高考数学高频压轴十五大专题突破——专题02 破译函数中双变量问题
- 格式:doc
- 大小:2.08 MB
- 文档页数:22
高考核心素养提升之一逻辑推理——突破双变量“存在性或任意性”问题逻辑推理的关键要素是:逻辑的起点、推理的形式、结论的表达.解决双变量“存在性或任意性”问题关键就是将含有全称量词和存在量词的条件“等价转化”为两个函数值域之间的关系(或两个函数最值之间的关系),目的在于培养学生的逻辑推理素养和良好的数学思维品质.类型1 形如“对任意x 1∈A ,都存在x 2∈B ,使得g (x 2)=f (x 1)成立”的问题【例1】 已知函数f (x )=x 3+(1-a )x 2-a (a +2)x ,g (x )=196x -13,若对任意x 1∈[-1,1],总存在x 2∈[0,2],使得f ′(x 1)+2ax 1=g (x 2)成立,求实数a 的取值范围.解 由题意知,g (x )在[0,2]上的值域为⎣⎢⎡⎦⎥⎤-13,6. 令h (x )=f ′(x )+2ax =3x 2+2x -a (a +2),则h ′(x )=6x +2,由h ′(x )=0得x =-13.当x ∈⎣⎢⎡⎭⎪⎫-1,-13时,h ′(x )<0;当x ∈⎝ ⎛⎦⎥⎤-13,1时,h ′(x )>0,所以[h (x )]min =h ⎝ ⎛⎭⎪⎫-13=-a 2-2a -13.又由题意可知,h (x )的值域是⎣⎢⎡⎦⎥⎤-13,6的子集, 所以⎩⎪⎨⎪⎧h (-1)≤6,-a 2-2a -13≥-13,h (1)≤6,解得实数a 的取值范围是[-2,0].思维升华 理解全称量词与存在量词的含义是求解本题的关键,此类问题求解的策略是“等价转化”,即“函数f (x )的值域是g (x )的值域的子集”,从而利用包含关系构建关于a 的不等式组,求得参数的取值范围.类型2 形如“存在x 1∈A 及x 2∈B ,使得f (x 1)=g (x 2)成立”的问题【例2】 已知函数f (x )=⎩⎪⎨⎪⎧2x 3x +1,x ∈⎝ ⎛⎦⎥⎤12,1,-13x +16,x ∈⎣⎢⎡⎦⎥⎤0,12,函数g (x )=k sin πx 6-2k +2(k >0),若存在x 1∈[0,1]及x 2∈[0,1],使得f (x 1)=g (x 2)成立,求实数k 的取值范围.解 由题意,易得函数f (x )的值域为[0,1],g (x )的值域为⎣⎢⎡⎦⎥⎤2-2k ,2-3k 2,并且两个值域有公共部分.先求没有公共部分的情况,即2-2k >1或2-32k <0,解得k <12或k >43,所以,要使两个值域有公共部分,k 的取值范围是⎣⎢⎡⎦⎥⎤12,43. 思维升华 本类问题的实质是“两函数f (x )与g (x )的值域的交集不为空集”,上述解法的关键是利用了补集思想.另外,若把此种类型中的两个“存在”均改为“任意”,则“等价转化”策略是利用“f (x )的值域和g (x )的值域相等”来求解参数的取值范围.类型3 形如“对任意x 1∈A ,都存在x 2∈B ,使得f (x 1)<g (x 2)成立”的问题【例3】 已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎢⎡⎦⎥⎤12,1,∃x 2∈[2,3],使得f (x 1)≤g (x 2),则实数a 的取值范围是________.解析 依题意知f (x )max ≤g (x )max .∵f (x )=x +4x 在⎣⎢⎡⎦⎥⎤12,1上是减函数, ∴f (x )max =f ⎝ ⎛⎭⎪⎫12=172. 又g (x )=2x +a 在[2,3]上是增函数,∴g (x )max =8+a ,因此172≤8+a ,则a ≥12.答案 ⎣⎢⎡⎭⎪⎫12,+∞ 思维升华 理解量词的含义,将原不等式转化为[f (x )]max ≤[g (x )]max ;利用函数的单调性,求f (x )与g (x )的最大值,得关于a 的不等式,求得a 的取值范围.思考1:在[例3]中,若把“∃x 2∈[2,3]”变为“∀x 2∈[2,3]”时,其它条件不变,则a 的取值范围是________.问题“等价转化”为[f (x )]max ≤[g (x )]min ,请同学们完成.思考2:在[例3]中,若将“∀x 1∈⎣⎢⎡⎦⎥⎤12,1”改为“∃x 1∈⎣⎢⎡⎦⎥⎤12,1”,其它条件不变,则a 的取值范围是______.问题“等价转化”为f (x )min ≤g (x )max ,请同学们自行求解.分层训练题A级基础巩固一、选择题1.(2020·宜昌调研)命题p:“∀x>1,x2-1>0”,则⌝p为()A.∀x>1,x2-1≤0B.∀x≤1,x2-1≤0C.∃x0>1,x20-1≤0D.∃x0≤1,x20-1≤02.第32届夏季奥林匹克运动会将于2020年7月24日在日本东京隆重开幕.在体操预赛中,有甲、乙两位队员参加.设命题p是“甲落地站稳”,q是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为()A.(⌝p)∨(⌝q)B.p∨(⌝q)C.(⌝p)∧(⌝q)D.p∨q3.命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n04.已知命题p:∃x∈R,x2-x+1≥0;命题q:若a2<b2,则a<b.下列命题为真命题的是()A.p∧qB.p∧⌝qC.⌝p∧qD.⌝p∧⌝q5.(2020·河南六校联考)已知命题p:对任意x∈R,总有2x>x2,q:“ab>4”是“a>2,b>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.(⌝p)∧qC.p∧(⌝q)D.(⌝p)∧(⌝q)6.已知命题“∃x∈R,4x2+(a-2)x+14≤0”是假命题,则实数a的取值范围为()A.(-∞,0)B.[0,4]C.[4,+∞)D.(0,4)7.命题p:函数y=log2(x-2)的单调递增区间是[1,+∞),命题q:函数y=13x+1的值域为(0,1).下列命题是真命题的为()A.p∧qB.p∨qC.p∧(⌝q)D.⌝q8.已知函数f(x)=a2x-2a+1.若命题“∀x∈(0,1),f(x)≠0”是假命题,则实数a的取值范围是()A.⎝ ⎛⎭⎪⎫12,1 B.(1,+∞) C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎭⎪⎫12,1∪(1,+∞) 二、填空题 9.若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________. 10.命题p 的否定是“对所有正数x ,x >x +1”,则命题p 可写为________________________________.11.(2020·湖南百校大联考改编)下列四个命题:p 1:任意x ∈R ,2x >0;p 2:存在x ∈R ,x 2+x +1≤0;p 3:任意x ∈R ,sin x <2x ;p 4:存在x ∈R ,cos x >x 2+x +1.其中是真命题的为________.12.已知命题p :∃x 0∈R ,(m +1)(x 20+1)≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立.若p ∧q 为假命题,则实数m 的取值范围为________.B 级 能力提升13.命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( )A.∀x ∈R ,∃n ∈N *,使得n <x 2B.∀x ∈R ,∀n ∈N *,使得n <x 2C.∃x ∈R ,∃n ∈N *,使得n <x 2D.∃x 0∈R ,∀n ∈N *,使得n <x 2014.(2020·南昌质检)下列有关命题的说法正确的是( )A.命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1”B.命题p :∃x 0∈R ,sin x 0=62;命题q :∀x ∈R ,x >sin x ,则命题p ∨q 为真C.命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1<0”D.命题“若x =y ,则sin x =sin y ”的逆否命题是真命题15.已知函数f (x )=⎩⎨⎧3x ,x <0,m -x 2,x ≥0,给出下列两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解;命题q :若m =19,则f [f (-1)]=0,那么,下列命题为真命题的是____________(填序号).①p ∧q ;②(⌝p )∧q ;③p ∧(⌝q );④(⌝p )∧(⌝q ).16.(2020·漳州八校联考)设p :函数f (x )=ax 2-x +14a 的定义域为R ,q :∃x ∈(0,1),使得不等式3x -9x -a <0成立.如果“p ∨q ”为真命题,“p ∧q ”为假命题,则实数a 的取值范围为________.C 级 创新猜想17.(组合选择题)(2019·全国Ⅲ卷)记不等式组⎩⎨⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题①p ∨q ②⌝p ∨q ③p ∧⌝q ④⌝p ∧⌝q这四个命题中,所有真命题的编号是( )A.①③B.①②C.②③D.③④答案解析1.解析 命题p :“∀x >1,x 2-1>0”,则綈p 为:∃x 0>1,x 20-1≤0.答案 C2.解析 命题“至少有一位队员落地没有站稳”包含以下三种情况:“甲、乙落地均没有站稳”、“甲落地没站稳,乙落地站稳”、“乙落地没有站稳,甲落地站稳”,故可表示为(⌝p )∨(⌝q ).或者,命题“至少有一位队员落地没有站稳”等价于命题“甲、乙均落地站稳”的否定,即“p ∧q ”的否定,选A.答案 A3.解析 ∵全称命题的否定为特称命题,∴该命题的否定是:∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0.答案 D4.解析 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0恒成立,所以p 为真命题,则⌝p 为假命题;当a =1,b =-2时,满足a 2<b 2,但不满足a <b ,所以q 为假命题,则⌝q 为真命题,根据且命题同真则真的原则,p ∧⌝q 为真命题.答案 B5.解析 当x =2时,2x =x 2,所以p 是假命题;由a >2,b >2可以推出ab >4;反之不成立,例如a =2,b =4,所以“ab >4”是“a >2,b >2”的必要不充分条件,故q 是假命题;所以(⌝p )∧(⌝q )是真命题.答案 D6.解析 因为命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,所以其否定命题“∀x ∈R ,4x 2+(a -2)x +14>0”是真命题.则Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4.答案 D7.解析 由于y =log 2(x -2)的单调递增区间是(2,+∞),所以命题p 是假命题.由3x >0,得3x +1>1,所以0<13x +1<1, 所以函数y =13x +1的值域为(0,1),故命题q 为真命题. 所以p ∧q 为假命题,p ∨q 为真命题,p ∧(⌝q )为假命题,⌝q 为假命题.答案 B8.解析 ∵函数f (x )=a 2x -2a +1,命题“∀x ∈(0,1),f (x )≠0”是假命题,∴原命题的否定:“∃x 0∈(0,1),使f (x 0)=0”是真命题,∴f (1)f (0)<0,即(a 2-2a +1)(-2a +1)<0,∴(a -1)2(2a -1)>0,解得a >12,且a ≠1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫12,1∪(1,+∞). 