低碳贝氏体钢的组织性能研究分析
- 格式:doc
- 大小:14.36 MB
- 文档页数:57
《中低碳钢中的低温贝氏体组织与性能研究》篇一一、引言随着现代工业的快速发展,钢铁材料作为重要的结构材料,其性能的研究与提升一直是材料科学领域的热点。
中低碳钢因其良好的强度、塑性和韧性,被广泛应用于机械制造、汽车制造、建筑桥梁等领域。
在钢铁材料中,低温贝氏体组织是一种重要的组织形态,其组织和性能的研究对于提高中低碳钢的综合性能具有重要意义。
本文旨在研究中低碳钢中的低温贝氏体组织的形成机制及其对性能的影响。
二、低温贝氏体组织的形成机制低温贝氏体组织是中低碳钢在冷却过程中,特别是在较低温度下的一种组织形态。
其形成机制主要涉及碳化物的析出、铁素体的转变以及相的交互作用。
当钢的冷却速度适中时,奥氏体向贝氏体转变的倾向增强,形成了以板条状贝氏体为主体的低温贝氏体组织。
这一组织具有较为均匀的分布,对于钢的综合性能起到了积极的提升作用。
三、实验方法及材料本研究采用了多种实验手段对中低碳钢中的低温贝氏体组织进行研究。
首先,我们选择了具有代表性的中低碳钢作为研究对象,然后通过控制冷却速度、温度等参数,模拟了实际生产过程中的条件。
通过光学显微镜、扫描电镜等手段对钢的组织结构进行观察和分析,同时结合X射线衍射等手段对相组成进行定性和定量分析。
四、低温贝氏体组织的性能研究(一)力学性能低温贝氏体组织的存在对中低碳钢的力学性能产生了显著影响。
研究表明,低温贝氏体组织的存在提高了钢的强度和韧性,同时保持了较好的塑性和冲击韧性。
这主要得益于其均匀的组织结构和良好的相交互作用。
(二)耐腐蚀性能此外,低温贝氏体组织对中低碳钢的耐腐蚀性能也有积极的影响。
由于该组织的存在,钢的表面形成了致密的氧化膜,有效阻止了腐蚀介质的进一步侵蚀,从而提高了钢的耐腐蚀性能。
五、结论本研究通过对中低碳钢中的低温贝氏体组织的研究,发现该组织对钢的性能产生了积极的影响。
其均匀的组织结构和良好的相交互作用,提高了钢的强度、韧性和耐腐蚀性能。
这为进一步优化中低碳钢的性能提供了理论依据和实验支持。
摘要本文通过光学显微镜观察了Q550D与SM570-H的光学显微金相组织,通过扫描电镜观察其微观组织并利用能谱分析其夹杂物的成分。
得到了两种钢的组织精细结构以及非金属夹杂物的形貌及成分,分析了这些夹杂物对低碳贝氏体钢性能的影响。
通过在显微镜下观察到Q550D组织为板条状的上贝氏体组织,在大致平行的铁素体板条中镶嵌着很多细小的不易辨认的渗碳体。
而SM570-D的组织属于粒状贝氏体组织,在板条状的铁素体基体上弥散分布着由残余奥氏体和马氏体组成的小岛(也称M/A 岛),从微观组织上观察,SM570-H的组织比Q550D更为细小。
通过扫描电镜图,可以观察到在两种钢中都含有非金属夹杂物,这些非金属夹杂物大多都分布在奥氏体晶界处,主要是一些复杂的钙铝酸盐和硫化物,其导致组织的不均匀,从而使得钢的性能出现不均匀,除了钙铝酸盐和硫化物之外,组织中也有一些细小的颗粒,这些颗粒主要是合金元素通过过饱和固溶体的时效处理而沉淀出来,从而提高钢的强度。
钢中其它的一些微量元素如钛、铝等,这些元素的第二相弥散分布在铁基体中,形成弥散强化。
低碳贝氏体钢的性能还与轧制工艺有着密切的关系,特别是控制终轧温度能够明显改善低碳贝氏体钢的组织,一般把低碳贝氏体钢的终轧温度降低到1000℃左右能够明显提高低碳贝氏体钢的强韧性。
研究发现低碳贝氏体钢由于贝氏体组织结构精细,分布均匀,且碳当量小,因而贝氏体钢具有良好强韧性和焊接性能。
关键词:贝氏体组织, 金相组织,贝氏体转变,非金属夹杂Research on the Microstructure Property of Low-carbon Bainite SteelAbstractThe microstructure of Q550-D and SM570-H were studied by optical microscope and electron microscope in this paper, and the compositions was analyzed by energy spectrum. The microstructures of the two steels and the compositions of nonmetallic inclusions