沪科版高中物理选修3-3word学业分层测评第1章1.3分子热运动
- 格式:docx
- 大小:187.61 KB
- 文档页数:6
学业分层测评(二)(建议用时:45分钟)[学业达标]1.(多选)如图1-2-7所示,甲木块的质量为m1,以v的速度沿光滑水平地面向前运动,图1-2-7正前方有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后( )A.甲木块的动量守恒B.乙木块的动量守恒C.甲、乙两木块所组成系统的动量守恒D.甲、乙两木块所组成系统的动能不守恒【解析】根据动量守恒定律的条件,以甲、乙为一系统,系统的动量守恒,A、B错误,C正确;甲、乙的一部分动能转化为弹簧的弹性势能,甲、乙系统的动能不守恒,D正确.【答案】CD2.一弹簧枪可射出速度为10 m/s的铅弹,现对准以6 m/s的速度沿光滑桌面迎面滑来的木块发射一颗铅弹,铅弹射入木块后未穿出,木块继续向前运动,速度变为5 m/s.如果想让木块停止运动,并假定铅弹射入木块后都不会穿出,则应再向木块中射入的铅弹数为( )【导学号:06092052】A.5颗B.6颗C.7颗D.8颗【解析】设木块质量为m1,一颗铅弹质量为m2,则第一颗铅弹射入,有m1v0-m2v=(m1+m2)v1,代入数据可得m1m2=15,设再射入n颗铅弹木块停止,有(m1+m2)v1-nm2v=0,解得n=8.【答案】D3.(多选)如图1-2-8所示,A、B两木块紧靠在一起且静止于光滑水平面上,木块C以一定的初速度v0从A的左端开始向右滑行,最后停在B木块的右端,对此过程,下列叙述正确的是( )图1-2-8A.当C在A上滑行时,A、C组成的系统动量守恒B.当C在B上滑行时,B、C组成的系统动量守恒C.无论C是在A上滑行还是在B上滑行,A、B、C三物块组成的系统动量都守恒D.当C在B上滑行时,A、B、C组成的系统动量不守恒【解析】当C在A上滑行时,对A、C组成的系统,B对A的作用力为外力,不等于0,故系统动量不守恒,选项A错误;当C在B上滑行时,A、B已分离,对B、C组成的系统,沿水平方向不受外力作用,故系统动量守恒,选项B正确;若将A、B、C三木块视为一系统,则沿水平方向无外力作用,系统动量守恒,选项C正确,选项D错误.【答案】BC4.如图1-2-9所示,光滑圆槽的质量为M,静止在光滑的水平面上,其内表面有一小球被细线吊着恰位于槽的边缘处,如果将线烧断,则小球滑到另一边的最高点时,圆槽的速度是________.(填“向左”“向右”或“0”)图1-2-9【解析】小球和圆槽组成的系统在水平方向不受外力,故系统在水平方向上的动量守恒(Δp x=0).细线被烧断瞬间,系统在水平方向的总动量为零.又知小球到达最高点时,球与槽水平方向上有共同速度,设为v′,由动量守恒定律有:0=(M+m)v′,所以v′=0.【答案】05.如图1-2-10所示,质量为M的盒子放在光滑的水平面上,盒子内表面不光滑,盒内放有一块质量为m的物体.从某一时刻起给m一个水平向右的初速度v0,那么在物块与盒子前后壁多次往复碰撞后物体的最终速度为________,方向向________.图1-2-10【解析】因水平面光滑,物块与盒子组成的系统水平方向动量守恒,又因盒子内表面不光滑,物块与盒子最终一定速度相等,由动量守恒定律可得:m v0=(M+m)v,故v=m v0M+m,方向水平向右.【答案】m v0M+m右6.如图1-2-11甲所示,在水平光滑轨道上停着甲、乙两辆实验小车,甲车上系有一穿过打点计时器的纸带,当甲车获得水平向右的速度时,随即启动打点计时器.甲车运动一段距离后,与静止的乙车发生正碰并粘在一起运动,纸带记录下碰撞前甲车和碰撞后两车的运动情况,如图乙所示,电源频率为50 Hz,则碰撞前甲车速度大小为________m/s,碰撞后两车的共同速度大小为________m/s.甲乙图1-2-11【解析】碰撞前Δx=1.2 cm,碰撞后Δx′=0.8 cm,T=0.02 s,由v=xt计算.【答案】0.60.47.某同学设计了一个用打点计时器“探究碰撞中的不变量”的实验:在小车A 的前端粘有橡皮泥,在小车A后连着纸带,推动小车A使之做匀速运动,然后与原来静止在前方的小车B相碰并粘合成一体,继续做匀速运动,他设计的具体装置如图1-2-12甲所示.甲乙图1-2-12(1)长木板右端下面垫放一小木片的目的是_______________________________________________________________________________________________________________________________.(2)若已获得的打点纸带如图乙所示,A为运动的起点,各计数点间距分别记为AB、BC、CD和DE,用天平测得A、B两车的质量分别为m A、m B,则需验证的表达式为______________________________________________________.【解析】(1)长木板右端下面垫放一小木片,目的是平衡摩擦力,使小车拖着纸带在木板上能做匀速运动.(2)从题图中可以看出,B到C的时间等于D到E的时间,所以可以用BC代表小车碰前的速度,用DE代表碰后的速度,应有m A·BC=(m A+m B)·DE.【答案】(1)平衡摩擦力(2)m A·BC=(m A+m B)·DE8.一个质量为2 kg的装砂小车,沿光滑水平轨道运动,速度为3 m/s,一个质量为1 kg的球从0.2 m高处自由落下,恰落入小车的砂中,此后小车的速度是多少?【解析】小车、砂、球三者组成的系统在水平方向上动量守恒,故M v=(M+m)v′,解得:v ′=MM +m v =22+1×3 m/s =2 m/s.【答案】2 m/s[能力提升]9.如图1-2-13所示,在光滑水平面的左侧固定一竖直挡板,A 球在水平面上静止放置,B 球向左运动与A 球发生正碰,B 球碰撞前、后的速率之比为3∶1,A 球垂直撞向挡板,碰后原速率返回.两球刚好不发生第二次碰撞,A 、B 两球的质量之比为________,A 、B 两球碰撞前、后的总动能之比为_______.图1-2-13【解析】设碰前B 球的速度为v 0,A 碰墙后以原速率返回恰好不发生第二次碰撞,说明A 、B 两球碰撞后速度大小相等、方向相反,即分别为13v 0和-13v 0根据动量守恒定律,得m B v 0=m B ⎝ ⎛⎭⎪⎫-13v 0+m A ·13v 0,解得m A ∶m B =4∶1; A 、B 两球碰撞前、后的总动能之比为12m B v 2012m A ⎝ ⎛⎭⎪⎫13v 02+12m B ⎝ ⎛⎭⎪⎫-13v 02=95. 【答案】4∶19∶510.如图1-2-14所示,质量为0.5 kg 的小球在距离车底面高20 m 处以一定的初速度向左平抛,落在以7.5 m/s 速度沿光滑水平面向右匀速行驶的敞篷小车中,车底涂有一层油泥,车与油泥的总质量为4 kg ,设小球落在车底前瞬间速度大小是25m/s ,则当小球与小车相对静止时,小车的速度大小为_______m/s ,方向向________.(g 取10 m/s 2)图1-2-14【解析】由平抛运动的知识可知:小球下落的时间t =2hg =2×2010 s =2 s ,在竖直方向的速度v y =gt =20 m/s ,由运动的合成可得在水平方向的速度v x =252-202 m/s =15 m/s ,由于小球和小车组成的系统在水平方向上满足动量守恒,所以4×7.5-0.5×15=(4+0.5)v ,解得v =5 m/s ,方向向右.【答案】5右11.如图1-2-15所示,一玩具小车携带若干质量为m 的弹丸,车和弹丸的总质量为M ⎝ ⎛⎭⎪⎫M m =201,在半径为R 的水平光滑轨道上以速度v 0做匀速圆周运动,若小车每转一周便沿运动方向相对地面以恒定速度v ⎝ ⎛⎭⎪⎫v 0v =15发射一颗弹丸,求小车发射第几颗弹丸时静止.【导学号:06092007】图1-2-15【解析】由题意知,小车每转一周,质量就减少m ,设发射第一颗弹丸后小车的速度为v 1(依次类推),由沿切线方向动量守恒,可得:发射一颗弹丸时M v 0=(M -m )v 1+m v发射两颗弹丸时(M -m )v 1=(M -2m )v 2+m v解得v 1=M v 0-m v M -m ,v 2=M v 0-2m v M -2m递推可知,发射n 颗弹丸时的速度v n =M v 0-nm v M -nm,令v n =0可得n =M v 0m v ,将已知条件M m =201和v 0v =15代入上式可得n =M v 0m v =4.【答案】412.