答案 D9.解析 ∵函数y =tan x 在⎣⎢⎡⎦⎥⎤0,π4上是增函数,∴y max =tan π4=1,依题意,m ≥y max ,即m ≥1.∴m 的最小值为1.答案 110.解析 因为p 是⌝p 的否定,所以只需将全称量词变为存在量词,再对结论否定即可. 答案 ∃x 0∈(0,+∞),x 0≤x 0+111.解析 ∀x ∈R ,2x >0恒成立,p 1是真命题.又x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0,∴p 2是假命题. 由sin ⎝ ⎛⎭⎪⎫-32π=1>2-32π,知p 3是假命题.取x =-12时,cos ⎝ ⎛⎭⎪⎫-12>cos ⎝ ⎛⎭⎪⎫-π6=32, 但x 2+x +1=34<32,则p 4为真.综上,p 1,p 4为真命题,p 2,p 3是假命题.答案 p 1,p 412.解析 由命题p :∃x 0∈R ,(m +1)(x 20+1)≤0可得m ≤-1;由命题q :∀x ∈R ,x 2+mx +1>0恒成立,即Δ=m 2-4<0,可得-2<m <2,若p ∧q 为真命题,则-2<m ≤-1,因为p ∧q 为假命题,所以m ≤-2或m >-1.答案 (-∞,-2]∪(-1,+∞)13.解析 改变量词,否定结论.∴该命题的否定应为:∃x 0∈R ,∀n ∈N *,使得n <x 20.答案 D14.解析 选项A ,命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,∴A 选项错误.选项B ,∵sin x 0=62>1,∴命题p 是假命题.命题q :当x =0时,x =sin x ,∴命题q 是假命题,则命题p ∨q 为假.∴B 选项错误.选项C ,命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”,∴C 选项错误.选项D ,∵x =y ,∴sin x =sin y ,∴该命题的逆否命题为真命题.∴D 选项正确. 答案 D15.解析 因为3x >0,当m <0时,m -x 2<0,所以命题p 为假命题;当m =19时,因为f (-1)=3-1=13,所以f [f (-1)]=f ⎝ ⎛⎭⎪⎫13=19-⎝ ⎛⎭⎪⎫132=0, 所以命题q 为真命题;逐项检验可知,只有(⌝p )∧q 为真命题.答案 ②16.解析 若命题p 为真,则ax 2-x +14a ≥0恒成立,则⎩⎪⎨⎪⎧a >0,Δ=(-1)2-4a ·14a ≤0,解得a ≥1. 设y =3x -9x .令3x =t ,则y =3x -9x =t -t 2,当x ∈(0,1)时,t ∈(1,3),所以y =3x -9x 的值域为(-6,0).若命题q 为真,则a >-6.由命题“p ∨q ”为真命题,“p ∧q ”为假命题,可知p ,q 一真一假, 当p 真q 假时,a 不存在;当p 假q 真时,-6<a <1,所以实数a 的取值范围是(-6,1).答案 (-6,1)17.解析 由不等式组画出平面区域D ,如图阴影部分所示,在图中画出直线2x +y =9,可知命题p 正确,作出直线2x +y =12,2x +y ≤12表示直线及其下方区域,易知命题q 错误. ∴⌝p 为假,⌝q 为真,∴p ∨q 为真,⌝p ∨q 为假,p ∧⌝q 为真,⌝p ∧⌝q 为假.故真命题的编号为①③.答案 A。
专题01 构造函数的通法................. 错误!未定义书签。
专题02 破译函数中双变量问题 ....... 错误!未定义书签。
专题03 直击函数压轴题中零点问题.错误!未定义书签。
专题04 解密三角函数之给值求值问题错误!未定义书签。
专题05 破译线性规划中含参问题 .... 错误!未定义书签。
专题06 解密数量积的问题 ............. 错误!未定义书签。
专题07 如何由数列前n项和求数列通项错误!未定义书签。
一、单选题1.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A . (-∞,-1)∪(0,1)B . (-1,0)∪(1,+∞)C . (-∞,-1)∪(-1,0)D . (0,1)∪(1,+∞) 【答案】A考点:函数性质综合应用2.若定义在R 上的函数()f x 满足()01f =-,其导函数()1f x k '>>,则下列结论中一定错误的是( ) A . 11f k k ⎛⎫<⎪⎝⎭ B . 111f k k ⎛⎫> ⎪-⎝⎭ C . 1111f k k ⎛⎫<⎪--⎝⎭ D . 111k f k k ⎛⎫> ⎪--⎝⎭[【答案】C【解析】试题分析:令()()g x f x kx =-,则()()g'0x f x k '=->,因此()()1111g 001111111k k g f f f k k k k k k ⎛⎫⎛⎫⎛⎫>⇒->⇒>-= ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,所以选C . 考点:利用导数研究不等式【方法点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e=, ()()0f x f x '+<构造()()x g x e f x =, ()()xf x f x '<构造()()f x g x x=, ()()0xf x f x +<'构造()()g x xf x =等3.设定义在(0,+∞)上的函数f (x )满足xf ′(x )-f (x )=xlnx , 11f e e⎛⎫= ⎪⎝⎭,则f (x )( ) A . 有极大值,无极小值 B . 有极小值,无极大值 C . 既有极大值,又有极小值 D . 既无极大值,又无极小值 【答案】D点睛:根据导函数求原函数,常常需构造辅助函数,一般根据导数法则进行:如()()f x f x '-构造()()xf xg x e =, ()()f x f x '+构造()()xg x e f x =, ()()xf x f x '-构造()()f x g x x=,()()xf x f x '+构造()()g x xf x =等4.设函数()f x 在R 上存在导函数()f x ',对于任意实数x ,都有()()26f x x f x =--,当(),0x ∈-∞时,()2112f x x +'< 若()()222129f m f m m +≤-+-,则m 的取值范围为( )A . [)1,-+∞ B . 1,2⎡⎫-+∞⎪⎢⎣⎭ C . 2,3⎡⎫-+∞⎪⎢⎣⎭D . [)2,-+∞ 【答案】C【解析】()()22330f x x f x x -+--=,设()()23g x f x x =-,则()()()0,g x g x g x +-=∴为奇函数,又()()()1''6,2g x f x x g x =-<-∴在(),0x ∈-∞上是减函数,从而在R 上是减函数,又()()22212129f m f m m m +≤-++-,等价于()()()()22232232f m m f m m +-+≤----,即()()22,22g m g m m m +≤-∴+≥-,解得23m ≥-,故选C .【方法点睛】利用导数研究函数的单调性、构造函数求参数范围, 属于难题.联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.5.设定义在R 上的函数()y f x =满足任意t R ∈都有()()12f t f t +=,且(]0,4x ∈时, ()()f x f x x'>,则()()()2016,42017,22018f f f 的大小关系( )A . ()()()22018201642017f f f <<B . ()()()22018201642017f f f >>C . ()()()42017220182016f f f <<D . ()()()42017220182016f f f >> 【答案】C6.已知函数()f x 在0,2π⎛⎫⎪⎝⎭上单调递减, ()'f x 为其导函数,若对任意0,2x π⎛⎫∈ ⎪⎝⎭都有()()'tan f x f x x <,则下列不等式一定成立的是A . 236f f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭ B . 6426f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C . 6326f f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭D . 346f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ 【答案】D点睛:本题考查函数的导数与函数单调性的关系,解题的关键是根据题意构造新函数()()f x g x sinx=,并利用导数分析()g x 的单调性.7.已知定义在R 上的函数(f x ),其导函数为()f x ',若()()3f x f x '-<-, ()04f =,则不等式()3x f x e >+的解集是( )A . (),1-∞B . ()1,+∞C . ()0,+∞D . (),0-∞ 【答案】D点睛:利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.8.已知定义域为R 的奇函数()y f x =的导函数为()y f x =',当0x ≠时, ()()0f x f x x+'>,若1122a f ⎛⎫=⎪⎝⎭,()1b f =--, 11ln ln 22c f ⎛⎫= ⎪⎝⎭,则a , b , c 的大小关系正确的是( ) A . a b c << B . c a b << C . b c a << D . a c b << 【答案】D【解析】设h (x )=xf (x ), ∴h ′(x )=f (x )+x •f ′(x ),∵y =f (x )是定义在实数集R 上的奇函数, ∴h (x )是定义在实数集R 上的偶函数, 当x >0时,h 'x )=f (x )+x •f ′(x )>0,∴此时函数h (x )单调递增.∵a =12f (12)=h (12),b =﹣f (﹣1)=f (1)=h (1), c =(ln 12)f (12)=h (ln 12)=h (﹣ln 2)=h (ln 2),又1>ln 2>12, ∴b >c >a . 故答案为:D 。