were obtained, also the effections of nonmetallic inclusions for the steels’ property was analyzed.Through observation by microscopy we can get that there are parallel bainite-ferrite strip distributed in microstructure of Q550-D. And more fine cementites are inlayed in the bainite-ferrite strip, It’s uneasy to identify. It belongs to upper bainite. the microstructure of SM570-H belongs to granular bainite, the sand island consisted of retained austenite and martensite distributed in the lath-like ferrites,observing in the microstructure, The microstructure of SM570-H is finer than Q550D.We can observed there were more nonmetallic inclusions in the Bainitic steels, and these nonmetallic inclusions always distributed in austenite grain boundary and always some calcium-aluminate and sulfides. These nonmetallic inclusions can decrease the strength of steels because of uneven microstructure. besides the calcium-aluminate, there were some partical of alloys in the microstructure, these micro alloying elements can improve the s trength of alloys because of solid solution strengthening and dispersion strengthening., such as Ti, Al. the second phase of these elements distributed in the lath-like ferrites.The property of low-carbon Bainitie steel is in association with Rolling Technology Parameters.especially in the finishing temperature. The property is more superior If the finishing temperature is controlled about 1000℃.The microstructure of the low-carbon Bainite steel is very fine, and well-distributed, and carbon equivalent is lower, so low-carbon Bainite steels have excellent strength and toughness and good welding properties.Key Words:Bainitie microstructure,metallographic structureBainite transformation,nonmetallic inclusions目录摘要 (1)Abstract (2)引言 (1)1文献综述 (3)1.1国内外低碳贝氏体钢的研究现状 (3)1.1.1国外低碳贝氏体钢的研究现状 (3)1.1.2国内低碳贝氏体钢的研究现状 (4)1.2低碳贝氏体钢的发展前景 (6)1.2.1市场需求前景 (6)1.2.2低碳贝氏体钢的品种发展方向 (7)1.2.3低碳贝氏体钢的研发方向 (7)2研究贝氏体组织的意义与分类 (8)2.1贝氏体组织的定义 (8)2.2 研究贝氏体组织的意义 (9)2.3贝氏体组织的分类 (11)2.3.1上贝氏体 (11)2.3.2 下贝氏体 (12)2.3.3粒状贝氏体 (13)2.4 低碳贝氏体钢的强化机制 (14)2.4.1 细晶强化 (14)2.4.2 析出强化 (15)2.4.3 固溶强化 (15)2.4.4 位错和亚晶强化 (16)2.4.5 相变强化 (16)2.5 钢中各种元素的作用 (17)2.5.1 C含量的控制范围 (17)2.5.2 B在低碳贝氏体钢中的作用 (17)2.5.3 Mn在低碳贝氏体钢中的作用 (17)2.5.4 Cu在低碳贝氏体钢中的作用 (18)2.5.5 Nb、Ti在低碳贝氏体钢中的作用 (18)2.6 低碳贝氏体钢的控制轧制 (19)2.6.1 控制轧制的概念 (19)2.6.2 低碳贝氏体钢终轧温度的控制 (20)2.6.3 轧后控冷对组织的影响 (20)2.6.4 加热温度对控轧效果的影响 (21)3 研究内容与方案 (21)3.1 研究内容 (21)3.2 试验内容及研究步骤 (22)3.2.1试验设备 (22)3.2.2取样说明 (22)3.2.3实验步骤 (22)3.3 金相组织分析 (24)3.4 非夹杂物形貌分析 (29)3.5贝氏体中的碳化物 (33)结论: (33)参考文献 (34)附录A (37)附录B原文 (38)附录C译文 (43)致谢 (51)引言材料是现代文明的支柱,人类文明的每一个脚印都与材料科学的进步密不可分。
《中低碳钢中的低温贝氏体组织与性能研究》篇一一、引言随着现代工业的飞速发展,对材料性能的要求日益提高。
中低碳钢作为一种重要的工程材料,其组织与性能的研究显得尤为重要。
其中,低温贝氏体组织是中低碳钢中一种特殊的组织形态,具有优异的力学性能和工艺性能。
因此,对中低碳钢中的低温贝氏体组织与性能进行研究,对于优化材料性能、提高生产效率和降低生产成本具有重要意义。
二、中低碳钢的基本性质中低碳钢是指碳含量在0.25%~0.45%之间的钢铁材料,其组织主要由铁素体和珠光体组成。
由于中低碳钢具有良好的塑性和韧性,以及较高的强度和可焊性,因此广泛应用于机械制造、建筑、桥梁、车辆制造等领域。
三、低温贝氏体组织的形成与特点低温贝氏体组织是中低碳钢在特定的冷却条件下形成的组织形态。
当钢在较高的温度范围内(通常为250~650℃)受到冷却时,会在马氏体与铁素体之间出现一种由粒状结构构成的亚稳定状态组织,即为贝氏体。
这种低温贝氏体组织的形成过程中伴随着原子的重排和位错的演变,因此其组织形态独特,且具有良好的强度和韧性。
四、低温贝氏体组织的性能研究1. 力学性能:低温贝氏体组织在中低碳钢中具有较高的强度和韧性。
研究表明,通过控制冷却速度和温度范围,可以获得具有良好综合力学性能的低温贝氏体组织。
此外,该组织的抗疲劳性能和抗冲击性能也较为优异。
2. 工艺性能:低温贝氏体组织在中低碳钢的加工过程中表现出良好的可焊性和切削性能。
这种组织的形成过程对材料的热处理过程影响较小,使得在生产过程中能够有效地降低热处理成本和时间。
3. 耐腐蚀性能:低温贝氏体组织的耐腐蚀性能优于传统的珠光体组织。
研究表明,该组织在一定的腐蚀环境下具有较好的稳定性和抗腐蚀能力。
五、研究方法与实验结果为了研究低温贝氏体组织的形成过程及其性能,本文采用金相显微镜、扫描电镜、透射电镜等手段对中低碳钢的微观组织进行观察和分析。
同时,通过拉伸试验、冲击试验、硬度试验等手段对材料的力学性能进行测试。
《无碳化物贝氏体钢的显微组织、力学性能和疲劳裂纹扩展行为》篇一无碳化物贝氏体钢的显微组织、力学性能与疲劳裂纹扩展行为研究一、引言在材料科学与工程领域,无碳化物贝氏体钢以其卓越的机械性能和优异的抗腐蚀性能受到了广泛的关注。
本篇论文主要对无碳化物贝氏体钢的显微组织、力学性能及疲劳裂纹扩展行为进行详细研究,旨在为该类钢的进一步应用提供理论依据。
二、无碳化物贝氏体钢的显微组织2.1 显微组织概述无碳化物贝氏体钢的显微组织主要由贝氏体相、铁素体相以及可能存在的其他微结构组成。
这些微结构对钢的力学性能和抗疲劳性能有着重要影响。