如图1-2-16所示,在光滑水平面上有两个木块A 、B ,木块B 左端放置小物块C 并保持静止,已知m A =m B =0.2 kg ,m C =0.1 kg ,现木块A 以初速度v =2 m/s 沿水平方向向右滑动,木块A 与B 相碰后具有共同速度(但不粘连),C 与A 、B 间均有摩擦.求:图1-2-16(1)木块A 与B 相碰瞬间A 木块及小物块C 的速度大小;(2)设木块A 足够长,求小物块C 的最终速度.【解析】(1)木块A 与B 相碰瞬间C 的速度为0,A 、B 木块的速度相同,由动量守恒定律得m A v =(m A +m B )v A ,v A =v 2=1 m/s.(2)C 滑上A 后,摩擦力使C 加速,使A 减速,直至A 、C 具有共同速度,以A 、C 整体为系统,由动量守恒定律得m A v A =(m A +m C )v C ,v C =23 m/s ,方向水平向右.【答案】(1)1 m/s0(2)23 m/s 方向水平向右13.如图1-2-17所示,光滑水平面上A 、B 两小车质量都是M ,A 车头站立一质量为m 的人,两车在同一直线上相向运动.为避免两车相撞,人从A 车跳跃到B 车上,最终A 车停止运动,B 车获得反向速度v 0,试求:(1)两小车和人组成的系统的初动量大小;(2)为避免两车相撞,且要求人跳跃速度尽量小,则人跳上B 车后,A 车的速度多大?【导学号:06092053】图1-2-17【解析】(1)由动量守恒定律可知,系统的初动量大小p =(M +m )v 0.(2)为避免两车相撞,最终两车和人具有相同的速度,设为v ,则由动量守恒定律得(M +m )v 0=(2M +m )v ,解得v =(M +m )v 02M +m. 【答案】(1)(M +m )v 0(2)(M +m )v 02M +m情感语录1.爱情合适就好,不要委屈将就,只要随意,彼此之间不要太大压力2.时间会把最正确的人带到你身边,在此之前,你要做的,是好好的照顾自己3.女人的眼泪是最无用的液体,但你让女人流泪说明你很无用4.总有一天,你会遇上那个人,陪你看日出,直到你的人生落幕5.最美的感动是我以为人去楼空的时候你依然在6.我莫名其妙的地笑了,原来只因为想到了你7.会离开的都是废品,能抢走的都是垃圾8.其实你不知道,如果可以,我愿意把整颗心都刻满你的名字9.女人谁不愿意青春永驻,但我愿意用来换一个疼我的你10.我们和好吧,我想和你拌嘴吵架,想闹小脾气,想为了你哭鼻子,我想你了11.如此情深,却难以启齿。
高中物理学习材料唐玲收集整理1.4 无序中的有序1.5 用统计思想解释分子运动的宏观表现学习目标知识脉络1.了解气体分子运动的特点,以及分子运动速率的统计分布规律.(难点)2.知道温度是分子平均动能的标志.(重点)3.理解气体压强形成的原因和影响气体压强大小的因素.(难点)无序中的有序[先填空]1.气体分子运动的特点(1)大量分子无规则运动,使气体分子间频繁碰撞.(2)分子运动的杂乱无章,使得分子在各个方向运动的机会均等.(3)通常状况下忽略气体分子之间的相互作用,认为气体分子除了相互碰撞或跟器壁碰撞外,不受力的作用,在空间自由运动.2.气体分子运动的统计规律在一定状态下,气体的大多数分子的速率都在某个数值附近,速率离开这个数值越远,具有这种速率的分子就越少,即气体分子速率总体上呈现“中间多,两头少”的分布特征.[再判断]1.气体的温度升高时,所有气体分子的速率都增大.(×)2.某一时刻气体分子向任意一个方向运动的分子数目近似相等.(√)3.某一温度下大多数气体分子的速率不会发生变化.(×)[后思考]为什么气体会充满它能到达的整个空间?【提示】由于气体分子间的距离比较大,分子间作用力很弱.通常认为,气体分子除了相互碰撞或者跟器壁碰撞外,不受力而做匀速直线运动,因而气体会充满它能达到的整个空间.1.气体的微观结构特点气体分子间的距离很大,大于10r0,所以,气体分子间的分子力很微弱,通常认为气体分子除相互碰撞或与器壁碰撞外,不受其他力的作用.2.气体分子运动的特点(1)气体分子可以在空间自由移动而充满它所能到达的任何空间.(2)气体分子间频繁发生碰撞一个空气分子在1 s内与其他分子的碰撞达65亿次之多,分子的频繁碰撞使每个分子速度的大小和方向频繁地发生改变,造成气体分子杂乱无章地做无规则运动.(3)某时刻,气体分子沿各个方向运动的概率相同.某时刻,沿任何方向运动的分子都有,且沿各个方向运动的分子数目是相等的.3.分子速率按统计规律分布(1)麦克斯韦气体分子速率分布规律正态分布曲线如图所示.图14 1如果以横坐标上的各等长区间表示相应的速率范围,以纵坐标表示所占的百分比,那么可以用直方图表示出一定温度下分子速率的分布,如图所示.图14 2从图中能看出分子在一定温度(0 ℃)下,速率在中间(300 m/s~400 m/s)最多,速率大于400 m/s和小于300 m/s的分子较少.温度升高,分子速率大的占的比例增多.(2)麦克斯韦速率分布规律的重大意义麦克斯韦的方法在物理学思想史上具有重大意义.它向人们指出,对于一个由大量微观粒子组成的系统,利用统计方法,一旦找出了其某个微观量的分布函数,便可求出这个微观量的统计平均值,而这个统计平均值正好等于该系统的相应宏观量.这样,就把分子的微观运动跟物体的宏观表现紧密地联系起来了.因此,人们称颂麦克斯韦的统计方法“标志着物理学新纪元的开始”.1.气体分子永不停息地做无规则运动,同一时刻都有向不同方向运动的分子,速率也有大有小.下表是氧气分别在0 ℃和100 ℃时,同一时刻在不同速率区间内的分子数占总分子数的百分比,由表能得出结论( )按速率大小划分的区间(m/s) 各速率区间的分子数占总分子数的百分比(%)0 ℃100 ℃100以下100~200 200~300 300~400 400~500 500~600 600~700 700~800 800~900 900以上1.48.117.021.420.415.19.24.52.00.90.75.411.917.418.616.712.97.94.63.9A.气体分子的速率大小基本上是均匀分布的,每个速率区间的分子数大致相同B.大多数气体分子的速率处于中间值,少数分子的速率较大或较小C.随着温度升高,气体分子的平均速率增大D.气体分子的平均速率基本上不随温度的变化而变化E.随着温度的升高,速率大的分子数变多【解析】根据表格数据,逐项分析如下:选项分析结论A 两种温度下,速率低于200 m/s和高于700 m/s的分子数比例明显较小×B分子速率在200 m/s~700 m/s之间的分子数比例较大√C 比较0 ℃和100 ℃两种温度下,分子速率较大的区间,100 ℃的分子数所占比例较大,而分子速率较小的区间,0 ℃的分子数所占比例较大.气体分子的平均速率随温度升高而增大√D 比较0 ℃和100 ℃两种温度下,可看到气体分子的平均速率随温度的变化而变化×E 比较0 ℃和100 ℃两种温度下,100 ℃时速率大的分子数占总分子数的百分比变大√【答案】BCE2.某种气体在不同温度下的气体分子速率分布曲线如图143所示,图中f(v)表示v处单位速率区间内的分子数百分率,所对应的温度分别为TⅠ、TⅡ、TⅢ,则TⅠ、TⅡ、TⅢ的高低关系为.图14 3【解析】一定质量的气体,温度升高时,速率较大的分子数目增加,曲线的峰值向速率增大的方向移动,且峰值变小,由此可知TⅢ>TⅡ>TⅠ.【答案】TⅢ>TⅡ>TⅠ气体分子速率分布规律表中只是给出了氧气在0 ℃和100 ℃两个温度下的速率分布情况,通过分析比较可得出:1.在一定温度下,气体分子的速率都呈“中间多、两头少”的分布.2.温度越高,速率大的分子比例较大.这个规律对任何气体都是适用的.温度的微观解释[先填空]1.平均动能所有分子动能的平均值.E k=1n(E k1+E k2+……+E k n)2.温度与平均动能的关系温度升高,系统内分子热运动的平均动能增加;温度降低,系统内分子热运动的平均动能减少.3.温度的微观本质温度是系统内所有分子热运动的平均动能的标志.[再判断]1.温度是分子平均动能的标志.(√)2.温度升高时,物体的每个分子的动能都将增大.(×)3.分子的平均动能的大小与物质的种类有关.(×)[后思考]为什么研究分子动能时主要关心平均动能?【提示】分子动能是指单个分子热运动的动能,但分子是无规则运动的,因此各个分子的动能以及一个分子在不同时刻的动能也不尽相同,所以研究单个分子的动能没有意义,我们主要关心的是大量分子的平均动能.1.分子动能可以类比宏观物体的动能E k=12mv2.分子的动能是指单个分子热运动时的动能,物体内每个分子的动能在同一时刻是不相同的,一个分子在不同时刻其动能也不相同,所以研究单个分子的动能是没有意义的.2.分子热运动的平均动能(1)分子的平均动能永远不可能为零,因为分子无规则运动是永不停息的.