一、单选题1.已知函数()()()411,ln 22x f x e g x x -==+,若()()f m g n =成立,则n m -的最小值为( ) A .2ln213-B . 12ln23+C . 12ln23+D . 1ln24- 【答案】C【方法点睛】本题主要考查利用导数研究函数的单调性进而求最值,属于难题. 求最值问题往往先将所求问题转化为函数问题,然后根据:配方法、换元法、不等式法、三角函数法、图像法、函数单调性法求解,利用函数的单调性求最值,首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求函数的最值即可.二、填空题2.已知f (x )=(x +1)3e-x +1,g (x )=(x +1)2+a ,若∃x 1,x 2∈R ,使得f (x 2)≥g (x 1)成立,则实数a 的取值范围是__________. 【答案】27,e ⎛⎤-∞ ⎥⎝⎦【解析】∃x 1,x 2∈R ,使得f (x 2)≥g (x 1)成立,即为f (x )max ≥g (x )min .又f ′(x )=(x +1)2e-x +1(-x +2),由f ′(x )=0得x =-1或2,且当x <2时,f ′(x )>0,f (x )单调递增;当x >2时,f ′(x )<0,f (x )单调递减,所以f (x )max =f (2)=27e ,又g (x )min =a ,则a ≤27e,故实数a 的取值范围是(-∞,27e]. 点睛:对于不等式任意或存在性问题,一般转化为对应函数最值大小关系,即()()()()1212min min ,,x x f x g x f x g x ∀∃≥⇒≥;()()()()1212min max ,,x x f x g x f x g x ∀∀≥⇒≥, ()()()()1212max min ,,x x f x g x f x g x ∃∃≥⇒≥ ()()()()1212max max ,,x x f x g x f x g x ∃∀≥⇒≥3.若不等式x 2-2y 2≤cx (y -x )对任意满足x >y >0的实数x ,y 恒成立,则实数c 的最大值为__________. 【答案】224-点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.三、解答题4.已知函数()ln 1f x x a x =--(a 为常数)与x 轴有唯一的公关点A . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)曲线()y f x =在点A 处的切线斜率为23a a --,若存在不相等的正实数12x x ,满足()()12f x f x =,证明:121x x <.【答案】(Ⅰ)当1a =时,函数()f x 的递增区间为()1,+∞,递减区间为()0,1; 当0a ≤时,函数()f x 的递增区间为()0,+∞,无递减区间.(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)因为函数()ln 1f x x a x =--的定义域为()0,+∞,且()10f =,故由题意可知曲线()f x 与x 轴存在公共点()1,0A ,又()x af x x'-=,对a 进行讨论分0a ≤,0111a a a <=,,四种情况进行可得解(Ⅱ)容易知道函数()f x 在()1,0A 处的切线斜率为()2113f a a a =-=--',得2a =±,由(Ⅰ)可知2a =-,且函数()f x 在区间()0,+∞上递增.不妨设12x x <,因为()()12f x f x =,则()()120f x f x <<,则有()11222ln 12ln 1x x x x -+-=+-,整理得()211222ln x x x x +=-,利用基本不等式构建关于12x x 的不等关系即可证得.②若1a =,则函数()f x 的极小值为()10f =,符合题意;③若1a >,则由函数()f x 的单调性,有()()10f a f <=,取201x a a =+>,有()()20ln 1f x a a a ⎡⎤=-+⎣⎦.下面研究函数()()21g a a ln a =-+,1a >,因为()()22101a g a a '-=>+恒成立,故函数()g a 在()1,+∞上递增,故()()11ln20g a g >=->,故()()00f x ag a =>成立,函数()f x 在区间()2,1a a+上存在零点.不符合题意. 综上所述:当1a =时,函数()f x 的递增区间为()1,+∞,递减区间为()0,1; 当0a ≤时,函数()f x 的递增区间为()0,+∞,无递减区间.点睛:本题考查了利用导数研究函数的单调性,利用基本不等式来证明,考查了分类讨论的思想,属于中档题. 5.已知函数()21ln 2f x a x x ax =+- (a 为常数)有两个极值点. (1)求实数a 的取值范围;(2)设f (x )的两个极值点分别为x 1,x 2,若不等式f (x 1)+f (x 2)<λ(x 1+x 2)恒成立,求λ的最小值.【答案】(1)()4,+∞;(2)ln43-【解析】试题分析:(1)先求导数,转化为对应一元二次方程有两个正根,再根据实根分布列不等式组,解得实数a 的取值范围;(2)分离参数转化为对应函数最值问题:()()1212f x f x x x λ+>+ 最大值,再化简()()1212f x f x x x ++为a 的函数,利用导数可得其值域,即得λ的最小值.试题解析:(1)f ′(x )=+x -a =(x >0),于是f (x )有两个极值点等价于二次方程x 2-ax +a =0有两正根, 设其两根为x 1,x 2,则,解得a >4,不妨设x 1<x 2,此时在(0,x 1)上f ′(x )>0,在(x 1,x 2)上f ′(x )<0,在(x 2,+∞)上f ′(x )>0.因此x 1,x 2是f (x )的两个极值点,符合题意. 所以a 的取值范围是(4,+∞).点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法, 使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件. 6.设函数f (x )=e mx +x 2-mx .(1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有()()121f x f x e -≤-,求m 的取值范围. 【答案】(1)见解析;(2)[]1,1-【解析】试题分析:(1)先求导数,再根据m 正负以及指数函数单调性讨论得导函数符号(2)先利用最值转化不等式恒成立得f (x )最大值与最小值的差不大于e -1,再利用导数研究函数单调性,解对应不等式得m 的取值范围. 试题解析:(1)f ′(x )=m (e mx -1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0,f ′(x )<0; 当x ∈(0,+∞)时,e mx -1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx -1>0,f ′(x )<0; 当x ∈(0,+∞)时,e mx -1<0,f ′(x )>0.所以,f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.点睛:不等式有解问题与不等式恒成立问题这两类问题都可转化为最值问题,即()f x a <恒成立⇔()max a f x >,()f x a >恒成立⇔()min a f x <. 7.已知()()xf x e ax a R =-∈(e 为自然对数的底数).(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点12,x x ,求a 的取值范围; (2)在(1)的条件下,求证:122ln x x a +<. 【答案】(Ⅰ)见解析;(Ⅱ)(1)a e >;(2) 见解析.【解析】试题分析:(I )求出函数的导数,通过讨论a 的范围,分别令()'0f x >求得x 的范围,可得函数()f x 增区间,()'0f x <求得x 的范围,可得函数()f x 的减区间;(II )(1)由(Ⅰ)知,当0a ≤时, ()f x 在R 上为增函数,()f x 不合题意;当0a >时, ()f x 的递增区间为()ln ,a +∞,递减区间为(),ln a -∞,只需()()()min ln ln 1ln 0f x f a a a a a a ==-=-<,即可解得a 的取值范围;(2)分离参数a ,问题转化为证明证明()1212122x x x xe e x x e e +->-,不妨设12x x >,记12t x x =-,则0,1tt e >>,因此只要证明:121t t e t e +⋅>-,即()220t t e t -++>根据函数的单调性证明即可.试题解析:(Ⅰ)()f x 的定义域为R ,()xf x e a '=-,(1)当0a ≤时,()0f x '>在R上恒成立,∴()f x 在R 上为增函数; (2)当0a >时,令()0f x '>得ln x a >,令()0f x '<得ln x a <,∴()f x 的递增区间为()ln ,a +∞,递减区间为(),ln a -∞;(2)由(Ⅱ)(1),当a e >时,()f x 有两个零点12,x x ,且()f x 在()ln ,a +∞上递增, 在(),ln a -∞上递减,依题意,()()120f x f x ==,不妨设12ln x a x <<.要证122ln x x a +<,即证122ln x a x <-, 又12ln x a x <<,所以122ln ln x a x a <-<,而()f x 在(),ln a -∞上递减,即证()()122ln f x f a x >-, 又()()120f x f x ==,即证()()222ln f x f a x >-,(2ln x a >).构造函数()()()22ln 22ln (ln )xx a g x f x f a x e ax a a x a e=--=--+>,()222220xx a g x e a a a e=+->=',∴()g x 在()ln ,a +∞单调递增,∴()()ln 0g x g a >=,从而()()2ln f x f a x >-, ∴()()222ln f x f a x >-,(2ln x a >),命题成立. 8.已知函数()12x f x ekx k +=-- (其中e 是自然对数的底数,k ∈R ).(1)讨论函数()f x 的单调性;(2)当函数()f x 有两个零点12,x x 时,证明:122x x +>-. 【答案】(1)见解析;(2)见解析. 【解析】试题分析:本题考查导数与函数单调性的关系以及用导数证明不等式的问题。
第22讲双变量问题知识梳理破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.必考题型全归纳题型一:双变量单调问题例1.(2024·全国·高三专题练习)已知函数2()(1)ln 1f x a x ax =+++.(1)当2a =时,求曲线()y f x =在()1,(1)f 处的切线方程;(2)设2a ≤-,证明:对任意1x ,2(0,)x ∈+∞,1212|()()|4||f x f x x x -≥-.例2.(2024·安徽·校联考三模)设a R ∈,函数()()()2ln 11f x a x a x =-+++.(Ⅰ)讨论函数()f x 在定义域上的单调性;(Ⅱ)若函数()f x 的图象在点()()1,1f --处的切线与直线820x y +-=平行,且对任意()12,,0x x ∈-∞,12x x ≠,不等式()()1212f x f x m x x ->-恒成立,求实数m 的取值范围.例3.(2024·福建漳州·高二福建省漳州第一中学校考期末)已知函数2()(1)ln 1.f x a x ax =-++(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若1a ≥时,任意的120x x >>,总有1212|()()|2||f x f x x x ->-,求实数a 的取值范围.变式1.(2024·全国·模拟预测)已知函数()1log 2a m f x x x =+-,m ∈R ,0a >且1a ≠.(1)当2a =时,讨论()f x 的单调性;(2)当a e =时,若对任意的120x x >>,不等式()()21121212x f x x f x x x -<-恒成立,求实数m 的取值范围.变式2.(2024·天津南开·高三南开大学附属中学校考开学考试)已知函数()()2ln 21f x x ax a x =+++.(1)讨论()f x 的单调性;(2)当a<0时,证明()324f x a≤--;(3)若对任意的不等正数12,x x ,总有()()12122f x f x x x ->-,求实数a 的取值范围.