2.2 贝氏体相贝氏体相是无碳化物贝氏体钢的主要组成部分,其形态和分布对钢的力学性能至关重要。
通过透射电子显微镜(TEM)观察,发现贝氏体相呈现板条状或片状,内部结构紧密且排列有序。
2.3 铁素体相铁素体相是另一种重要的显微组织成分,它通常以较大的晶粒形式存在,与贝氏体相相互交织,共同构成了钢的微观结构。
铁素体相的形态和分布对钢的韧性、强度等力学性能有着重要影响。
三、无碳化物贝氏体钢的力学性能3.1 强度与硬度无碳化物贝氏体钢具有较高的屈服强度和抗拉强度。
通过拉伸试验发现,其强度主要来源于其紧密排列的贝氏体相和铁素体相的共同作用。
此外,该类钢还具有较高的硬度,使其在承受重载时不易发生变形。
3.2 韧性除了强度外,韧性也是衡量无碳化物贝氏体钢性能的重要指标。
通过冲击试验发现,该类钢具有良好的韧性,能够抵抗裂纹的扩展,表现出优异的抗冲击性能。
四、疲劳裂纹扩展行为4.1 裂纹扩展速率在疲劳试验中,无碳化物贝氏体钢表现出了较低的裂纹扩展速率。
这主要得益于其紧密排列的显微组织,能够有效阻碍裂纹的扩展。
此外,钢中的杂质和缺陷也会对裂纹扩展速率产生影响。
4.2 裂纹扩展机制通过高倍显微镜观察发现,无碳化物贝氏体钢的疲劳裂纹扩展机制主要为穿晶扩展和沿晶扩展。
在扩展过程中,裂纹会遇到贝氏体相和铁素体相的阻碍,导致其扩展速度减慢。
第!!卷第7期2016年7月第26 — 31页材料工程Journal o f M ate ria ls EngineeringV o l. 44 N o. 7Jul. 2016 pp. 26 — 31超快冷条件下Mn-Nb-B系低碳贝氏体高强钢组织与性能研究M icrostructure and Property of Mn-Nb-B Low CarbonBainite High Strength Steel U nder U ltra-fast Cooling王丙兴1,董福志1!,王昭东1,王国栋1"东北大学轧制技术及连轧自动化国家重点实验室,沈阳110819;2抚顺新钢铁有限责任公司,辽宁抚顺113001)W A N G Bing-xing1,DONG Fu-zhi1,2,W A N G Zhao-dong1,W A N G Guo-dong1(1 The State Key Laboratory of R olling and A utom ation,Northeastern University,Shenyang 110819,China;2 Fushun New Steel Corporation L td.,Fushun 113001, Liaoning,China)摘要:采用M n-N b-B减量化成分设计的低碳贝氏体高强钢为研究对象,通过热模拟实验研究实验钢热变形行为和相变行为。
结合中厚板生产线特点制定控制乳制与超快速冷却相结合生产工艺路线,充分利用超快速冷却条件下的细晶强化、析出强化等综合强化机制,实现综合力学性能优良的低成本高强工程机械用钢的试制和生产。
产品屈服强度和抗拉强度分别达到%78M P a和756M P a,伸长率▲0为33],一20C低温冲击达到261J%产品显微组织由粒状贝氏体、针状铁素体和板条贝氏体组成,基体组织内弥散分布着细小的点状、粒状M/A岛和均勻细小的(N b,T i)(C,N)析出粒子以及大量位错组织。
《中低碳钢中的低温贝氏体组织与性能研究》篇一一、引言中低碳钢作为现代制造业中的重要材料,广泛应用于各种工程和产品制造中。
其中,其微观组织结构尤其是低温贝氏体组织,对于材料的性能具有决定性影响。
低温贝氏体组织是中低碳钢中一种常见的组织形态,它不仅对材料的强度、韧性、耐磨性等有着重要的影响,还对材料的加工性能和使用寿命产生深远的影响。
因此,对中低碳钢中的低温贝氏体组织与性能进行研究,对于优化材料性能、提高产品质量和推动相关产业的发展具有重要意义。
二、低温贝氏体组织的形成与特点低温贝氏体组织是中低碳钢在冷却过程中,由于温度低于一定阈值而形成的特殊组织形态。
其形成过程涉及钢的化学成分、冷却速度、温度等因素。
这种组织形态的特点是具有较高的强度和硬度,同时保持良好的韧性。
贝氏体组织的形成机制包括相变过程、相的析出与生长等,这些机制在控制材料的性能方面发挥着重要作用。
三、低温贝氏体组织的性能研究(一)强度与硬度低温贝氏体组织的形成使得中低碳钢的强度和硬度得到显著提高。