(2)平均动能与平均速率的关系可简单地理解为:E k=12m v2,m为该物质分子的质量.(通常提到的分子速率一般是指分子的平均速率,单个分子的速率无意义)(3)因速度是矢量,大量分子向各个方向运动的机会相同,因此所有分子的速度的矢量和为零,平均速度为零.(4)分子的动能与宏观物体的运动无关,也就是分子热运动的平均动能与宏观物体运动的动能无关.3.温度与分子动能、分子平均动能的关系.在宏观上温度是表示物体冷热程度的物理量.在微观上温度是系统内所有分子热运动的平均动能的标志.在相同温度下,各种物质分子的平均动能都相同,温度升高,分子平均动能增加,温度降低,分子平均动能减少.在同一温度下,虽然不同物质分子的平均动能都相同,但由于不同物质的分子质量不一定相同,所以分子热运动的平均速率也不一定相同.3.当氢气和氧气的质量和温度都相同时,下列说法中正确的是( )A.两种气体分子的平均动能相等B.氢气分子的平均速率大于氧气分子的平均速率C.氢气分子的平均动能大于氧气分子的平均动能D.两种气体分子热运动的总动能不相等E.两种气体分子热运动的平均速率相等【解析】温度相同,两种气体分子的平均动能相等,A对,C错;因两种气体分子的质量不同,平均动能又相等,所以分子质量大的(氧气)分子平均速率小,故B对,E错;由于两种气体的摩尔质量不同,物质的量不同(质量相同),分子数目就不等,故总动能不相等,选项D对.【答案】ABD4.关于物体的温度与分子动能的关系,正确的说法是( )【导学号:35500007】A.某种物体的温度是0 ℃,说明物体中分子的平均动能为零B.物体温度升高时,某个分子的动能可能减小C.物体温度升高时,速率小的分子数目减少,速率大的分子数目增多D.物体的运动速度越大,则物体的温度越高E.物体的温度与物体的速度无关【解析】某种物体温度是0 ℃,物体中分子的平均动能并不为零,因为分子在永不停息地运动,从微观上讲,分子运动快慢是有差别的,各个分子运动的快慢无法跟踪测量,而温度的概念是建立在统计规律的基础上的,在一定温度下,分子速率大小按一定的统计规律分布,当温度升高时,说明分子运动剧烈,平均动能增大,但并不是所有分子的动能都增大;物体的运动速度越大,说明物体的动能越大,这并不表示物体内部分子的热运动加剧,则物体的温度不一定高,所以BCE正确.【答案】BCE关于温度的四个注意事项1.因为温度是分子平均动能的唯一标志,所以会误认为0 ℃的物体中分子的平均动能也为零,要正确理解0 ℃的意义.2.温度是物体分子平均动能的标志,而不是物体分子动能的标志.3.温度反映的是大量分子平均动能的大小,不能反映个别分子的动能大小,同一温度下,各个分子的动能不尽相同.4.温度高的物体,分子的平均速率不一定大.气体压强的微观解释[先填空]1.气体压强的产生(1)容器中的气体分子在做无规则运动时,每个分子撞击器壁产生的力是短暂的、不连续的,但大量分子频繁撞击,就会产生一个持续稳定的压力,从而产生压强.气体的压强反映着器壁单位面积上所受平均压力的大小.(2)气体分子的运动是无规则的,因此在任何时刻分子向各个方向运动的概率都相等,反映在宏观上,就是容器中各处压强的大小都相等.2.影响气体压强的两个因素(1)气体分子的平均动能.(2)单位体积内的分子数(分子密度).[再判断]1.气球内气体压强是由于气体重力作用产生的.(×)2.影响气体压强的因素有温度、体积.(√)3.当温度升高时,气体压强一定变大.(×)[后思考]气体压强和大气压是一回事吗?【提示】不是.气体压强由气体分子频繁地碰撞器壁产生,大小由气体的体积和温度决定,与地球引力无关;大气压强是由于空气受到重力作用而对浸在其中的物体产生的压强,随高度的升高而减小,如果没有地球引力作用,地球表面就没有大气,也就没有大气压强.1.产生原因大量做无规则热运动的分子对器壁频繁、持续地碰撞产生了气体的压强.单个分子碰撞器壁的冲力是短暂的,但是大量分子频繁地碰撞器壁,就对器壁产生持续、均匀的压力.所以从分子动理论的观点来看,气体的压强就是大量气体分子作用在器壁单位面积上的平均作用力.2.气体压强的决定因素宏观因素微观因素温度体积气体分子密度气体分子平均速率在体积不变的情况下,温度越高,气体分子的平均速率越大,气体的压强越大在温度不变的情况下,体积越小,气体分子的密度越大,气体的压强越大气体分子密度(即单位体积内气体分子的数目)大,在单位时间内,与单位面积器壁碰撞的分子数就多气体的温度高,气体分子的平均速率就大,单个气体分子与器壁的碰撞(可视作弹性碰撞)给器壁的撞击力就大;从另一方面讲,分子的平均速率大,在单位时间里器壁受气体分子撞击的次数就多,累计撞击力就大5.封闭在汽缸内一定质量的气体,如果保持气体体积不变,当温度升高时,以下说法正确的是( )A.气体的密度增大B.气体的压强增大C.气体分子的平均速率减小D.每秒撞击单位面积器壁的气体分子数增加E.气体分子的疏密程度不变【解析】气体的体积不变,对一定质量的气体,单位体积内的分子数不变,当温度升高时,分子的平均速率增大,每秒内撞击单位面积器壁的分子数增加,撞击力增大,压强必增大.所以B、D、E项正确,A、C均不正确.【答案】BDE6.在某一容积不变的容器中封闭着一定质量的气体,对此气体的压强,下列说法中正确的是( )A.气体压强是由重力引起的,容器底部所受的压力等于容器内气体所受的重力B.气体压强是由大量气体分子对器壁的频繁碰撞引起的C.容器以9.8 m/s2的加速度向下运动时,容器内气体压强不变D.由于分子运动无规则,所以容器内壁各处所受的气体压强相等E.容器以9.8 m/s2的加速度向上运动时,容器内气体的压强增大【解析】气体压强是由大量气体分子对器壁的频繁碰撞引起的,它由气体的温度和单位体积内的分子数决定,与容器的运动状态无关.故A、E错误,B、C、D正确.【答案】BCD气体压强的分析技巧(1)明确气体压强产生的原因——大量做无规则运动的分子对器壁频繁、持续地碰撞.压强就是大量气体分子作用在器壁单位面积上的平均作用力.(2)明确气体压强的决定因素——气体分子的密集程度与温度.(3)只有知道了两个因素的变化,才能确定压强的变化,不能根据任何单个因素的变化确定压强是否变化.唐玲。
高中物理学习材料(马鸣风萧萧**整理制作)学业分层测评(三)(建议用时:45分钟)[学业达标]1.在研究热现象时,我们采用统计方法.这是因为()A.每个分子的运动速率随温度的变化是有规律的B.个别分子的运动不具有规律性C.在一定温度下,大量分子的速率分布是确定的D.在一定温度下,大量分子的速率分布也随时间而变化E.大量随机事件的整体会表现出一定的规律性【解析】大量分子运动的速率分布是有规律的,可以用统计方法,而个别分子的运动速率瞬息万变,极无规律,故B、C、E选项正确.【答案】BCE2.下列关于气体分子运动的特点,正确的说法是()A.气体分子运动的平均速率与温度有关B.当温度升高时,气体分子的速率分布不再是“中间多,两头少”C.气体分子的运动速率不能由牛顿运动定律求得D.气体分子的平均速度随温度升高而增大E.气体分子的平均速率随温度升高而增大【解析】气体分子的运动与温度有关,温度升高时,平均速率变大,但仍遵循“中间多,两头少”的统计规律,A、E项正确,B项错误;分子运动无规则,而且牛顿定律是宏观定律,不能用它来求微观分子的运动速率,C项正确;大量分子向各个方向运动的概率相等,所以稳定时,平均速度几乎为零,与温度无关,D项错误.【答案】ACE3.下列物理量哪些不能决定气体的压强()A.温度B.分子密集程度C.分子总数D.分子种类E.分子的大小【解析】气体的压强是由大量分子碰撞器壁而引起的,气体分子的密集程度越大(即单位体积内分子数越多),在单位时间内撞击单位面积的器壁分子就越多,则气体的压强越大.温度越高,整体上分子运动更加剧烈,分子撞击器壁时对器壁产生的作用力越大,气体的压强就越大.故决定气体压强的因素是分子密集程度和气体的温度,故不能决定气体压强的是C、D、E选项.【答案】CDE4.下面对气体压强的理解,正确的是()A.气体压强是由于气体分子不断撞击器壁而产生的B.气体压强取决于单位体积内分子数和气体的温度C.单位面积器壁受到大量气体分子的碰撞的作用力就是气体对器壁的压强D.大气压强是由地球表面空气重力产生的,因此将开口瓶密闭后,瓶内气体脱离大气,它自身重力太小,会使瓶内气体压强远小于外界大气压强E.在分析容器内气体的压强时,气体的重力不能忽略不计【解析】气体压强是由于气体分子不断撞击器壁而产生的,A正确,E错误;气体压强的大小取决于气体分子密度和气体分子的平均速率,即取决于单位体积内的分子数和气体的温度,B正确;由p=FS知,C正确;虽然大气压强是由地球表面空气重力产生的,但最终还是通过分子碰撞实现对放入其中的物体产生压强,将开口瓶密封后,瓶内气体脱离大气,瓶内气体压强仍等于外界大气压强,D错误.