题型二:双变量不等式:转化为单变量问题例4.(2024·全国·高三专题练习)已知函数1()ln f x x a x x=-+.(1)讨论()f x 的单调性;(2)已知52a <,若()f x 存在两个极值点12,x x ,且12x x <,求2112()()+f x f x x x 的取值范围.例5.(2024·新疆·高二克拉玛依市高级中学校考阶段练习)已知函数()()2ln R f x x x ax a =+-∈(1)若1a =,求函数f (x )在点(1,f (1))处的切线方程;(2)当0a >时,讨论f (x )的单调性;(3)设f (x )存在两个极值点12,x x 且12x x <,若110x 2<<求证:()()123ln 24f x f x ->-.例6.(2024·山东东营·高二东营市第一中学校考开学考试)已知函数2()2ln f x x ax x =++(a 为常数)(1)讨论()f x 的单调性(2)若函数()f x 存在两个极值点12x x ,()12x x <,且2183x x -≤,求()()12f x f x -的范围.变式3.(2024·山东·山东省实验中学校联考模拟预测)已知函数()21ln ()2f x x a x =+-,其中a ∈R .(1)当1a =时,求函数()f x 在()()1,1f 处的切线方程;(2)讨论函数()f x 的单调性;(3)若()f x 存在两个极值点()()()121221,,x x x x f x f x <-的取值范围为315ln2,2ln248⎛⎫-- ⎪⎝⎭,求a 的取值范围.变式4.(2024·江苏苏州·高三统考阶段练习)已知函数()()2230e xx a x a f x x -+-+-=>()(1)讨论函数()f x 的单调性;(2)若函数()f x 存在两个极值点12,x x ,记()()1212(,)h x x f x f x =,求()12,h x x 的取值范围.变式5.(2024·全国·高三专题练习)已知函数()()()211ln 412f x x a x x =++-+.(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,且()()()12124f x f x f x x a '+≥-,求a 的取值范围.变式6.(2024·吉林长春·高二长春市实验中学校考期中)设函数2()e (1)e (R)x x f x a x a a =+-+∈.(1)当2e 2a -=时,求2()()e x g x f x -'=的单调区间;(2)若()f x 有两个极值点()1212,x x x x <,①求a 的取值范围;②证明:1223x x +>.题型三:双变量不等式:极值和差商积问题例7.(2024·黑龙江牡丹江·高三牡丹江一中校考期末)已知a ∈R ,函数()ln 222af x x x x x=-++.(1)当0a =时,求()f x 的单调区间和极值;(2)若()f x 有两个不同的极值点1x ,()212x x x <.(i )求实数a 的取值范围;(ii )证明:12eln 2ln 3ln 22x x +<--(e 2.71828=……为自然对数的底数).例8.(2024·内蒙古·高三霍林郭勒市第一中学统考阶段练习)已知函数()e e ()x x f x ax a -=--∈R .(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()121220f x f x a x x --<<-.例9.(2024·全国·模拟预测)已知函数()2ln f x x x ax a =+-.(1)当1a =-时,求曲线()y f x =在1x =处的切线方程;(2)若()f x 存在两个极值点1x 、2x ,求实数a 的取值范围,并证明:1202x xf +⎛⎫> ⎪⎝⎭.变式7.(2024·辽宁沈阳·高二东北育才学校校考期中)已知函数()1e ln xf x m x -=-,R m ∈.(1)当1m ≥时,讨论方程()10f x -=解的个数;(2)当e m =时,()()2e ln 2tx g x f x x +=+-有两个极值点1x ,2x ,且12x x <,若2ee 2t <<,证明:(i )1223x x <+<;(ii )()()1220g x g x +<.变式8.(2024·全国·高三专题练习)已知函数2()ln (1),2a f x x x a x a R =+-+∈(1)讨论函数()f x 的单调区间;(2)设1x ,()2120x x x <<是函数()()g x f x x =+的两个极值点,证明:()()12ln 2ag x g x a -<-恒成立.变式9.(2024·全国·高三专题练习)已知函数()ln ,f x x mx m =+∈R .(1)求函数f (x )的单调区间;(2)若21()()2g x f x x =+有两个极值点12,x x ,求证:()()1230g x g x ++<.题型四:双变量不等式:中点型例10.(2024·天津北辰·高三天津市第四十七中学校考期末)已知函数()()2ln 2f x x ax a x a R =-+-∈,.(1)已知1x =为()f x 的极值点,求曲线()y f x =在点()()1,1f 处的切线方程;(2)讨论函数()()g x f x ax =+的单调性;(3)当12a <-时,若对于任意()()1212,1,x x x x ∈+∞<,都存在()012,x x x ∈,使得()()()21021f x f x f x x x -'=-,证明:2102x x x +<.例11.(2024·湖北武汉·统考一模)已知函数()()211ln 2f x x a x a x =+--.(Ⅰ)讨论()f x 的单调性;(Ⅱ)设0a >,证明:当0x a <<时,()()f a x f a x +<-;(Ⅲ)设12,x x 是()f x 的两个零点,证明1202x xf +⎛⎫> ⎪⎝⎭'.例12.(2024·云南·高三云南师大附中校考阶段练习)已知函数2()(12)ln f x x a x a x =+--(R a ∈且0)a ≠.(1)讨论函数()f x 的单调性;(2)当2a >时,若函数()y f x =的图象与x 轴交于A ,B 两点,设线段AB 中点的横坐标为0x ,证明:0()0f x '>.变式10.(2024·全国·高三专题练习)已知函数2()ln (2)f x x ax a x =-+-.(1)讨论()f x 的单调性;(2)若函数()y f x =的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为0x ,证明:()00f x '<.变式11.(2024·四川绵阳·高二四川省绵阳南山中学校考阶段练习)已知函数21()ln (1)2f x x ax a x =+++.(1)讨论函数()f x 的单调性;(2)设函数()f x 图象上不重合的两点()112212,,(,)()A x y B x y x x >.证明:12'()2AB x x k f +>.(AB k 是直线AB 的斜率)变式12.(2024·福建泉州·高二福建省永春第一中学校考阶段练习)已知函数()222ln f x x ax x =-+(0a >).(1)讨论函数()f x 的单调性;(2)设()2ln g x x bx cx =--,若函数()f x 的两个极值点1x ,2x (12x x <)恰为函数()g x 的两个零点,且()12122x xy x x g '+⎛⎫=- ⎪⎝⎭的取值范围是[)ln 31,-+∞,求实数a 的取值范围.题型五:双变量不等式:剪刀模型例13.(2024·天津和平·耀华中学校考模拟预测)已知函数()()()e (0)xf x x b a b =+->在点(1-,()1f -)处的切线方程为()e 1e e 10x y -++-=.(1)求a 、b ;(2)设曲线y =f (x )与x 轴负半轴的交点为P ,曲线在点P 处的切线方程为y =h (x ),求证:对于任意的实数x ,都有f (x )≥h (x );(3)若关于x 的方程()()0f x m m =>有两个实数根1x 、2x ,且12x x <,证明:()2112e 11em x x --+-.例14.(2024·辽宁沈阳·统考三模)已知函数()()()()20x f x x b e a b =+->在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处的切线方程为()1102e e x ey --++=.(1)求a ,b ;(2)函数()f x 图像与x 轴负半轴的交点为P ,且在点P 处的切线方程为()y h x =,函数()()()F x f x h x =-,x ∈R ,求()F x 的最小值;(3)关于x 的方程()f x m =有两个实数根1x ,2x ,且12x x <,证明:211221m mex x e+-≤--.例15.(2024·全国·高三专题练习)已知函数()e 1x f x ax =-+,ln 3是()f x 的极值点.(1)求a 的值;(2)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线为直线l .求证:曲线()y f x =上的点都不在直线l 的上方;(3)若关于x 的方程()(0)f x m m =>有两个不等实根1x ,212()x x x <,求证:217210mx x -<-.变式13.(2024·安徽·校联考二模)已知函数()3e 1xf x x =-+,其中e 2.71828= 是自然对数的底数.(1)设曲线()y f x =与x 轴正半轴相交于点()0,0P x ,曲线在点P 处的切线为l ,求证:曲线()y f x =上的点都不在直线l 的上方;(2)若关于x 的方程()f x m =(m 为正实数)有两个不等实根()1212,x x x x <,求证:21324x x m -<-.变式14.(2024·全国·高三专题练习)已知函数4()g x x =,x R ∈,在点()1,(1)g 处的切线方程记为()y m x =,令()()()3f x m x g x =-+.(1)设函数()f x 的图象与x 轴正半轴相交于P ,()f x 在点P 处的切线为l ,证明:曲线()y f x =上的点都不在直线l 的上方;(2)关于x 的方程()(f x a a =为正实数)有两个实根1x ,2x ,求证:21||23ax x -<-.题型六:双变量不等式:主元法例16.(2024·江苏盐城·高三盐城中学校联考开学考试)已知函数()ln f x x x =.(1)求函数()f x 的单调区间和最小值;(2)当0b >时,求证:11e e b b ⎛⎫≥ ⎪⎝⎭(其中e 为自然对数的底数);(3)若0a >,0b >求证:()()()()ln 2f a a b f a b f b ++≥+-.例17.(2024·河南信阳·高二校联考阶段练习)已知函数()ln f x x x =.(1)求曲线()y f x =在点()()e,e f 处的切线方程;(2)求函数()f x 的最小值,并证明:当0b >时,1e1e b b ⎛⎫ ⎪⎝⎭≥.(其中e 为自然对数的底数)例18.(2024·山西晋中·高二校考阶段练习)已知函数()()1e 6x f x k x ⎡⎤=--⎣⎦(其中e 为自然对数的底数).(1)若1k =,求函数()f x 的单调区间;(2)若12k ≤≤,求证:[]0,x k ∀∈,()2f x x <.变式15.(2024·广东广州·高三广州大学附属中学校考阶段练习)已知函数e ()(ln )=+-xf x a x x x(其中a R ∈且a 为常数,e 为自然对数的底数,e 2.71828)=⋯.(1)若函数()f x 的极值点只有一个,求实数a 的取值范围;(2)当0a =时,若()f x kx m +(其中0)m >恒成立,求(1)k m +的最小值()h m 的最大值.变式16.(2024·全国·高三专题练习)设函数()ln f x x x =.(1)求()f x 的极值;(2)设()(1)g x f x =+,若对任意的0x ,都有()g x mx 成立,求实数m 的取值范围;(3)若0a b <<,证明:0()()2()()ln 22a b f a f b f b a +<+-<-.变式17.(2024·广东珠海·高一珠海市第二中学校考期中)已知()()2365R f x x x x =--∈函数.(1)求不等式()4f x >的解集;(2)设函数()()24g x f x x mx =-+,若存在x ∈R ,使得()0g x >,求实数m 的取值范围;(3)若对任意的[]1,2a ∈,关于x 的不等式()()226f x x a x a b ≤-+++在区间[1,3]上恒成立,求实数b 的取值范围。
