触觉传感器研究现状
- 格式:pdf
- 大小:187.80 KB
- 文档页数:2
国内外传感器现状及发展趋势
一、传感器现状
传感器是当今技术发展过程中必不可少的部分,它是检测和控制环境的器件,能够检测到物体、生物体及其他环境参数,并将检测到的信息转化为电信号处理,控制环境参数,使得系统能够自动化操作并取得正确的结果。
近年来,由于电子技术的发展,传感技术也取得长足的进步,它不仅可以应用于消费电子、汽车、工厂自动化等领域,而且可以应用于仪器仪表、通信等军事领域,并且在生物医学、环境科学、空间探测等领域得到了广泛的应用。
目前,国内外传感器技术的发展已经达到了非常可观的水平,技术的改进使其性能有了质的提高,传感器的灵敏度更高,噪声更低,广泛的可调,价格也较低,较常规传感器可以检测更小单位的变化,这都为后续的技术应用奠定了坚实的基础。
二、传感器发展趋势
随着科学技术的发展,传感器技术也在迅速发展,未来几年传感器技术将出现以下发展趋势:
(1)开发更多高灵敏度、超小体积的传感器。
目前,国际上有不少国家正在加大投入,开发更多高灵敏度、超小体积的传感器,满足智能化和自动化技术要求。
(2)开发更多低功耗传感器。
基于液态金属磁流变弹性体的柔性触觉传感器目录一、内容概括 (2)1.1 液态金属磁流变弹性体的基本概念 (2)1.2 柔性触觉传感器的研究现状及发展趋势 (4)1.3 研究的重要性和应用前景 (5)二、液态金属磁流变弹性体的基本性质 (6)2.1 液态金属磁流变弹性体的组成与结构 (8)2.2 液态金属磁流变弹性体的物理性质 (9)2.3 液态金属磁流变弹性体的力学特性 (10)三、柔性触觉传感器的设计原理 (12)3.1 传感器设计的基本思路 (13)3.2 传感器的工作原理及关键技术 (14)3.3 传感器的结构与组成 (15)四、基于液态金属磁流变弹性体的柔性触觉传感器的制备工艺 (17)4.1 制备流程 (18)4.2 关键制备技术 (19)4.3 制备过程中的注意事项 (20)五、柔性触觉传感器的性能表征与应用 (21)5.1 传感器的性能参数及测试方法 (23)5.2 传感器的性能表征结果 (24)5.3 传感器的应用实例及前景分析 (26)六、实验研究与分析 (27)6.1 实验设计与实施 (28)6.2 实验结果及分析 (29)6.3 实验结论与讨论 (30)七、结论与展望 (31)7.1 研究成果总结 (32)7.2 研究不足与展望 (33)7.3 对未来研究的建议 (34)一、内容概括本论文提出了一种基于液态金属磁流变弹性体的柔性触觉传感器,该传感器具有高灵敏度、良好的稳定性和适应性,能够在各种复杂环境中实现精确的触觉感知。
通过将液态金属磁流变弹性体与柔性电极相结合,该传感器能够实时检测接触面的力学特性变化,并将其转换为电信号输出。
我们详细探讨了液态金属磁流变弹性体的制备过程、柔性电极的设计以及传感器的集成方法。
通过对不同条件下传感器的性能进行测试和分析,我们验证了该传感器在触觉感知方面的有效性和优越性。
我们还讨论了该传感器在机器人触觉感知系统中的应用前景,以及潜在的商业化应用潜力。
触觉传感器及其在医疗设备中的应用研究一、引言随着社会经济的发展和人们健康意识的增强,医疗设备在人们日常生活中的重要性越来越明显。
而在医疗设备中,触觉传感器则是一个不可或缺的组成部分。
触觉传感器具有较为广泛的应用,既可用于人体生理监测,也可用于医用机器人手术等领域。
本文将从触觉传感器的概念入手,介绍其应用于医疗设备领域的最新研究进展。
二、触觉传感器的概念触觉传感器是一种将力、形变、压力等机械刺激转换为电信号的传感器。
触觉传感器通常由感应元件与信号处理器两部分组成。
感应元件主要是用于与外界物体进行接触,获取机械刺激信号。
传统触觉传感器的感应元件通常采用金属片、电容板、光栅等自由面的结构设计,其中光栅结构是应用最广泛的一种,并且具有精度高、稳定性好等优点。
而信号处理器则是用于将感应元件获得的机械信号转换为电信号,进行相应的处理,得到目标物体的相关参数。
三、触觉传感器在医疗设备中的应用1. 睡眠监测仪近年来,随着人们生活水平的提高,失眠、痛风等睡眠障碍问题受到了广泛关注,市场需求也日渐扩大。