【答案】ABC5.教室内的气温会受到室外气温的影响,如果教室内上午10时的温度为15 ℃,下午2时的温度为25 ℃,假设大气压强无变化,则下午2时与上午10时相比较,房间内的()【导学号:35500008】A.空气分子密集程度减小B.空气分子的平均速率增大C.空气分子的速率都增大D.空气质量减小E.空气质量增大【解析】温度升高,气体分子的平均速率增大,平均每个分子对器壁的冲力将变大,但气压并未改变,可见单位体积内的分子数一定减小,故A、B、D 项正确,E项错误;温度升高,并不是所有空气分子的速率都增大,C项错误.【答案】ABD6.图1-4-4是氧分子在不同温度(0 ℃和100 ℃)下的速率分布规律图,由图可得出哪些结论?(至少答出两条)图1-4-4【解析】①一定温度下,氧气分子的速率呈现出“中间多,两头少”的分布规律;②温度越高,氧气分子热运动的平均速率越大(或温度越高,氧气分子运动越剧烈).【答案】见解析7.气体压强和通常所说的大气压强是不是同一回事?若不是有何区别与联系?【解析】因密闭容器中的气体密度一般很小,由气体自身重力产生的压强极小,可忽略不计,故气体压强由气体分子碰撞器壁产生,大小由分子的密度和温度决定,与地球的引力无关,气体对上下左右器壁的压强都是大小相等的.大气压强却是由于空气受到重力作用紧紧包围地球而对浸在它里面的物体产生的压强.如果没有地球引力作用,地球表面就没有大气,从而也不会有大气压.地面大气压的值与地球表面积的乘积,近似等于地球大气层所受的重力值,大气压强最终还是通过分子碰撞实现对放入其中的物体产生压强.【答案】见解析[能力提升]8.小刚同学为了表演“轻功”,用打气筒给4只相同的气球充以相等质量的空气,然后将它们放置在水平木板上,再在气球的上方平放一块轻质塑料板,如图1-4-5所示.小刚同学在慢慢站上轻质塑料板中间位置的过程中,气球一直没有破裂.球内气体温度可视为不变.下列说法正确的是()图1-4-5A.气球内气体的压强是由于气体重力而产生的B.气球内气体的压强是由于气体分子频繁碰撞器壁产生的C.球内气体分子间的分子力约为零D.气球内气体分子运动速率的分布规律不变E.气球内气体的体积是所有气体分子的体积之和【解析】气体的压强是由于气体分子频繁地碰撞器壁产生的,与分子的重力无关,故A错,B对;在常温常压下,气体分子之间的距离约为10-9m,分子之间的分子力认为是零,故C对;温度不变,因此气体分子运动速率的分布规律不变,故D对;气体分子之间的距离远大于气体分子的大小,因此气体的体积要大于所有气体分子的体积之和,故E错.【答案】BCD9.图1-4-6甲为测量分子速率分布的装置示意图,圆筒绕其中心匀速转动,侧面开有狭缝N,内侧贴有记录薄膜,M为正对狭缝的位置.从原子炉R中射出的银原子蒸汽穿过屏上S缝后进入狭缝N,在圆筒转动半个周期的时间内相继到达并沉积在薄膜上.展开的薄膜如图乙所示,NP和PQ间距相等,则()图1-4-6A.到达M附近的银原子速率较大B.到达Q附近的银原子速率较大C.到达Q附近的银原子速率为“中等”速率D.位于PQ区间的分子百分率大于位于NP区间的分子百分率E.位于PQ区间的分子百分率小于位于NP区间的分子百分率【解析】根据分子速率分布规律的“中间多,两头少”特征可知:M附近的银原子速率较大,故选项A、C正确,B错误;PQ区间的分子百分率最大,故选项E错误,D正确.【答案】ACD10.对一定量的气体,若用N表示单位时间内与器壁单位面积碰撞的分子数,则()【导学号:35500009】A.当体积减小时,N必定增加B.当体积减小时,N可能减小C.当温度升高时,N不一定增加D.当压强不变而体积和温度变化时,N必定变化E.当压强不变而体积和温度变化时,N可能不变【解析】单位时间内与器壁单位面积相碰的分子数N既与分子密度有关,还与分子的平均速率有关.当气体体积减小时,分子密度增加,但若温度降低,分子平均速率变小,N也不一定增加,A错误,B正确;当温度升高时,分子的平均速率增大,但若体积增大,分子密度减小,N也不一定增加,C正确;当气体压强不变,则器壁单位面积受到的压力不变,由于温度变化,平均每个分子对器壁的冲力变化,N只有变化才能保持压强不变,故D正确,E错误.【答案】BCD11.从宏观上看,一定质量的气体仅温度升高或仅体积减小都会使压强增大,从微观上看,这两种情况有什么区别?【解析】因为一定质量的气体的压强是由单位体积内气体的分子数和气体的温度决定的.气体温度升高,即气体分子运动加剧,分子的平均速率增大,分子撞击器壁的作用力增大,故压强增大.气体体积减小时,虽然分子的平均速率不变,但单位体积内的分子数增多,单位时间内撞击容器的分子数增多,故压强增大,所以这两种情况在微观上是有区别的.【答案】见解析12.如图1-4-7所示,两个完全相同的圆柱形密闭容器,甲中装有与容器容积等体积的水,乙中充满空气,试问:图1-4-7(1)两容器各侧壁压强的大小关系及压强的大小决定于哪些因素?(容器容积恒定)(2)若让两容器同时做自由落体运动,容器侧壁上所受压强将怎么变?【解析】(1)对甲容器,上壁的压强为零,底面的压强最大,其数值为p =ρgh(h为上下底面间的距离).侧壁的压强自上而下,由小变大,其数值大小与侧壁上各点距上底面的竖直距离x的关系是p=ρgx;对乙容器,各处器壁上的压强大小都相等,其大小决定于气体的分子数密度和温度.(2)甲容器做自由落体运动时器壁各处的压强均为零.乙容器做自由落体运动时,器壁各处的压强不发生变化.【答案】见解析。
高中物理学习材料唐玲收集整理章末分层突破[自我校对]①VS②10-10 m ③6.02×1023 mol-1④越剧烈⑤越剧烈⑥永不停息⑦中间多、两头少⑧撞击器壁⑨平均动能⑩引力和斥力的合力⑪温度⑫减小⑬增加⑭最小⑮体积⑯温度分子微观量的估算1.对微观量的估算,首先要建立微观模型,对于固体和液体,可以把它们看成是分子一个挨一个紧密排列的.计算时将物质的摩尔体积分成N A等份,每一等份就是一个分子大小.在估算分子直径时,设想分子是一个紧挨着一个的小球;在估算分子间距离时,设想每一个分子是一个立方体,立方体的边长即为分子间的距离.2.气体分子不是紧密排列的,所以上述模型对气体不适用,但上述模型可以用来估算气体分子间的平均距离.3.阿伏伽德罗常量是联系微观物理量与宏观物理量的桥梁,它把摩尔质量、摩尔体积这些宏观物理量与分子质量、分子大小等微观物理量联系起来.有关计算主要有:(1)已知物质的摩尔质量M,借助于阿伏伽德罗常量N A,可以求得这种物质的分子质量m0=MNA .(2)已知物质的摩尔体积V A,借助于阿伏伽德罗常量N A,可以计算出这种物质的一个分子所占据的体积V0=VANA .(3)若物体是固体或液体,可把分子视为紧密排列的球形分子,可估算出分子直径d=36VAπN A.(4)依据求得的一个分子占据的体积V0,可估算分子间距,此时把每个分子占据的空间看做一个小立方体模型,所以分子间距d=3V,这对气体、固体、液体均适用.(5)已知物体的体积V和摩尔体积V A,求物体的分子数N,则N=NAVVA.(6)已知物体的质量m和摩尔质量M,求物体的分子数N,则N=mMNA.(2016·西安高二检测)已知水的密度ρ=1.0×103kg/m3,水的摩尔质量M=1.8×10-2kg/mol.求:(1)1 g水中所含水分子数目;(2)水分子的质量;(3)水分子的直径.(取两位有效数字)【解析】(1)因为1 mol任何物质中含有分子数都是N A,所以只要知道了1 g水的物质的量n,就可求得其分子总数N.N=nNA =mMNA=1×10-31.8×10-2×6.02×1023个=3.3×1022个.(2)水分子质量m 0=MNA=1.8×10-26.02×1023kg=3.0×10-26 kg.(3)水的摩尔体积V=Mρ,设水分子是一个挨一个紧密排列的,则一个水分子的体积V0=VNA=MρNA.将水分子视为球形,则V0=16πd3,所以有:16πd3=MρNA即有d=36MπρN A=36×1.8×10-23.14×1.0×103×6.02×1023m=3.9×10-10 m.【答案】(1)3.3×1022个(2)3.0×10-26 kg (3)3.9×10-10 m用油膜法估测分子的大小用油膜法估测分子直径的实验原理是:油酸是一种脂肪酸,它的分子的一部分和水分子的亲和力很强.当把一滴用酒精稀释过的油酸滴在水面上时,酒精溶于水或挥发,在水面上形成一层油酸薄膜,薄膜可认为是单分子油膜,如图11所示.图1 1将水面上形成的油膜形状画到坐标纸上,可以计算出油膜的面积,根据纯油酸的体积V和油膜的面积S,可以计算出油膜的厚度d=V/S,即油酸分子的直径.