导数压轴题双变量问题题型归纳总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KH导数应用之双变量问题(一)构造齐次式,换元【例】已知函数/(” = /+6+01nx,曲线y = 〃x )在点(1J ⑴)处的切线方程为y = 2x(1)求实数。
〃的值:(2)设尸(N ) = /(X )-炉+〃江(〃?£夫)不,4(0<为 <七)分别是函数尸(x )的两个零点,求证:尸(屈7)<0.【解析】(1) 〃 = 1力=-1;(2) /(x) = x 2+x-lnx t F(x) = (l + /??)x-lnx , F r (.v) = ;??+1- -, X尸(而"2一点="工点,要证财(斤)<。
,只需证号等〈卷令/= J±G (0,1),即证 21IWT + ;>0.令力(/) = 21n/-i + ;(0<r < 1),则所以函数力。
)在(0』)上单调递减,3)>力(1)=0,即证2hWT + ;>0.由上述分析可知/m )<0.【规律总结】这是极值点偏移问题,此类问题往往利用换元把冷工转化刈的函数,常把公&的关系变形为齐次式,设,= ±J = ln 土J = = 等,构造函数来解决,可称之为构造比较函数.12A 2法. 思路二:因为。
<演<x],只需证皿用一也占一上手〉。
,] 7^一(、八)2* _ 1 _ x + x 2 _ 287-x-占 _("7-《)X lyjx^Xyfx 2yfx^Xyfx所以函数。
(X )在(0/2)上单调递减,eW >eU ) = 0,即证lnxTn.q > 濠 由上述分析可知【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于X (或4)的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主 元法.因为再,心分别是函数F (x )的两个零点,所以 (l + w)^ = In%, । , i In* - Inx.也哈…眸,两式相减,得仙=^^思路一:因为。
1. (2010?辽宁)已知函数 f (x ) = (a+1) Inx+ax 2+1 (1) 讨论函数f (x )的单调性;(2) 设 a v- 1 .如果对任意 x i , X 2€( 0, +x) , | f (x i )- f (X 2) | >4| x i - X 2|,求 a 的取值范围.2解:(I ) f (x )的定义域为(0, +x) • • 「L :「■: :■- -M-.IX当a >0时,f (x )>0,故f (乂)在(0, +x)单调递增; 当a <- 1时,f ' (x )v 0,故f (乂)在(0, +x)单调递减;当-1 v a v 0时,令f ( x ) =0,解得单调递增,在*8)单调递减.(II )不妨假设x 1> X 2,而a v - 1 ,由(I )知在(0, +x)单调递减, 从而? X 1 , X 2€( 0, +x) , | f (X 1)— f ( X 2) | >4| X 1 - X 2|等价于? X 1 , X 2 €( 0, +x) , f (X 2) +4x 2 > f ( X 1) +4x 1 ① 令 g (x ) =f (x ) +4x ,则才 Cx)=-^+2ax+4①等价于g (x )在(0, +x)单调递减,即^丄_、.卄山二「|.2 ( 2018?呼和浩特一模)已知函数f (x ) =lnx , g (x )丄? - bx (b 为常数). (I )当b=4时,讨论函数h (x ) =f (x ) +g (x )的单调性;(n ) b > 2 时,如果对于? X 1, X 2€( 1 , 2],且 X 1M X 2,都有 | f (X 1)- f ( X 2) | v | g (X 1)- g (X 2) |成立,求实数b 的取值范围.解:(1) h (x ) =lnx^fx 2- bx 的定义域为(0, +^),当 b=4 时,h (x ) =lnx^-x 2 - 4x , h' (x )丄+x -,XX令 h' (x ) =0,解得 X 1=2- .「;,X 2=2+「;,当 x €( 2-二,2+「;)时,h' (x )v 0, 当 x €( 0, 2- J ;),或(2+ -;, +X )时,h ' (x )> 0,所以,h (x )在€( 0, 2-硬),或(2出,+x)单调递增;在(2-(5, 2+怎)单调递减;(I)因为f (x ) =lnx 在区间(1, 2]上单调递增,高中数学压轴题系列——导数专题——双变量问题(2)宜二)时,f (x )>? 48)时,f ( x)v 0. a+1 la故 f (X )在(0,aH 2a从而笠旦/蔦1)' -22 孑十1 2X2+12/十1故a的取值范围为(-X,- 2] . (12分)当b> 2时,g (x) =_x2- bx在区间(1, 2]上单调递减,2不妨设X1> X2,则| f (X1)- f ( X2) | < | g ( X1)- g (X2)| 等价化为f (X1)+g ( X1)< f (X2) +g ( X2), 令© ( X) =f ( X) +g (x),则问题等价于函数© (x)在区间(1, 2]上单调递减,即等价于©'(x) 4+x-b<0在区间(1, 2]上恒成立,所以得b》丄+x,因为y丄+X在(1, 2]上单调递增,所以y max丄+2盘所以得2C 2 23. ( 2018?乐山二模)已知f (x)(1)求 f (X )的单调区间;(2) 令 g (x ) =a«-2lnx ,则g (x ) =1时有两个不同的根,求a 的取值范围;(3) 存在X 1, X 2€( 1 , +X )且 X 1MX 2,使 | f (X 1) -f (X 2) | > k| lnx 1- Inx 2|成立,求k 的取值范围.解:(1 )T f (x)― 一门'29一“ -(H21 nx)"2K,f'(x )仝 -------------------- ' \丿 4故 x €( 0, 1)时,f'( x )> 0, x €( 1, +x)时,f ( x )< 0, 故f (乂)在(0, 1) 上单调递增,在(1, +x)上单调递减;(2)v g (x ) =a«- 2lnx=1,二 a ------------ :'=f (X ),作函数f (X )的图象 如下,•- f (1)-T =1,「.结合图象可知,a 的取值范围为(0, 1); (3)不妨设 X 1>X 2> 1 ,vf (x )在(1, +x)上单调递减,y=lnx 在(1,+x)上单调递增;二 | f (X 1)— f (X 2)| > k| lnx 1 - lnX 2| 可化为 f (X 2) - f=-2x+3.(U )若-2<a <- 1 时,对任意 X 1, X 2 € [ 1, 2],不等式 | f (X 1)- f (X 2) | <t| g (X 1)- g (X 2) |34. ( 2018?衡阳三模)已知函数(I )判断函数F (x ) =f (x )(a € R),函数 g (x )恒成立,求实数t 的最小值.5. ( 2018?可南模拟)已知函数;二二p ::工-丄:・-'「 (1)若m v 0,曲线y_f (x )在点(1, f (1))处的切线在两坐标轴上的截距之和为2,求m 的值;1I f(x )(2) ------------------------------------------------------------------------------------------------------------------ 若对于任意的 皿£ [£, 1]及任意的 X 1, X 2 € [ 2, e ] , X 1^X 2, 总有| -------------------------- 1>—-—成立,2 xj-z x 1x2 求t 的取值范围.解:(1)因为 f (I )_21,所以 f* (x 〕二号七-2 , f (1) _m — 1.又因为切点坐标为(L* 令x_0,得尸紀L ;令y_0,得沪.由,卡二;)'呼二2,化简得2m 2+m — 6_0, 解得m_-2或二-一,又m v 0,所以m_-2.(1P )翳包i 尸.1 ― -且/+ (1-a) g+1 _(-宓十1)〔工+1〕 F L K J=—-ax+1-^- ------------------------------------------------ .x i x(1) 当a < 0时,F' (x )> 0,函数y_F (乂)在(0, +^)上单调递增;(2) 当a > 0时,令F' (x )> 0,解得0=蛊<丄;令F' (x )v 0,解得疋〉丄.a解:(D h 二 i:i —<,其定义域为为(0, +x), 故函数y=F (x )在 © a 丄)上单调递增,在(―,中)上单调递减.a a21, - -ax +K -H 1—axrl = ---------------I2当-2w a w — 1时,函数y_f (x )单调递增,不妨设 又函数y_g (x )单调递减,所以原问题等价于:当- 对任意 1 w X 1W x 2W 2,不等式 f (x 2)— f (X 1)w t [ g 即 f (X 2)+tg (x 2)w f (X 1)+tg (X 1)对任意-2w a w — 1, 1 w X 1W x 2W 2 恒成立. (II )由题意知t >O.f"(山1 w x i < x 2< 2, 2< a <— 1 时, (X 1)- g ( X 2)]恒成立,1则h (x )在[1,2]上单调递减.得 .对任意a € [ — 2,—1] , x € [1 ,2]恒成立.记 h ( x )=f ( x ) +tg ( x ) =lnx — 立.■■+ (1 — 2t ) x+3t ,—2,— 1],贝则 H (韵…二HG2)二2时L+l-2t < 0 在 x €( 0, +X )上恒成 则 2t — 1>( 2x+—) max ,而 y_2x —在[1, 2]上单调递增,............ '1 所以函数y=2x+L 在[1, 2]上的最大值为二.由2t — 1,解得t.故实数t 的最小值为 IL4,所以切线方程为:(2)不妨设X1 >血,由(1) 知,二〔乂.-丄-工I , f < ■■-,所以f (x )> 0, f ( X )为增函数,从而f ( X 1)> f (X 2).等价于£[厂)亠£(貸2)》即 J -F6 J 〔丄,所以 £(x [2)+"^— •X 2|g]只2,则g (X1)> g (X2),所以g (X )在[2, e]上为单调递增函数,号对于IU E [寺,i ]恒成立,所以,即「:,: _ :■:—对于x € [2, e ]恒成立.设 h (x ) =x 3 - 2x 2因此,t < 1,即 t €( — *, 1].gCx)-f (s)+y 因此 g' (x )>0,;:,则h‘ D 二3,-4工十吉2(3区一4)十寺>0,所以 h (x )在[2, e ]上单调递增,h (x ) min =h (2) =1,。
