tan(314°)=-1.035530 sin(315°)=-0.707107,cos(315°)=0.707107,tan(315°)=-1.000000 sin(316°)=-0.694658,cos(316°)=0.719340,tan(316°)=-0.965689 sin(317°)=-0.681998,cos(317°)=0.731354,tan(317°)=-0.932515 sin(318°)=-0.669131,cos(318°)=0.743145,tan(318°)=-0.900404 sin(319°)=-0.656059,cos(319°)=0.754710,tan(319°)=-0.869287 sin(320°)=-0.642788,cos(320°)=0.766044,tan(320°)=-0.839100 sin(321°)=-0.629320,cos(321°)=0.777146,tan(321°)=-0.809784 sin(322°)=-0.615661,cos(322°)=0.788011,tan(322°)=-0.781286 sin(323°)=-0.601815,cos(323°)=0.798636,tan(323°)=-0.753554 sin(324°)=-0.587785,cos(324°)=0.809017,tan(324°)=-0.726543 sin(325°)=-0.573576,cos(325°)=0.819152,tan(325°)=-0.700208 sin(326°)=-0.559193,cos(326°)=0.829038,tan(326°)=-0.674509 sin(327°)=-0.544639,cos(327°)=0.838671,tan(327°)=-0.649408 sin(328°)=-0.529919,cos(328°)=0.848048,tan(328°)=-0.624869sin(329°)=-0.515038,cos(329°)=0.857167,tan(329°)=-0.600861 sin(330°)=-0.500000,cos(330°)=0.866025,tan(330°)=-0.577350 sin(331°)=-0.484810,cos(331°)=0.874620,tan(331°)=-0.554309 sin(332°)=-0.469472,cos(332°)=0.882948,tan(332°)=-0.531709 sin(333°)=-0.453990,cos(333°)=0.891007,tan(333°)=-0.509525 sin(334°)=-0.438371,cos(334°)=0.898794,tan(334°)=-0.487733 sin(335°)=-0.422618,cos(335°)=0.906308,tan(335°)=-0.466308 sin(336°)=-0.406737,cos(336°)=0.913545,tan(336°)=-0.445229 sin(337°)=-0.390731,cos(337°)=0.920505,tan(337°)=-0.424475 sin(338°)=-0.374607,cos(338°)=0.927184,tan(338°)=-0.404026 sin(339°)=-0.358368,cos(339°)=0.933580,tan(339°)=-0.383864 sin(340°)=-0.342020,cos(340°)=0.939693,tan(340°)=-0.363970 sin(341°)=-0.325568,cos(341°)=0.945519,tan(341°)=-0.344328 sin(342°)=-0.309017,cos(342°)=0.951057,tan(342°)=-0.324920 sin(343°)=-0.292372,cos(343°)=0.956305,tan(343°)=-0.305731 sin(344°)=-0.275637,cos(344°)=0.961262,tan(344°)=-0.286745 sin(345°)=-0.258819,cos(345°)=0.965926,tan(345°)=-0.267949 sin(346°)=-0.241922,cos(346°)=0.970296,tan(346°)=-0.249328 sin(347°)=-0.224951,cos(347°)=0.974370,tan(347°)=-0.230868 sin(348°)=-0.207912,cos(348°)=0.978148,tan(348°)=-0.212557 sin(349°)=-0.190809,cos(349°)=0.981627,tan(349°)=-0.194380 sin(350°)=-0.173648,cos(350°)=0.984808,tan(350°)=-0.176327sin(351°)=-0.156434,cos(351°)=0.987688,tan(351°)=-0.158384 sin(352°)=-0.139173,cos(352°)=0.990268,tan(352°)=-0.140541 sin(353°)=-0.121869,cos(353°)=0.992546,tan(353°)=-0.122785 sin(354°)=-0.104528,cos(354°)=0.994522,tan(354°)=-0.105104 sin(355°)=-0.087156,cos(355°)=0.996195,tan(355°)=-0.087489 sin(356°)=-0.069756,cos(356°)=0.997564,tan(356°)=-0.069927 sin(357°)=-0.052336,cos(357°)=0.998630,tan(357°)=-0.052408 sin(358°)=-0.034899,cos(358°)=0.999391,tan(358°)=-0.034921 sin(359°)=-0.017452,cos(359°)=0.999848,tan(359°)=-0.017455 sin(360°)=-0.000000,cos(360°)=1.00000,tan(360°)=-0.000000。
初中三角函数值对照表
一、正弦函数值对照表
正弦函数是一个周期为360度或2π的周期函数,其在各
个特定角度下的函数值如下表所示:
角度(°)030456090180270360
sin00.5√2/2√3/210-10
二、余弦函数值对照表
余弦函数也是一个周期为360度或2π的周期函数,其在
各个特定角度下的函数值如下表所示:
角度(°)030456090180270360
cos1√3/2√2/20.50-101
三、正切函数值对照表
正切函数在某些角度下会不存在(例如90度),在存在的角度下,其函数值如下表所示:
角度(°)0304560180270360
tan0√3/31√30无0
三角函数值对照表是初中阶段学习三角函数时非常重要的
参考资料,通过对照表的使用,学生可以更清晰地理解各个角度下正弦、余弦、正切函数的数值规律。
希望通过这份对照表,能够帮助初中同学更好地学习和掌握三角函数的知识。