(2016·济南高二检测)“用油膜法估测分子的大小”的实验的方法及步骤如下:①向体积V油=1 mL的油酸中加酒精,直至总量达到V总=500 mL;②用注射器吸取①中配制好的油酸酒精溶液,把它一滴一滴地滴入小量筒中,当滴入n=100滴时,测得其体积恰好是V0=1 mL;③先往边长为30~40 cm的浅盘里倒入2 cm深的水,然后将均匀地撒在水面上;图1 2④用注射器往水面上滴一滴油酸酒精溶液,待油酸薄膜形状稳定后,将事先准备好的玻璃板放在浅盘上,并在玻璃板上描下油酸膜的形状;⑤将画有油酸膜轮廓的玻璃板放在坐标纸上,如图12所示,数出轮廓范围内小方格的个数N,小方格的边长l=20 mm.根据以上信息,回答下列问题:(1)步骤③中应填写:;(2)1滴油酸酒精溶液中纯油酸的体积V′是 mL;(3)油酸分子直径是 m.【解析】(1)为了显示单分子油膜的形状,需要在水面上撒痱子粉或石膏粉.(2)1滴油酸酒精溶液中纯油酸的体积V′=VV油nV总=1100×1500Ml=2×10-5 mL.(3)根据大于半个方格的算一个,小于半个方格的舍去,油膜形状占据方格数大约为115个,故面积S=115×20×20 mm2=4.6×104 mm2油酸分子直径d=V′S=2×10-5×1034.6×104mm≈4.3×10-7 mm=4.3×10-10 m.【答案】(1)痱子粉或石膏粉(2)2×10-5(3)4.3×10-10分子力、分子势能和物体的内能1.分子力是分子引力和分子斥力的合力,分子势能是由分子间的分子力和分子间的相对位置决定的能,分子力F和分子势能E p都与分子间的距离有关,二者随分子间距离r变化的关系如图13所示.图1 3(1)分子间同时存在着引力和斥力,它们都随分子间距离的增大(减小)而减小(增大),但斥力比引力变化得快.(2)在r<r0范围内,分子力F、分子势能E p都随分子间距离r的减小而增大.(3)在r>r0的范围内,随着分子间距离的增大,分子力F先增大后减小,而分子势能E p一直增大.(4)当r=r0时,分子力F为零,分子势能E p最小.但不一定等于零.2.内能是物体中所有分子热运动动能与分子势能的总和.温度升高时物体分子的平均动能增加;体积变化时,分子势能变化.内能也与物体的物态有关.解答有关“内能”的题目,应把握以下四点:(1)温度是分子平均动能的标志,而不是分子平均速率的标志.(2)当分子间距离发生变化时,若分子力做正功,则分子势能减小;若分子力做负功,则分子势能增加.(3)内能是物体内所有分子动能与分子势能的总和,它取决于物质的量、温度、体积及物态.如图14所示,分别表示两个分子之间分子力和分子势能随分子间距离变化的图像.由图像判断以下说法中正确的是( )图1 4A.当分子间距离为r0时,分子力和分子势能均最小,分子力为零,分子势能不为零B.当分子间距离r>r0时,分子力随分子间距离的增大而增大C.当分子间距离r>r0时,分子势能随分子间距离的增大而增加D.当分子间距离r<r0时,分子间距离逐渐减小,分子力逐渐增大,分子势能逐渐增加E.当分子间距离r<r0时,分子间距离减小时,分子势能先减小后增加【解析】由题图可知,当分子间距离为r0时,分子力和分子势能均达到最小,但此时分子力为零,而分子势能不为零,是一负值,A对;当分子间距离r>r时,分子力随分子间距离的增大,先增大后减小,此时分子力做负功,分0子势能增加,B错,C对;当分子间距离r<r0时,分子间距离逐渐减小,分子力逐渐增大,而此过程中分子力做负功,分子势能增加,由负值增大到正值,故D对,E错.【答案】ACD(2016·南京检测)当两个分子间的距离r=r0时,分子处于平衡状态,设r1<r0<r2,则当两个分子间的距离由r1变到r2的过程中( )A.分子力先减小后增大B.分子力有可能先减小再增大最后再减小C.分子势能先减小后增大D.分子势能先增大后减小E.分子力为零时,分子势能最小【解析】当r>r0时,分子力表现为引力,其大小随r增加先增大后减小,且整个过程分子力做负功,分子势能增大;当r<r0时,分子力表现为斥力,随r增加,分子力减小且分子力做正功,分子势能减小,分子力为零时,分子势能最小,综上可知B、C、E正确.A和D错误.【答案】BCE势能的大小与物体(分子)间距离的关系不论是重力势能、弹性势能、分子势能、电势能,当物体(分子)之间的距离发生变化时,它们之间的相互作用力如果做正功,势能都要减小;如果做负功,势能都要增大.1.(2015·全国卷Ⅱ)关于扩散现象,下列说法正确的是( )【导学号:35500013】A.温度越高,扩散进行得越快B.扩散现象是不同物质间的一种化学反应C.扩散现象是由物质分子无规则运动产生的D.扩散现象在气体、液体和固体中都能发生E.液体中的扩散现象是由于液体的对流形成的【解析】扩散现象与温度有关,温度越高,扩散进行得越快,选项A正确.扩散现象是由于分子的无规则运动引起的,不是一种化学反应,选项B错误,选项C正确,选项E错误.扩散现象在气体、液体和固体中都能发生,选项D正确.【答案】ACD2.(2013·全国卷Ⅰ)两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近.在此过程中,下列说法正确的是( )A.分子力先增大,后一直减小B.分子力先做正功,后做负功C.分子动能先增大,后减小D.分子势能先增大,后减小E.分子势能和动能之和不变【解析】当距离较远时,分子力表现为引力,靠近过程中分子力做正功,动能增大,势能减小;当距离减小至分子平衡距离时,引力和斥力相等,合力为零,动能最大,势能最小;当距离继续减小时,分子力表现为斥力,继续靠近过程中,斥力做负功,势能增大,动能减小,因为只有分子力做功,所以动能和势能之和不变,选项B、C、E正确.【答案】BCE3.(2016·青岛二中检测)两分子间的斥力和引力的合力F与分子间距离r 的关系如图15中曲线所示,曲线与r轴交点的横坐标为r0.相距很远的两分子在分子力作用下,由静止开始相互接近.若两分子相距无穷远时分子势能为零,下列说法正确的是( )图1 5A.在r>r0阶段,F做正功,分子动能增加,势能减小B.在r<r0阶段,F做负功,分子动能减小,势能也减小C.在r=r0时,分子势能最小,动能最大D.在r=r0时,分子势能为零E.分子动能和势能之和在整个过程中不变【解析】由E p-r图可知:在r>r0阶段,当r减小时F做正功,分子势能减小,分子动能增加,故选项A正确.在r<r0阶段,当r减小时F做负功,分子势能增加,分子动能减小,故选项B错误.在r=r0时,分子势能最小,动能最大,故选项C正确.在r=r0时,分子势能最小,但不为零,故选项D错误.在整个相互接近的过程中分子动能和势能之和保持不变,故选项E正确.【答案】ACE4.(2014·北京高考改编)下列说法中不正确的是( )A.物体温度降低,其分子热运动的平均动能增大B.物体温度升高,其分子热运动的平均动能增大C.物体温度降低,其内能一定增大D.物体温度不变,其内能一定不变E.只根据物体温度的变化,无法确定内能的变化【解析】温度是物体分子平均动能的标志,所以物体温度升高,其分子热运动的平均动能增大,A错、B对;影响物体内能的因素是温度、体积和物质的量,所以只根据温度的变化情况无法判断内能的变化情况,C、D错,E对.【答案】ACD5.(2015·山东高考改编)墨滴入水,扩而散之,徐徐混匀.关于该现象的分析正确的是( )A.混合均匀主要是由于碳粒受重力作用B.混合均匀是水分子和碳粒做无规则运动的结果,与重力无关C.混合均匀的过程中,水分子和碳粒都做无规则运动D.使用碳粒更小的墨汁,混合均匀的过程进行得更迅速E.墨汁的扩散运动是由于碳粒和水分子发生化学反应引起的【解析】墨滴入水,最后混合均匀,这是扩散现象,碳粒做布朗运动,水分子做无规则的热运动;碳粒越小,布朗运动越明显,混合均匀的过程进行得越迅速,选项B、C、D正确.【答案】BCD我还有这些不足:(1) ________________________________________________________(2) ________________________________________________________我的课下提升方案:(1) ________________________________________________________(2) ________________________________________________________。
第一章分子动理论1、物质是由大量分子组成的(1)单分子油膜法测量分子直径(2)1mol任何物质含有的微粒数相同N A=6.02x1023mol-1(3)对微观量的估算:分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)利用阿伏伽德罗常数联系宏观量与微观量Ⅰ.微观量:分子体积V0、分子直径d、分子质量m0.Ⅱ.宏观量:物体的体积V、摩尔体积V m,物体的质量m、摩尔质量M、物体的密度ρ.特别提醒:1、固体和液体分子都可看成是紧密堆集在一起的。