这主要是由于贝氏体组织的晶粒细小,且具有较高的位错密度,使得材料在受力时能够承受更大的应力。
此外,贝氏体组织的相变硬化效应也有助于提高材料的强度和硬度。
(二)韧性尽管贝氏体组织的强度和硬度较高,但其韧性同样优秀。
这得益于贝氏体组织的细小晶粒和均匀的相分布,使得材料在受到冲击或振动时能够吸收更多的能量,从而表现出良好的韧性。
(三)耐磨性低温贝氏体组织的耐磨性较好,这是由于贝氏体组织的硬度和韧性较高,使得材料在摩擦过程中能够抵抗磨损。
此外,贝氏体组织的细小晶粒也有助于提高材料的抗疲劳性能,从而进一步提高其耐磨性。
四、低温贝氏体组织的优化与控制为了进一步提高中低碳钢的性能,需要对低温贝氏体组织的形成过程进行优化和控制。
这包括调整钢的化学成分、控制冷却速度、调整温度制度等措施。
例如,通过调整钢中的合金元素含量,可以改变贝氏体组织的形成过程和性能;通过控制冷却速度和温度制度,可以精确控制贝氏体组织的形成和相分布。
《中低碳钢中的低温贝氏体组织与性能研究》篇一一、引言中低碳钢作为结构材料广泛应用于工程和制造领域,其组织和性能研究具有重要意义。
近年来,随着钢铁研究的深入,低温贝氏体组织逐渐成为研究热点。
本文将探讨中低碳钢中低温贝氏体组织的形成机理及其对材料性能的影响。
二、低温贝氏体组织的形成低温贝氏体组织是一种介于珠光体和马氏体之间的中间相组织,其形成与钢的化学成分、冷却速度、温度等因素密切相关。
在中低碳钢中,由于碳含量适中,合金元素含量相对较低,因此在合适的冷却条件下容易形成低温贝氏体组织。
在钢的冷却过程中,当温度降低至某一临界点以下时,铁素体开始转变为贝氏体。
此时,碳原子在铁素体内的扩散速率减慢,形成碳的富集区域,进一步促使贝氏体的形成。
随着温度的进一步降低,贝氏体组织逐渐形成并逐渐细化,最终成为一种特殊的亚稳态组织。
三、低温贝氏体组织的性能特点低温贝氏体组织具有优异的力学性能和加工性能。
其硬度适中,既保证了良好的切削加工性,又具有较高的抗拉强度和冲击韧性。
此外,低温贝氏体组织还具有良好的耐磨性和耐腐蚀性。
四、低温贝氏体组织对中低碳钢性能的影响低温贝氏体组织的形成对中低碳钢的性能产生了显著影响。
首先,低温贝氏体组织的存在提高了钢的强度和硬度,使其在承受载荷时具有更好的抗变形能力。
其次,低温贝氏体组织的细化和均匀分布有助于提高钢的韧性,使其在受到冲击时能够更好地吸收能量。
此外,低温贝氏体组织还具有较好的耐磨性和耐腐蚀性,提高了钢的使用寿命。
五、研究方法与实验结果本研究采用金相显微镜、扫描电镜和透射电镜等手段对中低碳钢中的低温贝氏体组织进行观察和分析。
通过调整钢的化学成分、冷却速度和温度等参数,研究低温贝氏体组织的形成规律及其对材料性能的影响。
实验结果表明,在合适的冷却条件下,中低碳钢中可以形成大量细小的低温贝氏体组织。
随着贝氏体含量的增加,钢的强度和硬度逐渐提高,同时保持了良好的韧性和耐磨性。
此外,通过调整钢的化学成分,可以进一步优化低温贝氏体组织的性能,提高钢的综合性能。
《中低碳钢中的低温贝氏体组织与性能研究》篇一一、引言随着现代工业的快速发展,钢铁材料因其优异的力学性能和良好的可加工性,在各个领域得到了广泛应用。
中低碳钢作为钢铁材料的重要组成部分,其组织和性能的研究对于提高材料性能、优化生产工艺具有重要意义。
其中,低温贝氏体组织是中低碳钢中一种重要的组织形态,其形成过程和性能特点的研究,对于提高中低碳钢的力学性能和抗腐蚀性能具有重要意义。
本文将针对中低碳钢中的低温贝氏体组织与性能进行研究,以期为中低碳钢的进一步研究和应用提供理论依据。
二、低温贝氏体组织的形成低温贝氏体组织是中低碳钢在特定温度范围内冷却时形成的一种组织形态。
其形成过程主要受到温度、时间、合金元素含量等因素的影响。
在冷却过程中,钢中的碳元素和合金元素会与铁元素结合形成不同的相结构,从而影响组织的形成。
当钢在较低的温度范围内冷却时,会形成贝氏体组织。
这种组织形态具有较高的硬度和强度,同时具有良好的韧性和抗腐蚀性能。
三、低温贝氏体组织的性能特点低温贝氏体组织的性能特点主要表现在以下几个方面:1. 力学性能:低温贝氏体组织具有较高的硬度和强度,能够承受较大的外力作用而不发生断裂。
同时,其韧性也较好,能够在受到冲击时吸收能量而不发生脆性断裂。
2. 抗腐蚀性能:低温贝氏体组织具有良好的抗腐蚀性能,能够在恶劣的环境中保持较好的稳定性。