触觉传感器技术则具有得到有效入眠指标的优势。
例如可使用触觉传感器对睡眠者体表的压力分布进行全面监测,通过算法分析准确计算出睡眠效率等数据,为睡眠控制或睡眠治疗提供技术保障。
2. 手术机器人触觉传感器也在手术机器人等医疗领域中发挥着重要作用。
手术机器人具有精度高、操作轻松等优点,并且触觉传感器技术的引入也使得手术机器人操作更为安全,能够有效避免术中伤害等情况。
例如,可在手术机器人的手衣上添加触觉传感器,实时监测机器人手术器械对人体组织的压力、形状等状态,以便更好地掌握术中情况。
3. 心脏监护仪等生理监测设备触觉传感器技术也应用于生理监测设备中。
例如,可使用触觉传感器对心脏监护仪进行增强,通过监测人体心跳来预测疾病,并且提供详细的心脏功能参数。
通过这些参数检测,医生可以更好地掌握身体的状况,为治疗提供更好的参考。
四、触觉传感器在医疗设备中的前景触觉传感器在医疗设备中具有广泛的应用前景。
传感器技术发展现状与趋势文献传感器技术是现代工业、农业、医疗、环保等领域中不可或缺的一项技术。
随着科技的不断进步和应用领域的不断扩展,传感器技术也在不断发展和创新。
本文将从传感器技术的发展现状和趋势两个方面展开,探讨传感器技术的未来发展方向。
一、传感器技术的发展现状传感器技术的发展可以追溯到20世纪初,当时主要应用于工业自动化控制领域。
随着科技的不断进步和应用领域的不断扩展,传感器技术也得到了广泛应用。
目前,传感器技术已经涉及到了工业、农业、医疗、环保、交通等多个领域。
在工业领域,传感器技术已经成为工业自动化控制的重要组成部分。
传感器可以实时监测生产过程中的温度、压力、流量等参数,从而实现对生产过程的精确控制和优化。
在农业领域,传感器技术可以实现对土壤湿度、温度、光照等参数的监测,从而实现对农作物的精准管理和优化。
在医疗领域,传感器技术可以实现对患者的生命体征、病情等参数的监测,从而实现对患者的精准治疗和护理。
在环保领域,传感器技术可以实现对环境污染物的监测和控制,从而实现对环境的保护和治理。
在交通领域,传感器技术可以实现对车辆、行人等的监测和控制,从而实现对交通流量的优化和管理。
二、传感器技术的发展趋势随着科技的不断进步和应用领域的不断扩展,传感器技术也在不断发展和创新。
未来,传感器技术的发展趋势主要包括以下几个方面:1. 多功能化未来的传感器将不仅仅是单一的测量仪器,而是具备多种功能的智能传感器。
例如,可以实现对多种参数的监测和控制,同时还可以实现数据处理、通信等功能。
2. 微型化未来的传感器将越来越小,甚至可以实现微型化。
微型化的传感器可以更加方便地嵌入到各种设备和系统中,实现对设备和系统的实时监测和控制。
3. 无线化未来的传感器将越来越倾向于无线化。
无线传感器可以实现对设备和系统的远程监测和控制,从而提高工作效率和安全性。
4. 智能化未来的传感器将越来越智能化。
智能传感器可以通过学习和适应,实现对环境和设备的自主控制和优化。
研究与技术丝绸JOURNAL OF SILK电阻式柔性触觉传感器的研究与医养健康领域应用现状Research on resistive flexible tactile sensors and their current applications in the field of medical and health care殷㊀霞,张士进,田明伟,刘㊀红(青岛大学纺织服装学院,青岛266071)摘要:近年来,可穿戴智能系统的进步对柔性压力传感器提出迫切的需求㊂其中,电阻式柔性触觉传感器因其原理简单㊁易于加工㊁集成效率高等特点得到了迅速发展㊂但是,如何实现传感器在宽压力监测范围内,具有高灵敏度仍是研究者们要面临的挑战㊂为了解决上述问题,除了选择先进的功能材料和合适的衬底材料,优化传感器结构也是一个重要的研究方向㊂本文立足于传感器件的结构设计,分别介绍了一维的纤维∕纱线传感器件,基于表面微结构㊁纳米结构构筑的二维平面传感器件及具有空间结构和高空隙的多维立体结构传感器件,通过以上结构设计实现了传感器件性能的提升,最后分析了其在医养健康领域的实际应用进展㊂关键词:电阻式柔性触觉传感器;结构设计;医养健康;一维纤维∕纱线传感器件;二维平面结构传感器件;多维立体结构传感器件;健康监测中图分类号:TP 