分子的体积V0=NA Vm ,仅适用于固体和液体,对气体不适用,仅估算了气体分子所占的空间。
2、对于气体分子,的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离.2、分子永不停息的做无规则的热运动(布朗运动 扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有空隙,温度越高扩散越快。
可以发生在固体、液体、气体任何两种物质之间(2)布朗运动:它是悬浮在液体(或气体)中的固体微粒的无规则运动,是在显微镜下观察到的。
①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。
②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。
③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。
(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈3、分子间的相互作用力(1)分子间同时存在引力和斥力,两种力的合力又叫做分子力。
(2)分子之间的引力和斥力都随分子间距离增大而减小,随分子间距离的减小而增大。
但总是斥力变化得较快。
(3)图像:两条虚线分别表示斥力和引力;实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。
r0位置叫做平衡位置,r0的数量级为10-10m。
学业分层测评(四)(建议用时:45分钟)[学业达标]1.(多选)在光滑水平面上,动能为E k0、动量大小为p 0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反,将碰撞后球1的动能和动量的大小分别记为E k1、p 1,球2的动能和动量的大小分别记为E k2、p 2,则必有 ( )A .E k1<E k0B .p 1<p 0C .E k2>E k0D .p 2>p 0【解析】两个钢球在相碰过程中同时遵守能量守恒和动量守恒,由于外界没有能量输入,而碰撞中可能产生热量,所以碰后的总动能不会超过碰前的总动能,即E k1+E k2≤E k0,A 正确,C 错误;另外,A 选项也可写成p 212m <p 202m ,B 正确;根据动量守恒,设球1原来的运动方向为正方向,有p 2-p 1=p 0,D 正确.【答案】ABD2.如图1-4-10所示,质量为M 的小车原来静止在光滑水平面上,小车A 端固定一根轻弹簧,弹簧的另一端放置一质量为m 的物体C ,小车底部光滑,开始时弹簧处于压缩状态,当弹簧释放后,物体C 被弹出向B 端运动,最后与B 端粘在一起,下列说法中正确的是 ( )图1-4-10A .物体离开弹簧时,小车向右运动B .物体与B 端粘在一起之前,小车的运动速率与物体C 的运动速率之比为m MC .物体与B 端粘在一起后,小车向右运动D .整个作用过程中,A 、B 、C 及弹簧组成的系统的机械能守恒【解析】系统动量守恒,物体C 离开弹簧时向右运动,动量向右,系统的总动量为零,所以小车的动量方向向左,由动量守恒定律有m v1-M v2=0,所以小车的运动速率v2与物体C的运动速率v1之比mM.当物体C与B粘在一起后,由动量守恒定律知,系统的总动量为零,即小车静止.弹性势能转化为内能.【答案】B3.如图1-4-11所示,质量相等的三个小球a、b、c在光滑的水平面上以相同的速率运动,它们分别与原来静止的A、B、C三球发生碰撞,碰撞后a继续沿原方向运动,b静止,c沿反方向弹回,则碰撞后A、B、C三球中动量数值最大的是( )图1-4-11【导学号:06092056】A.A球B.B球C.C球D.三球一样大【解析】在三小球发生碰撞的过程中,动量都是守恒的,根据动量守恒关系式:m v0=m v+M v′,整理可得:M v′=m v0-m v,取初速度方向为正方向,不难得出C 球的动量数值是最大的.故只有选项C正确.【答案】C4.在光滑的水平面上,有两个静止的小车,车上各站着一个运动员,两车(包含负载)的总质量均为M.设甲车上的人接到一个质量为m,沿水平方向飞来的速率为v 的篮球;乙车上的人把原来在车上的同样的篮球沿水平方向以速率v掷出去.则这两种情况下,甲、乙两车所获得的速度大小的关系是(以上速率都是相对地面而言) ( )【导学号:06092057】A.v甲>v乙B.v甲<v乙C.v甲=v乙D.视M、m和v的大小而定【解析】甲车和球组成的系统水平方向动量守恒,有m v=(M+m)v甲,得v甲=m vM+m;乙车和球组成的系统,水平方向动量守恒,有(M-m)v乙-m v=0,得v乙=m vM-m,故v甲<v乙,B正确.【答案】B5.(多选)用不可伸长的细线悬挂一质量为M的小木块,木块静止,如图1-4-12所示.现有一质量为m的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v0,则下列判断正确的是( )【导学号:06092058】图1-4-12A.从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B.子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v0M+mC.忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D.子弹和木块一起上升的最大高度为m2v202g(M+m)2【解析】从子弹射向木块到一起运动到最高点的过程可以分为两个阶段:子弹射入木块的瞬间系统动量守恒,但机械能不守恒,有部分机械能转化为系统内能,之后子弹在木块中与木块一起上升,该过程只有重力做功,机械能守恒但总能量小于子弹射入木块前的动能,因此A、C错误;由子弹射入木块瞬间动量守恒可得子弹射入木块后的共同速度为m v 0M +m,B 正确;之后子弹和木块一起上升,该阶段机械能守恒,可得上升的最大高度为m 2v 202g (M +m )2,D 正确. 【答案】BD6.一列火车共有n 节车厢,各节车厢质量相等,相邻车厢间留有空隙,首端第一节车厢以速度v 向第二节撞去,并连接在一起,然后再向第三节撞去,并又连接在一起,这样依次撞下去,使n 节车厢全部运动起来,那么最后火车的速度是________(铁轨对车厢的摩擦不计).【解析】n 节车厢的碰撞满足动量守恒,即m v =nm v ′,得最后火车的速度v ′=v n .【答案】v n7.在光滑水平面上有两个相同的弹性小球A 、B ,质量都为m ,B 球静止,A 球向B 球运动,发生正碰.已知碰撞过程中机械能守恒,两球压缩最紧时弹性势能为E p ,则碰前A 球的速度为________.【解析】设碰前A 球速度为v 0,根据动量守恒定律有m v 0=2m v ,则压缩最紧(A 、B 有相同速度)时的速度v =v 02,由系统机械能守恒有12m v 20=12×2m ×(v 02)2+E p ,解得v 0=2E pm .【答案】2E pm 8.一个物体静止于光滑水平面上,外面扣一质量为M 的盒子,如图1-4-13甲所示,现给盒子一初速度v 0,此后,盒子运动的v -t 图象呈周期性变化,如图1-4-13乙所示,请据此求盒内物体的质量.图1-4-13【解析】设物体的质量为m,t0时刻受盒子碰撞获得速度v,根据动量守恒定律M v0=m v3t0时刻物体与盒子右壁碰撞使盒子速度又变为v0,说明碰撞是弹性碰撞则12M v 20=12m v2,解得m=M.【答案】M[能力提升]9.如图1-4-14所示,光滑水平地面上有一足够长的木板,左端放置可视为质点的物体,其质量为m1=1 kg,木板与物体间动摩擦因数μ=0.1.二者以相同的初速度v0=0.8 m/s一起向右运动,木板与竖直墙碰撞时间极短,且没有机械能损失.g取10 m/s2.(1)如果木板质量m2=3 kg,求物体相对木板滑动的最大距离;(2)如果木板质量m2=0.6 kg,求物体相对木板滑动的最大距离.图1-4-14【解析】(1)木板与竖直墙碰撞后,以原速率反弹,设向左为正方向,由动量守恒定律m2v0-m1v0=(m1+m2)vv=0.4 m/s,方向向左,不会与竖直墙再次碰撞.由能量守恒定律12(m1+m2)v20=12(m1+m2)v2+μm1gs1解得s1=0.96 m.