这主要得益于其组织结构中的合金元素和碳元素的分布特点。
3. 加工性能:低温贝氏体组织的加工性能较好,易于进行切割、弯曲和焊接等加工操作。
这为中低碳钢的加工和应用提供了便利。
四、中低碳钢中低温贝氏体组织的研究方法对于中低碳钢中低温贝氏体组织的研究,主要采用以下几种方法:1. 金相显微镜观察法:通过金相显微镜观察钢的组织形态,了解贝氏体组织的形成过程和分布特点。
2. 扫描电镜分析法:利用扫描电镜对钢的微观结构进行观察和分析,研究贝氏体组织的形貌和结构特点。
3. 力学性能测试法:通过拉伸、冲击等力学性能测试,了解贝氏体组织的力学性能特点。
《中低碳钢中的低温贝氏体组织与性能研究》篇一一、引言中低碳钢以其优异的力学性能和良好的加工性能在机械制造、汽车制造、船舶制造等工业领域具有广泛应用。
而其中的低温贝氏体组织,作为钢中一种重要的组织形态,对钢的力学性能有着重要影响。
本文旨在探讨中低碳钢中低温贝氏体组织的形成机制及其对钢的力学性能的影响,为进一步优化钢的成分设计和加工工艺提供理论依据。
二、中低碳钢的成分与组织中低碳钢的碳含量介于低碳钢和高碳钢之间,具有较好的强度和韧性。
其组织主要由铁素体、渗碳体及其他合金元素形成的化合物组成。
在一定的冷却速度下,中低碳钢中会形成贝氏体组织。
三、低温贝氏体组织的形成机制低温贝氏体组织是在中低碳钢冷却过程中,由于温度降低,碳原子在铁素体中的扩散速度减慢,导致碳原子在铁素体晶界处聚集,形成一种特殊的组织形态。
这种组织形态具有较高的强度和韧性,是钢中一种重要的强化机制。
四、低温贝氏体组织的结构与性能低温贝氏体组织具有特殊的结构特点,其组织内部存在大量的位错和亚结构,使得钢的强度和韧性得到提高。
此外,低温贝氏体组织的形成还会影响钢的耐磨性、耐腐蚀性和疲劳性能等。
五、研究方法与实验结果本研究采用金相显微镜、扫描电镜、透射电镜等手段对中低碳钢中的低温贝氏体组织进行观察和分析。
同时,通过力学性能测试,研究了低温贝氏体组织对钢的力学性能的影响。
实验结果表明,低温贝氏体组织的形成能有效提高钢的强度和韧性,同时对钢的其他力学性能也有积极影响。
六、讨论与结论通过研究,我们发现低温贝氏体组织的形成机制与钢的成分、冷却速度及热处理工艺密切相关。
在一定的成分范围内,通过控制冷却速度和热处理工艺,可以有效地促进低温贝氏体组织的形成。
此外,低温贝氏体组织的形成还能改善钢的耐磨性、耐腐蚀性和疲劳性能等。
在结论部分,我们总结了本研究的主要发现和创新点,并指出了未来研究方向。
首先,我们需要进一步研究低温贝氏体组织的形成机制,以更好地控制其形成过程。
摘要本文通过光学显微镜观察了Q550D与SM570-H的光学显微金相组织,通过扫描电镜观察其微观组织并利用能谱分析其夹杂物的成分。
得到了两种钢的组织精细结构以及非金属夹杂物的形貌及成分,分析了这些夹杂物对低碳贝氏体钢性能的影响。
通过在显微镜下观察到Q550D组织为板条状的上贝氏体组织,在大致平行的铁素体板条中镶嵌着很多细小的不易辨认的渗碳体。
而SM570-D的组织属于粒状贝氏体组织,在板条状的铁素体基体上弥散分布着由残余奥氏体和马氏体组成的小岛(也称M/A 岛),从微观组织上观察,SM570-H的组织比Q550D更为细小。
通过扫描电镜图,可以观察到在两种钢中都含有非金属夹杂物,这些非金属夹杂物大多都分布在奥氏体晶界处,主要是一些复杂的钙铝酸盐和硫化物,其导致组织的不均匀,从而使得钢的性能出现不均匀,除了钙铝酸盐和硫化物之外,组织中也有一些细小的颗粒,这些颗粒主要是合金元素通过过饱和固溶体的时效处理而沉淀出来,从而提高钢的强度。
钢中其它的一些微量元素如钛、铝等,这些元素的第二相弥散分布在铁基体中,形成弥散强化。
低碳贝氏体钢的性能还与轧制工艺有着密切的关系,特别是控制终轧温度能够明显改善低碳贝氏体钢的组织,一般把低碳贝氏体钢的终轧温度降低到1000℃左右能够明显提高低碳贝氏体钢的强韧性。
研究发现低碳贝氏体钢由于贝氏体组织结构精细,分布均匀,且碳当量小,因而贝氏体钢具有良好强韧性和焊接性能。