高三数学专题破译函数中双变量问题破译函数中双变量问题单选题1.已知函数 $f(x)=e^{4x-1},g(x)=\frac{1}{2}+\ln(2x)$,若$f(m)=g(n)$ 成立,则 $n-m$ 的最小值为()A。
3B。
3.5C。
4D。
4.5答案:C解析:本题主要考查利用导数研究函数的单调性进而求最值,属于难题。
求最值问题往往先将所求问题转化为函数问题,然后根据配方法、换元法、不等式法、三角函数法、图像法、函数单调性法求解。
利用函数的单调性求最值,首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求函数的最值即可。
填空题2.已知 $f(x)=(x+1)e^{2-x+1}$,则 $f(x)$ 的定义域是__________。
答案:$(-\infty,+\infty)$。
3.已知 $f(x)=(x+1)e^{2-x+1},g(x)=(x+1)+a$,若 $\existsx_1,x_2\in\mathbb{R}$,使得 $f(x_2)\geq g(x_1)$ 成立,则实数 $a$ 的取值范围是__________。
答案:$(-\infty,27/e^{27})$。
解析:$\exists x_1,x_2\in\mathbb{R}$,使得 $f(x_2)\geq g(x_1)$ 成立,即为 $f(x)\max\geq g(x)\min$。
又$f'(x)=(x+1)e^{-x+2}$,由 $f'(x)=0$ 得 $x=-1$ 或 $x=2$,且当$x0$,$f(x)$ 单调递增;当 $x>2$ 时,$f'(x)<0$,$f(x)$ 单调递减,所以 $f(x)\max=f(2)=27/e^{27}$,又 $g(x)\min=a$,则$a\leq 27/e^{27}$,故实数 $a$ 的取值范围是 $(-\infty,27/e^{27}]$。
4.若不等式 $x-2y\leq c(x-y)$ 对任意满足 $x>y$ 的实数$x,y$ 恒成立,则实数 $c$ 的最大值为__________。
综述,在解决函数问题时,经常会遇到在某一范围内任意变动的双变量问题,由于两个变量都在动,所以不知道把哪个变量作为自变量研究,从而无法展开思路.对于该类问题的处理方法一般可从以下两个方面进行:(1)选取主元法,不管有多少个变量,可选一个变量为主元,其他变量为参数;(2)合理运用转化思想,将几个变量看作整体,即多元化一元. 一、单选题A .ln 2[8,)2-+∞ B .ln 25[8,2ln 2]24--- C .ln 2(,8]2-∞-D .5(,2ln 2]4-∞--【答案】C【解析】由函数()ln(f x x =在定义域单调递增,对于任意11[,2]2x ∈,存在21[,2]2x ∈,使得22112ln (2)()x f x x a f x ++≤成立, 即任意11[,2]2x ∈,存在21[,2]2x ∈,使得22112ln 2x x x a x ++≤成立, 即满足()2211max2maxln 2x x x a x ⎛⎫++≤ ⎪⎝⎭, 令2111()2g x x x a =++,对称轴方程为11x =-,在11[,2]2x ∈可得1max ()(2)=8g x g a =+ 令222ln ()x h x x =,求导可得22221ln ()x h x x -'=,2()0h x '=,可得2x e =,在()20,x e ∈,2()0h x '>,2()h x 单调递增, 所以在21[,2]2x ∈,2max ln 2()(2)2h x h ==,即ln 282a +≤, 解得ln 282a ≤-,故选C .A.5,3⎡⎫+∞⎪⎢⎣⎭B.1,3⎡⎫+∞⎪⎢⎣⎭C.5,3⎡⎫-+∞⎪⎢⎣⎭D.1,3⎡⎫-+∞⎪⎢⎣⎭【答案】C【解析】()32f x ax bx cx=++,()232f x ax bx c'∴=++,由不等式()()5xf x af x'-≤对x R∀∈恒成立,可得()()()2323250a a xb ab xc ac x-+-+--≤对x R∀∈恒成立,所以,230a a-=且0a≠,解得3a=,则不等式2250bx cx++≥对x R∀∈恒成立,所以24200bc b>⎧⎨∆=-≤⎩,则25cb≥,所以,()222125252210553315153c c cb c b c c ca------=≥==≥-.因此,b2ca-的取值范围为5,3⎡⎫-+∞⎪⎢⎣⎭.故选:C.A.[]83ln3,6-B.)283ln3,1e⎡--⎣C.[]94ln3,6-D.)294ln3,1e⎡--⎣【答案】B【解析】因为ln1,1()1(2),13x xf xx x-≥⎧⎪=⎨+<⎪⎩,故其函数图像如下所示:令11lnx-=,解得2x e=;令11lnx-=-,解得1x=.数形结合可知,若要满足()()f fαβ=,且αβ<,则()21,eβ∈,且()1213lnαβ+=-,解得35lnαβ=-.故βα-35ln ββ=-+,()21,e β∈.令()()235,1,g x x lnx x e =-+∈,则()31g x x'=-,令()0g x '=,解得3x =, 故()g x 在区间()1,3单调递减,在区间()23,e 单调递增,则()()()2216,3833,1g g ln g ee==-=-,故())2833,1g x ln e ⎡∈--⎣.即可得βα-)2833,1ln e ⎡∈--⎣.故选:B. A .4个 B .3个 C .2个 D .1个【答案】D【解析】对于①,∵()xf x e ax =-, ∴()xf x e a '=-,令()0xf x e a '=->,当0a ≤时,()0xf x e a '=->在x ∈R 上恒成立,∴()f x 在R 上单调递增.当0a >时,由()0f x '>,解得ln x a >;由()0f x '<,解得ln x a <; ∴()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.∵函数()xf x e ax =-有两个零点1x ,2x ,∴0a >,(ln )0f a <,即ln ln 0a e a a -<,即ln 0a a a -<, 解得:a e >;所以①不正确;对于②,因为函数()xf x e ax =-有两个零点1x ,2x ,所以1x ,2x 是方程0x e ax -=的两根,因此11ln x ax =,22ln x ax =, 所以()()()212121212ln 2ln ln 2ln x x a x x a x x x x +==+>+,取22e a =,2(2)20f e a =-=,∴22x =,(0)10=>f ,∴101x <<,∴122x x +>,所以②不正确;对于③,(0)10=>f ,∴101x <<,121x x >不一定,∴所以③不正确; 对于④,f (x )在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增, ∴有极小值点0ln x a =,且12022ln x x x a +<=,所以④正确. 综上,正确的命题序号是④.故选:D A .12B .22C .322D .92【答案】C【解析】由题意,得,代换,代换,则满足:,即,以代换,可得点,满足,因此求()()22a cbc -++的最小值即为求曲线上的点到直线的距离的最小值,设直线与曲线相切于点,则,解得,所以切点为,所以点到直线的距离,则()()22a cbc -++的最小值为,综上所述,选C. A .14e-B .12e-C .1e-D .2e-【答案】B【解析】设切点为00(,)xx e b +,因为()x f x e b =+,所以()xf x e '=,所以00()x f x ea '==,所以0ln x a =,又切点00(,)xx e b +在直线(1)y a x =+上,所以00(1)xe b a x +=+, 所以0a b ax a +=+,所以0ln b ax a a ==,所以2ln ab a a =, 令2()ln (0)g a a a a =>,则21()2ln 2ln (2ln 1)g a a a a a a a a a a'=+⋅=+=+, 令()0g a '<,得120a e -<<, 令()0g a '>,得12a e ->,所以()g a 在12(0,)e -上递减,在12(,)e -+∞上递增, 所以12a e-=时,()g a 取得最小值11122221()()ln 2g e e ee---==-. 即ab 的最小值为12e-.故选:BA .αβ>B .0αβ+>C .αβ<D .22αβ>【答案】D【解析】构造()sin f x x x =形式,则()sin cos f x x x x +'=,0,2x π⎡⎤∈⎢⎥⎣⎦时导函数()0f x '≥,()f x 单调递增;,02x π⎡⎫∈-⎪⎢⎣⎭时导函数()0f x '<,()f x 单调递减.又 ()f x 为偶函数,根据单调性和对称性可知选D.故本小题选D.A .2,13⎡⎤⎢⎥⎣⎦B .[)1,+∞ C .2,3⎡⎫+∞⎪⎢⎣⎭D .31,2⎡⎤⎢⎥⎣⎦【答案】A【解析】1'()ln 1xf x e x x ⎛⎫=+- ⎪⎝⎭,令1()ln 1g x x x=+-,则22111'()x g x x x x -=-=, 故当112x <<时,)'(0g x <,()g x 单调递减,当1x >时,'()0,()g x g x >单调递增,()(1)0g x g ∴≥=,从而当1,2x ⎡⎫∈+∞⎪⎢⎣⎭时,'()0f x ≥,()f x 在区间1,2⎡⎫+∞⎪⎢⎣⎭上单调递增. 设()()222314h a a a e a e =+--=+--,则()h a 在[]2,1--上单调递减,在[]1,1-上单调递增,()max ()1h a h e ==-,存在[]2,1a ∈-,使21223f a a e m ⎛⎫-≤+-- ⎪⎝⎭成立,等价于()121f e f m ⎛⎫-≤-= ⎪⎝⎭.1211122m m ⎧-≤⎪⎪∴⎨⎪-≥⎪⎩,解得213m ≤≤.故选:A .A .240,e ⎛⎫ ⎪⎝⎭B .61,e ⎛⎫⎪⎝⎭C .40,e ⎛⎫ ⎪⎝⎭D .281,e ⎛⎫⎪⎝⎭【答案】A【解析】由()(0)xf x ae a =>,2()g x x m =-,得()xf x ae '=,()2g x x '=,设()(0)xf x ae a =>与曲线2()g x x m =-的公共点为(,)s t ,则()sf s ae '=,()2g s s '=,∴两曲线在切点处的切线方程分别为()s s y ae ae x s -=-与22()y s m s x s -+=-,即sssy ae x ae sae =+-与22y sx s m =--.则22ss s s ae ae sae s m ⎧=⎨-=--⎩,整理得222s m s s s a e ⎧=-⎪⎨=⎪⎩①②. 由①且0m >,得0s <或2s >,当0s <时,两曲线无公共切线,则2s >. 由②得,2(2)s sa s e=>. 令2()(2)s s h s s e =>,则2(1)()0s s h s e-'=<,函数()h s 在(2,)+∞上为单调减函数, ()(2)h s h ∴<24e=,又当s →+∞时,()0h s →,∴实数a 的取值范围是24(0,)e.故选:A.