(2)木板与竖直墙碰撞后,以原速率反弹,由动量守恒定律m2v0-m1v0=(m1+m2)v′v′=-0.2 m/s,方向向右,将与竖直墙再次碰撞,最后木板停在竖直墙处由能量守恒定律12(m1+m2)v20=μm1gs2解得s2=0.512 m.【答案】(1)0.96 m(2)0.512 m10.如图1-4-15所示,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,物体A被水平速度为v0的子弹击中,子弹嵌在其中,已知A的质量是B的质量的3 4,子弹的质量是B的质量的14.求:【导学号:06092012】图1-4-15(1)A物体获得的最大速度;(2)弹簧压缩量最大时B物体的速度;(3)B物体的最大速度.【解析】(1)子弹射入A的过程中设子弹质量为m,动量守恒,共同运动的速度设为v1,则m v0=(m+m A)v1解得,v1=mm+m A v0=v04.(2)以子弹及A和B组成的系统为研究对象,整个过程总动量守恒,压缩量最大时,速度相等,设为v2.m v0=(m+m A+m B)v2解得v2=mm+m A+m Bv0=18v0.(3)物体A(包括子弹)和B作用时,当弹簧恢复原长时,B的速度最大,设为v3.由动量守恒定律得:(m A+m)v1=(m A+m)v1′+m B v3由能量守恒定律得12(m A +m)v21=12(m A+m)v1′2+12m Bv23.解得v3=2(m A+m)(m A+m)+m Bv1=14v0.【答案】(1)14v0(2)18v0(3)14v011.两滑块a、b沿水平面上同一条直线运动,并发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置x随时间t变化的图像如图1-4-16所示.求:图1-4-16(1)滑块a、b的质量之比;(2)整个运动过程中,两滑块克服摩擦力做的功与因碰撞而损失的机械能之比.【解析】(1)设a、b的质量分别为m1、m2,a、b碰撞前的速度为v1、v2.由题给图像得v1=-2 m/s ①v2=1 m/s ②a、b发生完全非弹性碰撞,碰撞后两滑块的共同速度为v.由题给图像得v=23m/s ③由动量守恒定律得m1v1+m2v2=(m1+m2)v ④联立①②③④式得m1∶m2=1∶8. ⑤(2)由能量守恒得,两滑块因碰撞而损失的机械能为ΔE=12m1v21+12m2v22-12(m1+m2)v2 ⑥由图像可知,两滑块最后停止运动.由动能定理得,两滑块克服摩擦力所做的功为W=12(m1+m2)v2 ⑦联立⑥⑦式,并代入题给数据得W∶ΔE=1∶2. ⑧【答案】(1)1∶8(2)1∶2情感语录1.爱情合适就好,不要委屈将就,只要随意,彼此之间不要太大压力2.时间会把最正确的人带到你身边,在此之前,你要做的,是好好的照顾自己3.女人的眼泪是最无用的液体,但你让女人流泪说明你很无用4.总有一天,你会遇上那个人,陪你看日出,直到你的人生落幕5.最美的感动是我以为人去楼空的时候你依然在6.我莫名其妙的地笑了,原来只因为想到了你7.会离开的都是废品,能抢走的都是垃圾8.其实你不知道,如果可以,我愿意把整颗心都刻满你的名字9.女人谁不愿意青春永驻,但我愿意用来换一个疼我的你10.我们和好吧,我想和你拌嘴吵架,想闹小脾气,想为了你哭鼻子,我想你了11.如此情深,却难以启齿。
高中物理学习材料分子动理论单元检测一,选择题1.关于扩散现象和布朗运动的正确说法是()A.扩散现象发生的条件是不同物质互相接触,而布朗运动发生的条件是固体颗粒悬浮在气体或液体中B.扩散现象证实分子在做无规则运动,布朗运动说明小颗粒在做无规则运动C.扩散现象和布朗运动都说明分子在做无规则运动D.以上说法均不对2.对于分子动理论和物体内能的理解,下列说法正确的是()A.温度高的物体其内能和分子平均动能一定大B.当分子力表现为斥力时,分子力和分子势能总是随分子间距离的减小而增大C.当分子间的距离增大时,分子间的引力和斥力均减小,但斥力减小得更快,所以分子间的作用力总表现为引力D.布朗运动是悬浮在液体中的固体分子的运动,它说明分子永不停息地做无规则运动3.下列事例中,属于分子不停地做无规则运动的是( )A.秋风吹拂,树叶纷纷落下B.在箱子里放几块樟脑丸,过些日子一开箱就能闻到樟脑丸的气味C.烟囱里冒出的黑烟在空中飘荡D.室内扫地时,在阳光照射下看见灰尘飞扬4.下列有关物体内能的说法正确的是()A.橡皮筋被拉伸时,分子间势能增加B.1 kg 0 ℃的水内能比1 kg 0 ℃的冰内能大C.静止的物体其分子的平均动能为零D.物体被举得越高,其分子势能越大5.关于布朗运动,下列说法正确的是( )A.布朗运动是液体分子的运动B.布朗运动的无规则性,反映了液体内部分子运动的无规则性C.与固体微粒相碰的液体分子数越多,布朗运动越显著D.液体的温度越高,布朗运动越激烈6.下面关于分子力的说法中正确的有( )A.铁丝很难被拉长,这一事实说明铁丝分子间存在引力B.水很难被压缩,这一事实说明水分子间存在斥力C.将打气管的出口端封住,向下压活塞,当空气被压缩到一定程度后很难再压缩,这一事实说明空气分子间表现为斥力D.磁铁可以吸引铁屑,这一事实说明分子间存在引力7.如图所示是教材中模仿布朗实验所做的一个类似实验中记录的其中一个小炭粒的“运动轨迹”。
①静电除尘②静电喷涂③静电复印④雷雨天高大树木下避雨⑤飞机上的静电⑥电视荧屏上常有一层灰尘【解析】有利的是静电除尘、静电喷涂、静电复印,有害的是雷雨天到高大树木下避雨、电视机屏上的灰尘、飞机上的静电.【答案】有利的是①、②、③,有害的是④、⑤、⑥9.(多选)下列哪些措施是为了防止静电的危害( )A.油罐车的后边有条铁链搭到地上B.农药喷洒飞机喷洒的农药雾滴带正电C.家用电器如洗衣机接有地线D.手机一般都装有天线【解析】油罐车的后边有条铁链搭到地上,目的是把油罐车产生的静电荷导到地下,保证油罐车的安全,家用电器也一样,A、C 对.农药喷洒飞机喷洒的农药雾滴带正电,而叶子上都带有负电,农药不会被风吹走,B错误.手机接有天线的目的是为了很好地接收信号,D错误.【答案】AC10.(多选)如图133为静电除尘器除尘原理的示意图.尘埃在电场中通过某种机制带电,在静电力的作用下向集尘极迁移并沉积,以达到除尘目的,下列表述正确的是( )【导学号:29682045】图133A.到达集尘极的尘埃带正电荷B.到达集尘极的尘埃带负电荷C.尘埃可以带负电,也可带正电D.放电极带负电荷【解析】集尘极接电源正极,带正电荷,故尘埃应带负电荷,B 正确,放电极接电源负极,带负电荷,故D正确.【答案】BD11.(多选)如图134所示,在玻璃管中心轴上安装一根直导线,玻璃管外绕有线圈,直导线的一端和线圈的一端分别跟感应圈的两放电柱相连,开始,感应圈未接通电源,点燃蚊香,让烟通过玻璃管冒出.当感应圈电源接通时,玻璃管中的导线和管外线圈间就会加上高电压,立即可以看到不再有烟从玻璃管中冒出来了,过一会儿还可以看到管壁吸附了一层烟尘,这是因为( )【导学号:29682046】图134A.烟尘在高压电场作用下带上了负电B.烟尘在高压电场作用下带上了正电C.带负电的烟尘吸附在玻璃管壁上,因此看不到有烟冒出D.带正电的烟尘吸附在直导线上,因此看不到有烟冒出【解析】烟尘在直导线和管外线圈形成的高压电场作用下,带上了负电.带负电的烟尘颗粒在电场力作用下被吸附到了与带正电的线圈紧密接触的玻璃管壁上,因此看不到有烟冒出,A、C项正确.【答案】AC12.某同学设计了一个证明电荷守恒的实验,实验装置如图135所示.实验步骤如下:图135(1)用一根细金属丝连接两只相同的验电器,让带电的有机玻璃棒靠近右侧验电器,两只验电器的箔片均张开,为什么?(2)在两只验电器的箔片均张开的情况下,先移走金属丝,再移走带电的有机玻璃棒,这时验电器的箔片是否保持张开状态?为什么?(3)再用金属丝连接两只验电器,将会出现什么现象?这个现象说明了什么?这个实验能证明电荷守恒吗?为什么?【解析】(1)当带电的有机玻璃棒靠近右侧验电器的金属球时,由于静电感应两验电器的金属球将带等量的异种电荷,从而使两验电器的金属箔片张开.(2)保持张开状态.因为验电器所带的电荷没有失去.箔片因电荷的斥力仍然处于张开状态.(3)验电器的金属箔片又重新闭合.说明两验电器所带电荷量相等,电性相反.能证明电荷守恒.因为它说明了电荷不是创造的,只。
高中物理学习材料
(灿若寒星**整理制作)
1.3分子热运动
学习目标知识脉络
1.了解布朗运动及热运动的定
义.(重点)
2.掌握布朗运动的特点及产生
原因.(重点、难点)
3.知道热运动与机械运动的区
别.(难点)
分子运动何其乱
[先填空]
1.布朗运动
悬浮在液体(或气体)中的小颗粒所做的永不停息的无规则运动.2.产生的原因
颗粒在液体中受到液体分子的撞击不平衡引起的.