212.3;TQ 342.8㊀㊀㊀㊀文献标志码:A ㊀㊀㊀㊀文章编号:10017003(2024)02007609DOI :10.3969∕j.issn.1001-7003.2024.02.009收稿日期:20230914;修回日期:20231220作者简介:殷霞(2000),女,硕士研究生,研究方向为服装舒适性与功能服装㊂通信作者:刘红,讲师,lh 1221@ ㊂㊀㊀触觉是人类感知和识别物体的重要方式,在没有触摸的情况下,人类将无法获得物体的基本特征[1]㊂皮肤作为人体最大的器官,含有大量的神经传感器,赋予人们触觉感知能力,是人类感知外界环境中压力㊁温度㊁湿度及物体形状等物理信息最重要的途径㊂受人体皮肤的启发,仿生电子皮肤被开发并应用到人机交互㊁可穿戴医疗设备和智能机器人等各个领域[2]㊂对于仿生电子皮肤而言,其最重要的部分是可以模仿人体的触觉传感器[3]㊂常见的柔性触觉传感器依据其传感机制可分为电容式㊁压电式㊁摩擦电式和电阻式[4-5],如图1[6-10]所示㊂电容式传感器由两个平行电极和两电极之间的介电层组成,通过将压力刺激转化为电容信号进行传感,具有毫秒响应时间及出色的应变能力,但其灵敏度会随着器件尺寸的减小而降低[11-14]㊂压电式传感器是基于外加应变引起的压电材料极化导致电势变化,具有固有频率高㊁性能稳定等特点[15],但由于压电材料产生的输出电压是脉冲信号,故其大多应用于测量动态压力,而不能稳定地测量静态信号[16]㊂为了满足传感器自供电这一需求,基于摩擦电纳米发电机(TENG )[17]研发的传感器近几年受关注较多㊂摩擦电传感器通过将人体在运动过程中产生的能量进行收集并保存在电容器中,从而实现自供电[18],但极易受外部静电感应产生信号干扰的特性,限制了其应用场景[19]㊂而电阻式传感器因其工作原理简单㊁成本较低㊁信号采集方便等特性,成为了目前研究最多且应用最广泛的触觉传感器[4,20-22]㊂图1㊀柔性触觉传感器分类及其应用Fig.1㊀Classification and application of flexible tactile sensors电阻式触觉传感器的工作原理主要基于压阻效应,当传感器受到外界施加的压力时,外部压力被转换为电阻信号,以此来完成电信号的输出[23-24]㊂合理的结构设计,不仅可大幅67第61卷㊀第2期电阻式柔性触觉传感器的研究与医养健康领域应用现状度提升传感器的灵敏度及其他各项性能,而且还可以灵活地调整传感器的灵敏度和响应特性,以满足特定的应用需求[25-26]㊂对传感层进行结构创新设计,改变导电材料间的接触电阻及导电弹性复合材料中的导电路径,是提高电阻式触觉传感器性能重要的研究方向[27]㊂将柔性电阻式触觉传感器与可穿戴设备结合监测人体生理信号,如血压㊁心率㊁脉搏等,可为患者提供个性化康复方案[6,28]㊂也可将纤维∕纱线基柔性触觉传感器编织成床垫㊁坐垫等产品,实现身体不同部位的压力分布监测,可有效预防压疮生成[29-30],在医养健康领域具有重要意义㊂本文综述了近年来电阻式柔性触觉传感器的最新进展㊂首先根据其结构设计分别介绍了在不同维度上的研究进展,包括一维纤维∕纱线传感器件㊁二维平面结构传感器件㊁多维立体结构传感器件㊂随后分析了其在医养健康领域的实际应用进展㊂最后,讨论总结了电阻式柔性触觉传感器目前所面临的挑战㊂1㊀电阻式柔性触觉传感器的结构设计1.1㊀一维纤维∕纱线基传感器件一维纤维∕纱线结构因其柔软性㊁可编织性㊁形状适应性故具有优异的纺织加工性能[31-32],较多集成到纺织服装当中应用㊂大多数纤维∕纱线通过采用湿法同轴[33-34]㊁静电纺丝[35-36]㊁对纤维∕纱线进行特殊后处理(喷涂㊁浸渍[37]㊁原位生长[38]㊁化学气相沉积[39])的方法制备核壳结构㊂Hu等[39]通过化学气相沉积(CVD)工艺制造以石墨烯纤维作为芯层,原位生长的碳纳米管分层作为壳层的碳杂化纤维(CHF),如图2(a)所示㊂具有核壳结构的纤维∕纱线,纤维芯和外部的壳或包覆层可以相互作用,提高纤维材料的抗拉㊁抗压㊁抗弯等力学性能,也可以防止纤维芯受到外界环境的影响,同时可以根据需求调节其芯层或外壳的成分和厚度,从而使纤维材料可适应不同的应用领域和环境,且基于核壳结构的压阻式传感器件普遍具有较高的灵敏度和线性度㊂Zhong等[40]通过湿法纺丝制备的芯层为镀银尼龙,壳层为表面具有微孔结构的碳纳米管(CNTs)∕热塑性聚氨酯(TPU)的核壳压阻纱线,灵敏度高达84.5N-1㊂利用同轴纺丝和后处理方法相结合的方式[41],可制备具有三层核壳结构的导电复合纤维㊂Wang 