二、填空题【答案】[),e +∞【解析】由题意可得max min ()()1f x f x a -≤-,且1a >,由于()ln 2ln (1)ln 2x x f x a a x a a a x =+-=-+',所以当0x >时,()0f x '>,函数()f x 在[0,1]上单调递增,则max min ()(1)1ln ,()(0)1f x f a a f x f ==+-==,所以max min ()()ln f x f x a a -=-,故1ln ln 1a a a a -≥-⇒≥,即a e ≥,应填答案[),e +∞.【答案】ln 34【解析】由22()()2ln 32ln 3f m f n n an m am =⇒-+=-+,所以222(ln ln )n m a n m -=-,令n m t =+,(2t ≥),则ln(1)(2)t m a t m t +=+,([1,5]m ∈,2t ≥), 显然ln(1)()(2)t m g m t m t +=+,在[1,)m ∈+∞单调递减, ∴ln(1)(1)(2)t a g t t +≤=+(2t ≥)令ln(1)()(1)(2)t h t g t t +==+,(2t ≥),22222(1)ln(1)()[(2)](1)t t t t h t t t t +-++'=++,∵2t ≥,∴2ln(1)1t +>,则2222(1)ln(1)t t t t +-++,∴令ln(1)()(1)(2)t h t g t t +==+在[2,)+∞单调递减,∴ln 3(2)4a h ≤=,∴实数a 的最大值为ln 34.故答案为:ln 34【答案】()1,+∞【解析】()()2155211x x f x x -++==-+++,当()1,x ∈-+∞时,有()2f x >-. 因为()2xg x xe =,所以()()222212xx x g x e xe x e '=+=+,当112x -<<-时,()0g x '<,函数()y g x =在11,2⎛⎫-- ⎪⎝⎭上单调递减,当12x >-时,()0g x '>,函数()y g x =在1,2⎛⎫-+∞ ⎪⎝⎭上单调递增,()1122g x g e ⎛⎫∴≥-=- ⎪⎝⎭,所以当1x >-时,()1,2g x e ⎡⎫∈-+∞⎪⎢⎣⎭.若0m >,则()214422emg x em m e ⎛⎫≥⋅-=- ⎪⎝⎭,()2212m f x m >-. 根据题意可知222m m ->-,解得1m ;若0m ≤,则()(]24,2emg x m ∈-∞-,()2212m f x m >-,不符合条件.综上所述,实数m 的取值范围是()1,+∞.故答案为:()1,+∞.【答案】7【解析】因为对任意[1,1]k ∈-,当(0,4]x ∈时,不等式26ln 9x x x a kx +-+≤恒成立,所以对任意[1,1]k ∈-,当(0,4]x ∈时,不等式26ln 9x x x ak x+-+≤恒成立即222min 6ln 96ln 916l 8n x x x a x x x a k a x x x x x+-++-+≤⇒≤-⇒≤+--所以当(0,4]x ∈时,不等式2n 86l a x x x --+≤恒成立 令2()6l ,48n ,(0]f x x x x x =--+∈ 则min ()a f x ≤2286(22)(3)()x x x x f x x x-+----'==当()0f x '>时,(22)(3)01304x x x x --<⎧⇒<<⎨<≤⎩当()0f x '<时,(22)(3)004x x x -->⎧⇒⎨<≤⎩01x <<或34x <≤所以函数()f x 在区间(0,1)和(3,4]上单调递减,在区间(1,3)上单调递增(1)0187,(4)6ln 41632166ln 4f f =-+==--+=-因为3166ln 4796ln 43(3ln16)3ln 016e --=-=-=>所以min ()7f x =所以7a ≤,a 的最大值为:7 故答案为:7 三、解答题(1)若2a =,求b 的取值范围;(2)求a 的最大值,使得对于b 的一切可能值,()f x 的极大值恒小于0. 【答案】(1)4b <-,(2)32e【解析】(1)当2a =,()()2220x bx f x x x++'=>,由()f x 存在极大值,可知方程2220x bx ++=有两个不等的正根,则2160,0,210,b b⎧∆=->⎪⎪->⎨⎪>⎪⎩∴4b <-.(2)()()220x bx af x x x++'=>,由()f x 存在极大值,可知方程220x bx a ++=有两个不等的正根, 设为12,x x 且12x x <,∴122a x x =,∴0a >,10x <<由()120f x x x x '<⇒<<,∴()f x 的极大值为()21111ln f x a x x bx =++,∵2112bx x a =--,∴()2111ln f x a x x a =--,构造函数()2ln g x a x x a =--,当0x <<时,()2220a a x g x x x x -'=-=>,所以()g x在⎛ ⎝上递增,由10x <<()1ln 322a a g x g ⎛⎫<=- ⎪⎝⎭. 所以当302a e <≤时,()()()110f x f x g x g ==<≤极大值.而当32a e >时,取332222a b e e -⎛⎫=-+ ⎪⎝⎭,即321x e =,3222a x e -=,此时()33202af x f e e ⎛⎫==-> ⎪⎝⎭极大值,不符合题意.综上所述,a 的最大值为32e .(1)当14a =时,求函数()y f x =的单调区间; (2)若对任意实数(1,2)b ∈,当(1,]x b ∈-时,函数()f x 的最大值为()f b ,求a 的取值范围.【答案】(Ⅰ)函数()f x 的单调递增区间为(1,0)-和(1,)+∞,单调递减区间为(0,1);(Ⅱ)[1ln 2,)-+∞ 【解析】(1)当14a =时,21()ln(1)4f x x x x =++-, 则11(1)()1(1)122(1)x x f x x x x x -=+-=>-++', 令()0f x '>,得10x -<<或1x >;令()0f x '<,得01x <<, ∴函数()f x 的单调递增区间为(1,0)-和(1,)+∞,单调递减区间为(0,1). (2)由题意[2(12)]()(1)(1)x ax a f x x x -->-+'=,(1)当0a ≤时,函数()f x 在(1,0)-上单调递增,在(0,)+∞上单调递减,此时,不存在实 数(1,2)b ∈,使得当(1,]x b ∈-时,函数()f x 的最大值为()f b . (2)当0a >时,令()0f x '=,有10x =,2112x a=-, ①当12a =时,函数()f x 在(1,)-+∞上单调递增,显然符合题意. ②当1102a ->即102a <<时,函数()f x 在(1,0)-和1(1,)2a -+∞上单调递增, 在1(0,1)2a-上单调递减,()f x 在0x =处取得极大值,且(0)0f =, 要使对任意实数(1,2)b ∈,当(1,]x b ∈-时,函数()f x 的最大值为()f b , 只需(1)0f ≥,解得1ln 2a ≥-,又102a <<, 所以此时实数a 的取值范围是11ln 22a -≤<. ③当1102a -<即12a >时,函数()f x 在1(1,1)2a--和(0,)+∞上单调递增,在1(1,0)2a-上单调递减,要存在实数(1,2)b ∈,使得当(1,]x b ∈-时, 函数()f x 的最大值为()f b ,需1(1)(1)2f f a-≤, 代入化简得1ln 2ln 2104a a ++-≥,① 令11()ln 2ln 21()42g a a a a =++->,因为11()(1)04g a a a =-'>恒成立, 故恒有11()()ln 2022g a g >=->,所以12a >时,①式恒成立,综上,实数a 的取值范围是[1ln 2,)-+∞.(1)求函数()f x 的单调区间;(2)设()224g x x bx =-+-,若对任意()[]120,2,1,2x x ∈∈,不等式()()12f x g x ≥恒成立,求实数b的取值范围.【答案】(1)函数()f x 在()1,3上单调递增;在0,1和()3,+∞上单调递减; (2),2⎛-∞ ⎝⎦. 【解析】(1)()13ln 44f x x x x =-+的定义域是()0,+∞,()22211343444x x f x x x x -='-=-- 由0x >及()0f x '>得13x <<,由0x >及()0f x '<得01x <<或3x >; 所以函数()f x 在()1,3上单调递增;在0,1和()3,+∞上单调递减.(2)若对任意()[]120,2,1,2x x ∈∈,不等式()()12f x g x ≥恒成立,问题等价于()()min max f x g x ≥ 由(1)可知,在()0,2上,1x =是函数极小值点,这个极小值是唯一的极值点 故也是最小值点,所以()()min 112f x f ==-,()[]224,1,2g x x bx x =-+-∈ 当1b <时,()()max 125g x g b ==-;当12b ≤≤,()()2max 4g x g b b ==- 当2b >时,()()248g x g b ==-问题等价于1{1252b b <-≥-或212{142b b ≤≤-≥-或2{1482b b >-≥-解得1b <或1b ≤≤或b =∅即2b ≤b 的取值范围是,2⎛-∞ ⎝⎦.(1)当2b =时,试讨论()f x 的单调性;(2)若对任意的3,b e ⎛⎫∈-∞- ⎪⎝⎭,方程()0f x =恒有2个不等的实根,求a 的取值范围.【答案】(1)0a >,()f x 在20,4a ⎛-+ ⎝⎭单调递增,24a ⎛⎫-+∞ ⎪ ⎪⎝⎭单调递减; 0a =,()f x 在10,2⎛⎫⎪⎝⎭单调递增,1,2⎛⎫+∞ ⎪⎝⎭单调递减;102a -<<,()f x 在20,4a ⎛-+ ⎝⎭单调递增,2244a a ⎛⎫-- ⎪ ⎪⎝⎭单调递减,⎫+∞⎪⎪⎝⎭单调递增; 12a ≤-,()f x 在()0,∞+单调递增.(2)220a e<≤【解析】(1)()2122x ax f x x--'=,0x > (i )0a >,令()0f x '=,得到21220x ax --=,解得x =,x =所以当x ⎛∈ ⎝⎭时,()0f x '>,()f x 单调递增,当24x a ⎛⎫-+∈+∞ ⎪ ⎪⎝⎭时,()0f x '<,()f x 单调递减,所以()f x 在⎛ ⎝⎭单调递增,⎫+∞⎪⎪⎝⎭单调递减; (ii )0a =,令()0f x '=,得到12x = 当10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0f x '<,()f x 单调递减, 所以()f x 在10,2⎛⎫ ⎪⎝⎭单调递增,1,2⎛⎫+∞ ⎪⎝⎭单调递减; (iii )102a -<<,令()0f x '=,得到24x a-+=,24x a--=当2240,,44x a a ⎛⎛⎫-+--∈+∞ ⎪ ⎪⎝⎭⎝⎭时,()0f x '>,()f x 单调递增,当x ∈⎝⎭时,()0f x '<,()f x 单调递减,()f x 在20,4a ⎛-+ ⎝⎭单调递增,22,44a a ⎛-+-- ⎝⎭单调递减,24a ⎛⎫-+∞ ⎪ ⎪⎝⎭单调递增; (iiii )12a ≤-,()0f x '>在()0,∞+恒成立,所以()f x 在()0,∞+单调递增; 综上所述,0a >,()f x 在20,4a ⎛⎫- ⎪ ⎪⎝⎭单调递增,24a ⎛⎫-++∞ ⎪ ⎪⎝⎭单调递减; 0a =,()f x 在10,2⎛⎫ ⎪⎝⎭单调递增,1,2⎛⎫+∞ ⎪⎝⎭单调递减;102a -<<,()f x 在20,4a ⎛-+ ⎝⎭单调递增,2244a a ⎛⎫-- ⎪ ⎪⎝⎭单调递减,⎫+∞⎪⎪⎝⎭单调递增; 12a ≤-,()f x 在()0,∞+单调递增.(2)因为对任意的3,b e ⎛⎫∈-∞- ⎪⎝⎭,方程()0f x =恒有2个不等的实根所以将问题等价于ln 2x ax b x-=+有两解 令()ln 2x g x x -=,0x >有()23ln xg x x -'=,0x >()30g e ∴=;()g x 在()30,e 递增,()3,e +∞递减;0x →,()g x →-∞; x →+∞,()0g x →;∴有图象知要使()ln 2x g x x-=的图像和y ax b =+的图像有两个交点, 0a >,过30,e ⎛⎫- ⎪⎝⎭作切线时,斜率a 最大.设切点为()00,x y ,有002003ln 2ln 5x x y x x x --=+, 002ln 53x x e-∴=-,0x e ∴= 此时斜率a 取到最大22e 220a e∴<≤.。