关键词:贝氏体组织, 金相组织,贝氏体转变,非金属夹杂Research on the Microstructure Property of Low-carbon Bainite SteelAbstractThe microstructure of Q550-D and SM570-H were studied by optical microscope and electron microscope in this paper, and the compositions was analyzed by energy spectrum. The microstructures of the two steels and the compositions of nonmetallic inclusions were obtained, also the effections of nonmetallic inclusions for the steels’ property was analyzed.Through observation by microscopy we can get that there are parallel bainite-ferrite strip distributed in microstructure of Q550-D. And more fine cementites are inlayed in the bainite-ferrite strip, It’s uneasy to identify. It belongs to upper bainite. the microstructure of SM570-H belongs to granular bainite, the sand island consisted of retained austenite and martensite distributed in the lath-like ferrites,observing in the microstructure, The microstructure of SM570-H is finer than Q550D.We can observed there were more nonmetallic inclusions in the Bainitic steels, and these nonmetallic inclusions always distributed in austenite grain boundary and always some calcium-aluminate and sulfides. These nonmetallic inclusions can decrease the strength of steels because of uneven microstructure. besides the calcium-aluminate, there were some partical of alloys in the microstructure, these micro alloying elements can improve the s trength of alloys because of solid solution strengthening and dispersion strengthening., such as Ti, Al. the second phase of these elements distributed in the lath-like ferrites.The property of low-carbon Bainitie steel is in association with Rolling Technology Parameters.especially in the finishing temperature. The property is more superior If the finishing temperature is controlled about 1000℃.The microstructure of the low-carbon Bainite steel is very fine, and well-distributed, and carbon equivalent is lower, so low-carbon Bainite steels have excellent strength and toughness and good welding properties.Key