3.影响布朗运动的因素
(1)颗粒大小:颗粒越小,布朗运动越明显.
(2)温度高低:温度越高,布朗运动越剧烈.
4.意义
反映了分子在永不停息地做无规则运动.
[再判断]
1.悬浮微粒的无规则运动是布朗运动.(√)
2.布朗运动可以用肉眼直接观察.(×)
3.布朗运动反映了分子做永不停息的无规则运动.(√)
[后思考]
冬天,一缕阳光射入教室内,我们看到教室内尘埃上下流动是布朗运动吗?将布朗运动的装置由实验室移到运动的电梯内,小颗粒的运动是否更明显?
【提示】做布朗运动的颗粒直径大约在10-6m左右,人直接用肉眼是看不见的,需借助显微镜观察,所以教室内看到尘埃的运动不是布朗运动.
布朗运动是液体分子无规则运动撞击悬浮颗粒引起的,运动的激烈程度只与温度和颗粒大小有关,与外界其他因素如实验装置是否移动无关.
正确理解布朗运动
1.研究对象:悬浮在液体中的固体小颗粒,不是固体小颗粒中的单个分子,也不是液体分子,而是宏观物体,是在高倍显微镜下可以观察到的多分子的集合体.
2.运动无规则:小颗粒永不停息地无规则运动,从课本图1-10(b)可以看出,每隔30 s微粒的位置连线已毫无规则,那么可以想象,微粒的实际轨迹将是多么复杂.
3.布朗运动的本质:通过固体小颗粒的无规则运动反映了液体分子运动的无规则性.
4.任何固体小颗粒悬浮在液体内部,都可以做布朗运动,颗粒越小,布朗运动越明显.
5.布朗运动在任何温度下都会发生,温度越高,布朗运动越明显.
6.布朗运动产生的原因:
悬浮在液体中的固体小颗粒会受到来自各个方向液体分子的撞击,当颗粒较大时,各方向与小颗粒撞击的分子数都很多,各方向作用力趋于平衡,布朗运动难以发生或不明显,当颗粒较小时,各方向与小颗粒撞击的分子数都很少,数目的差异、作用的强弱、作用的先后等因素的影响使得各个方向的作用力很难达到平衡,再由于颗粒质量小、惯性小,运动状态容易改变,所以布朗运动比较明显.总之,颗粒越小,某一瞬间来自各个方向的作用力越不易达到平衡,布朗运动越明显;另一方面,液体分子温度越高,分子运动越剧烈,液体分子碰撞固体小颗粒时这种不平衡的作用力更突出,布朗运动
也越明显.
1.关于悬浮在液体中的固体微粒的布朗运动,下面说法中正确的是()
【导学号:35500004】
A.微粒的无规则运动就是固体微粒的运动
B.微粒的无规则运动是固体微粒分子无规则运动的反映
C.微粒的无规则运动是液体分子无规则运动的反映
D.微粒越大,布朗运动越明显
E.布朗运动的剧烈程度与温度有关,温度越高布朗运动越剧烈
【解析】悬浮在液体中的固体微粒虽然很小,需要用显微镜来观察,但它并不是固体分子,而是千万个固体分子组成的分子团体,布朗运动是这千万个分子团体的一致行动,不能看成是分子的运动,故A正确;产生布朗运动的原因是固体微粒受到周围液体分子的撞击力,由于液体分子运动的无规则性,固体微粒受到撞击力的合力也是无规则的.因此,固体微粒的运动也是无规则的.可见,小颗粒的无规则运动不能证明固体微粒分子做无规则运动,而只能说明液体分子在做无规则运动,因此B错误,C正确;由布朗运动产生原因知D错误,E正确.
【答案】ACE
2.图1-3-1是某液体中布朗运动的示意图(每隔30 s记录一次微粒的位置),下列说法中正确的是()
图1-3-1
A.图中记录的是小颗粒无规则运动的情况
B.图中记录的是粒子做布朗运动的轨迹
C.粒子越大,布朗运动越明显
D.反映了液体分子运动的无规则性
E.粒子越小,布朗运动越明显
【解析】布朗运动不是固体分子的无规则运动,而是大量液体分子做无规则运动时与悬浮在液
体中的小颗粒发生碰撞,从而使小颗粒做无规则运动,即布朗运动是固体颗粒的运动,温度越高,分子运动越激烈,布朗运动也越激烈,A正确;粒子越小,某一瞬间跟它撞击的分子数越少,撞击作用的不平衡性表现得越明显,即布朗运动越显著,故C错误,E正确;图中每个拐点记录的是粒子每隔30 s的位置,而在30 s内粒子做的也是无规则运动,而不是直线运动,故B错误;布朗运动的无规则性反映了液体分子运动的无规则性,D正确.
【答案】ADE
布朗运动中的“颗粒”
1.布朗运动的研究对象是小颗粒,而不是分子,属于宏观物体的运动.
2.布朗小颗粒中含有大量的分子,它们也在做永不停息的无规则运动.
3.液体分子热运动的平均速率比我们所观察到的布朗运动的速率大许多倍.
4.导致布朗运动的本质原因是液体分子的热运动.
热运动
[先填空]
1.意义
分子的永不停息的无规则运动叫热运动.
2.影响因素
温度越高,分子的无规则运动越剧烈.
[再判断]
1.微粒做布朗运动,充分说明了微粒内部分子是永不停息地做无规则运动的.(×)
2.布朗运动和扩散现象都是分子的热运动.(×)
3.热运动是指物体内大量分子做无规则运动.(√)
[后思考]
为什么把分子运动叫热运动?
【提示】实验事实证明,分子的无规则运动与温度有关,温度越高,分子运动得越激烈.因此,我们把分子的运动叫做热运动.
对热运动的理解 1.特点
(1)分子的运动是无规则的.由于分子之间的碰撞,每个分子的运动速度无论是方向还是大小都在不断地变化.标准状况下,一个空气分子在1 s 内与其他空气分子的碰撞达到65亿次之多.所以大量分子的运动是十分混乱的.
(2) 分子的热运动是永不停息的.无论经过多长时间,温度多么低,在什么条件下,分子的无规则运动始终存在.
(3)热运动与物体的温度有关.温度越高,分子运动得越剧烈,平均速率越大. 2.布朗运动和热运动的比较
布朗运动 热运动
区别
运动对象是固体颗
粒,颗粒越小,布朗运动越明显
运动对象是分子,任何物体的分子都做无规
则运动
相同点 (1)无规则运动 (2)永不停息 (3)与温度有关
联系
周围液体(或气体)分子的热运动是布朗运动产生的原因,布朗运动是热运动的宏观表现
3.(2016·长春检测)关于热运动的说法中,不正确的是( ) A .热运动是物体受热后所做的运动 B .仅温度高的物体中的分子做无规则运动 C .单个分子做永不停息的无规则运动 D .大量分子做永不停息的无规则运动 E .温度越高,分子无规则运动越剧烈
【解析】 热运动是指物体内大量分子做无规则运动,不是单个分子做无规则运动,在物体内的分子运动速度不同,即使是同一个分子在不同时刻其速度也不同,热运动在宏观上表现的是温度,当分子的平均速率变化时,物体的温度变化,不仅高温物体中的分子在做无规则运动,低温物体内的分子也同样做无规则运动,只是其平均速率不同而已,A 、B 、C 错误,D 、E 正确.
【答案】 ABC
4.关于布朗运动和扩散现象,下列说法中正确的是( )
A.布朗运动和扩散现象都能在气体、液体和固体中发生
B.布朗运动和扩散现象都是分子的运动
C.布朗运动是微粒运动
D.布朗运动和扩散现象都是温度越高越明显
E.布朗运动和扩散现象都是永不停息的
【解析】布朗运动与扩散现象条件不一样:布朗运动只能在气体、液体中发生,而扩散现象可以在固体、液体、气体任何两种物质之间发生,故A错.布朗运动是微粒运动而不是分子的运动,故B错.布朗运动与扩散现象的共同点是两者都是永不停息的,并且温度越高越明显,故C、D、E 正确.
【答案】CDE
5.(2016·西安一中高二检测)下面所列举的现象中,能说明分子是不断运动着的是()
A.将香水瓶盖打开后能闻到香味
B.汽车开过后,公路上尘土飞扬
C.洒在地上的水,过一段时间就干了
D.悬浮在水中的花粉做无规则的运动
E.烟囱里冒出的黑烟
【解析】扩散现象和布朗运动都能说明分子在不停地做无规则运动.香水的扩散、水分子在空气中的扩散以及悬浮在水中花粉的运动都说明了分子是不断运动的,故A、C、D均正确;而尘土、黑烟不是单个分子,是由若干分子组成的固体颗粒,所以尘土飞扬、冒出的黑烟不是分子的运动.【答案】ACD
1.扩散现象直接说明了分子的无规则运动.
2.布朗运动间接反映了液体分子的无规则运动.
3.凡是肉眼能看到的现象都不是分子的热运动.。