一、单选题1.已知函数()()()411,ln 22x f x e g x x -==+,若()()f m g n =成立,则n m -的最小值为( ) A .2ln213-B . 12ln23+C . 12ln23+D . 1ln24- 【答案】C【方法点睛】本题主要考查利用导数研究函数的单调性进而求最值,属于难题. 求最值问题往往先将所求问题转化为函数问题,然后根据:配方法、换元法、不等式法、三角函数法、图像法、函数单调性法求解,利用函数的单调性求最值,首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求函数的最值即可.二、填空题2.已知f (x )=(x +1)3e-x +1,g (x )=(x +1)2+a ,若∃x 1,x 2∈R ,使得f (x 2)≥g (x 1)成立,则实数a 的取值范围是__________. 【答案】27,e ⎛⎤-∞ ⎥⎝⎦【解析】∃x 1,x 2∈R ,使得f (x 2)≥g (x 1)成立,即为f (x )max ≥g (x )min .又f ′(x )=(x +1)2e-x +1(-x +2),由f ′(x )=0得x =-1或2,且当x <2时,f ′(x )>0,f (x )单调递增;当x >2时,f ′(x )<0,f (x )单调递减,所以f (x )max =f (2)=27e ,又g (x )min =a ,则a ≤27e,故实数a 的取值范围是(-∞,27e]. 点睛:对于不等式任意或存在性问题,一般转化为对应函数最值大小关系,即()()()()1212min min ,,x x f x g x f x g x ∀∃≥⇒≥;()()()()1212min max ,,x x f x g x f x g x ∀∀≥⇒≥, ()()()()1212max min ,,x x f x g x f x g x ∃∃≥⇒≥ ()()()()1212max max ,,x x f x g x f x g x ∃∀≥⇒≥3.若不等式x 2-2y 2≤cx (y -x )对任意满足x >y >0的实数x ,y 恒成立,则实数c 的最大值为__________.【答案】4点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.三、解答题4.已知函数()ln 1f x x a x =--(a 为常数)与x 轴有唯一的公关点A . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)曲线()y f x =在点A 处的切线斜率为23a a --,若存在不相等的正实数12x x ,满足()()12f x f x =,证明:121x x <.【答案】(Ⅰ)当1a =时,函数()f x 的递增区间为()1,+∞,递减区间为()0,1; 当0a ≤时,函数()f x 的递增区间为()0,+∞,无递减区间.(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)因为函数()ln 1f x x a x =--的定义域为()0,+∞,且()10f =,故由题意可知曲线()f x 与x 轴存在公共点()1,0A ,又()x af x x'-=,对a 进行讨论分0a ≤,0111a a a <=,,四种情况进行可得解(Ⅱ)容易知道函数()f x 在()1,0A 处的切线斜率为()2113f a a a =-=--',得2a =±,由(Ⅰ)可知2a =-,且函数()f x 在区间()0,+∞上递增.不妨设12x x <,因为()()12f x f x =,则()()120f x f x <<,则有()11222ln 12ln 1x x x x -+-=+-,整理得()211222ln x x x x +=-,利用基本不等式构建关于12x x 的不等关系即可证得.②若1a =,则函数()f x 的极小值为()10f =,符合题意;③若1a >,则由函数()f x 的单调性,有()()10f a f <=,取201x a a =+>,有()()20ln 1f x a a a ⎡⎤=-+⎣⎦.下面研究函数()()21g a a ln a =-+,1a >,因为()()22101a g a a '-=>+恒成立,故函数()g a 在()1,+∞上递增,故()()11ln20g a g >=->,故()()00f x ag a =>成立,函数()f x 在区间()2,1a a+上存在零点.不符合题意. 综上所述:当1a =时,函数()f x 的递增区间为()1,+∞,递减区间为()0,1; 当0a ≤时,函数()f x 的递增区间为()0,+∞,无递减区间.点睛:本题考查了利用导数研究函数的单调性,利用基本不等式来证明,考查了分类讨论的思想,属于中档题. 5.已知函数()21ln 2f x a x x ax =+- (a 为常数)有两个极值点. (1)求实数a 的取值范围;(2)设f (x )的两个极值点分别为x 1,x 2,若不等式f (x 1)+f (x 2)<λ(x 1+x 2)恒成立,求λ的最小值.【答案】(1)()4,+∞;(2)ln43-【解析】试题分析:(1)先求导数,转化为对应一元二次方程有两个正根,再根据实根分布列不等式组,解得实数a 的取值范围;(2)分离参数转化为对应函数最值问题:()()1212f x f x x x λ+>+ 最大值,再化简()()1212f x f x x x ++为a 的函数,利用导数可得其值域,即得λ的最小值.试题解析:(1)f ′(x )=+x -a =(x >0),于是f (x )有两个极值点等价于二次方程x 2-ax +a =0有两正根, 设其两根为x 1,x 2,则,解得a >4,不妨设x 1<x 2,此时在(0,x 1)上f ′(x )>0,在(x 1,x 2)上f ′(x )<0,在(x 2,+∞)上f ′(x )>0.因此x 1,x 2是f (x )的两个极值点,符合题意. 所以a 的取值范围是(4,+∞).点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法, 使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件. 6.设函数f (x )=e mx +x 2-mx .(1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有()()121f x f x e -≤-,求m 的取值范围. 【答案】(1)见解析;(2)[]1,1-【解析】试题分析:(1)先求导数,再根据m 正负以及指数函数单调性讨论得导函数符号(2)先利用最值转化不等式恒成立得f (x )最大值与最小值的差不大于e -1,再利用导数研究函数单调性,解对应不等式得m 的取值范围. 试题解析:(1)f ′(x )=m (e mx -1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0,f ′(x )<0; 当x ∈(0,+∞)时,e mx -1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx -1>0,f ′(x )<0; 当x ∈(0,+∞)时,e mx -1<0,f ′(x )>0.所以,f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.点睛:不等式有解问题与不等式恒成立问题这两类问题都可转化为最值问题,即()f x a <恒成立⇔()max a f x >,()f x a >恒成立⇔()min a f x <. 7.已知()()xf x e ax a R =-∈(e 为自然对数的底数).(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点12,x x ,求a 的取值范围; (2)在(1)的条件下,求证:122ln x x a +<. 【答案】(Ⅰ)见解析;(Ⅱ)(1)a e >;(2) 见解析.【解析】试题分析:(I )求出函数的导数,通过讨论a 的范围,分别令()'0f x >求得x 的范围,可得函数()f x 增区间,()'0f x <求得x 的范围,可得函数()f x 的减区间;(II )(1)由(Ⅰ)知,当0a ≤时, ()f x 在R 上为增函数,()f x 不合题意;当0a >时, ()f x 的递增区间为()ln ,a +∞,递减区间为(),ln a -∞,只需()()()m inl n l n 1l n 0f x f aa a a a a ==-=-<,即可解得a 的取值范围;(2)分离参数a ,问题转化为证明证明()1212122x x x xe e x x e e +->-,不妨设12x x >,记12t x x =-,则0,1tt e >>,因此只要证明:121t t e t e +⋅>-,即()220t t e t -++>根据函数的单调性证明即可.试题解析:(Ⅰ)()f x 的定义域为R ,()xf x e a '=-,(1)当0a ≤时,()0f x '>在R 上恒成立,∴()f x 在R 上为增函数; (2)当0a >时,令()0f x '>得ln x a >,令()0f x '<得ln x a <,∴()f x 的递增区间为()ln ,a +∞,递减区间为(),ln a -∞;(2)由(Ⅱ)(1),当a e >时,()f x 有两个零点12,x x ,且()f x 在()ln ,a +∞上递增, 在(),ln a -∞上递减,依题意,()()120f x f x ==,不妨设12ln x a x <<.要证122ln x x a +<,即证122ln x a x <-, 又12ln x a x <<,所以122ln ln x a x a <-<,而()f x 在(),ln a -∞上递减,即证()()122ln f x f a x >-, 又()()120f x f x ==,即证()()222ln f x f a x >-,(2ln x a >).构造函数()()()22ln 22ln (ln )xx a g x f x f a x e ax a a x a e=--=--+>,()2220xx a g x e a a e=+->=',∴()g x 在()ln ,a +∞单调递增,∴()()ln 0g x g a >=,从而()()2ln f x f a x >-, ∴()()222ln f x f a x >-,(2ln x a >),命题成立. 8.已知函数()12x f x ekx k +=-- (其中e 是自然对数的底数,k ∈R ).(1)讨论函数()f x 的单调性;(2)当函数()f x 有两个零点12,x x 时,证明:122x x +>-. 【答案】(1)见解析;(2)见解析. 【解析】试题分析:本题考查导数与函数单调性的关系以及用导数证明不等式的问题。