Words:Bainitie microstructure,metallographic structureBainite transformation,nonmetallic inclusions目录摘要 (1)Abstract (2)引言 (1)1文献综述 (3)1.1国内外低碳贝氏体钢的研究现状 (3)1.1.1国外低碳贝氏体钢的研究现状 (3)1.1.2国内低碳贝氏体钢的研究现状 (4)1.2低碳贝氏体钢的发展前景 (6)1.2.1市场需求前景 (6)1.2.2低碳贝氏体钢的品种发展方向 (7)1.2.3低碳贝氏体钢的研发方向 (7)2研究贝氏体组织的意义与分类 (8)2.1贝氏体组织的定义 (8)2.2 研究贝氏体组织的意义 (9)2.3贝氏体组织的分类 (11)2.3.1上贝氏体 (11)2.3.2 下贝氏体 (12)2.3.3粒状贝氏体 (13)2.4 低碳贝氏体钢的强化机制 (14)2.4.1 细晶强化 (14)2.4.2 析出强化 (15)2.4.3 固溶强化 (15)2.4.4 位错和亚晶强化 (16)2.4.5 相变强化 (16)2.5 钢中各种元素的作用 (17)2.5.1 C含量的控制范围 (17)2.5.2 B在低碳贝氏体钢中的作用 (17)2.5.3 Mn在低碳贝氏体钢中的作用 (17)2.5.4 Cu在低碳贝氏体钢中的作用 (18)2.5.5 Nb、Ti在低碳贝氏体钢中的作用 (18)2.6 低碳贝氏体钢的控制轧制 (19)2.6.1 控制轧制的概念 (19)2.6.2 低碳贝氏体钢终轧温度的控制 (20)2.6.3 轧后控冷对组织的影响 (20)2.6.4 加热温度对控轧效果的影响 (21)3 研究内容与方案 (21)3.1 研究内容 (21)3.2 试验内容及研究步骤 (22)3.2.1试验设备 (22)3.2.2取样说明 (22)3.2.3实验步骤 (22)3.3 金相组织分析 (24)3.4 非夹杂物形貌分析 (29)3.5贝氏体中的碳化物 (33)结论: (33)参考文献 (34)附录A (37)附录B原文 (38)附录C译文 (43)致谢 (51)引言材料是现代文明的支柱,人类文明的每一个脚印都与材料科学的进步密不可分。
随着现代工业的发展,对材料性能的要求也越来越高。
现代材料的研究有两个大的趋势:①不断开发新技术、新工艺、新设备,以研制各种具有特殊性能要求或优异性能的新型材料;②对传统材料(如钢铁材料)采用先进的工艺,以期大幅度提高其使用性能,有效合理地利用资源。
钢铁材料作为传统的结构材料,是创造现代文明的基础材料,足够数量的优质钢铁是各国实现工业化的必要条件,因而,开发新一代钢铁材料己经引起了世界各国的高度重视,研究新一代钢铁材料己是当今国际上科技发展的重要方向之一。
低碳贝氏体钢是近20年来发展起来的具有高强度、高韧性、优良的焊接性能的新钢系,被誉为21世纪环保绿色钢种,目前己成为与传统的铁素体-珠光体钢、马氏体淬火回火钢并列的一大新钢种。
我国海洋权利不断遭到周边国家的骚扰,特别是南海海域的领海纠纷问题,为了更好的保护我国的海洋主权,建造大型航空母舰是迫在眉睫的,而建造大型航母除了需要强大的经济实力外,对材料的性能也有极高的要求,而低碳贝氏体钢是建造航母最好的材料选择,我国的邯钢,宝钢,首钢在研制生产宽厚板方面已经具备了制造大型船体的能力。
现代社会随着人类的自然社会的破坏,使得自然灾害越来越多,比如2008年发生在中国四川汶川的5.12大地震,以及沿海城市的台风,这就对未来的建筑用钢了更高的要求,要求材料的性能更加的优良,具有一定的抗震能力。
综上所述,低碳贝氏体钢在现代工程建筑,军事,桥梁,船体等方面的应用越来越多,而且性能的要求也越来越高,所以开发更高性能的低碳贝氏体钢是现代材料界的新的方向。
然而材料的性能是由其内部组织决定的,只有更详细的了解低碳贝氏体的组织特征之后,才能更好的提高低碳贝氏体钢的性能。
本课题来自实验室自拟,材料来自国内某钢厂生产的Q550D和SM570-H。
Q550D是钢的屈服强度大约在550MPa左右,SM570-H是其钢的抗拉强度大约在570MPa左右。
两种钢均是低碳贝氏体钢。
1文献综述1.1国内外低碳贝氏体钢的研究现状1.1.1国外低碳贝氏体钢的研究现状低碳贝氏体钢是一类高强度、高韧性、焊接性能优良的新一代钢种,是化学冶金及物理冶金最新研究成果相结合的产物。