等[42]将湿纺制备的已经具有核壳结构的纤维,又通过在纤维表层发生银镜反应,形成紧密堆叠的Ag纳米颗粒层,制备了具有三层核壳结构的导电复合纤维,如图2(b)所示㊂除了通过同轴纺丝实现纤维的核壳结构,还可选择在纺纱的过程中将纤维加捻成特殊的纱线结构,如包芯纱㊁包缠纱等赋予纱线核壳结构㊂Ding等[43]以柔性乳胶长丝为芯层,紧图2㊀一维纤维∕纱线基传感器件原理和结构示意Fig.2㊀Schematic diagram of the principle and structure ofone-dimensional fiber∕yarn-based sensor elements密缠绕包裹PET长丝为壳层,在PET长丝上沉积导电聚吡咯形成导电网络,且制备的导电纱线对应力非常敏感,如图2(c)所示㊂近年来,与核壳结构类似地使用弹性管状材料,如(弹性微管[44]㊁中空橡胶管[45])对液态导电金属进行封存,制作导电纱线的方法受到较多关注㊂与传统的核壳结构纱线相比,该方法制作的导电纱线,具有高度可拉伸和耐水洗的优点㊂Yu等[44]使用将液态金属合金共晶镓铟(eGaIn)沉积到弹性微管内制备的导电纱线编织的功能性织物,即使在洗衣机内经过了典型的洗涤循环,仍保持高功能性㊂综上所述,现有的一维纤维∕纱线传感器件主要基于核壳结构,其虽具有较高线性度,但传感器件的灵敏度和分辨率易受到纤维直径和长度的限制,在测量一些微小变化时可能精度不高㊂此外,纤维在使用过程中易疲劳和损伤,传感器的耐久性和稳定性受到影响㊂因此,在制作纤维∕纱线传感器件的时候,可选择使用更加耐久和稳定的纤维材料,如碳纤维和聚合物纤维等㊂1.2㊀二维平面结构传感器件可穿戴电阻式应变传感器通常由绝缘的柔性聚合物基体和导电材料两部分构成,为了获得高性能的传感器,除了需要选择合适的弹性基板及导电性好的敏感材料外,在二维导电层上设计并构建精细的微观结构或纳米级几何形状,是提高传感器灵敏度较为有效的方法㊂目前已出现的较为常见的微观结构如棘突结构[46-47]㊁微圆顶结构[48]㊁微纳米棒状结构[49]㊁微金字塔结构[50]㊁空心球微结构[17]㊁皱纹结构[15]㊁互锁结构[28]㊁微柱结构[51]及各种仿生微结构[21,52],这些微结构可以为传感器两电极之间提供丰富的接触点,来提高传感器的性能㊂77Vol.61㊀No.2Research on resistive flexible tactile sensors and their current applications in the field of medical and health care在这些微观结构中,因人类表皮的微观结构与砂纸表面具有相似的形貌,使用砂纸作为模板来制备的具有随机高度分布的棘突微结构[53],不仅可检测细微压力的极限且具有成本较低,制作工艺简单等优点㊂Sun 等[54]将石墨与聚二甲基硅氧烷(PDMS )的混合液倒在砂纸模板上,直接形成具有棘突结构的导电膜㊂皱纹结构的开发同样是仿制人类皮肤的一种微结构设计,类似于褶皱的结构为传感器提供了可拉伸性㊂Jia 等[15]通过梯度减少氧化石墨烯(rGO )形成具有皱纹结构的导电层,制备的传感器表现出出色的灵敏度,如图3(a )所示㊂为了设计出合理的微观结构,将特殊的生物∕植物表面微结构进行仿制,是一种便捷且能有效提高传感器灵敏度的方法㊂Yan 等[21]通过仿制银杏叶表面微结构制备的MXene 基压力传感器,灵敏度高达403.46kPa -1,如图3(c )所示㊂除了选择在织物㊁薄膜㊁凝胶等柔性基体表面进行微观结构设计,还可采用静电纺丝喷涂的方法[55],由于纤维的交错排列,同样可以在传感层表面形成精细的多层网络微结构㊂Gao 等[56]用柔性锡(IV )掺杂的SrTiO 3,采用溶胶-凝胶静电纺丝法制备的柔性陶瓷纳米纤维膜,在小于400Pa 的低压范围下灵敏度可达2.24kPa –1,且表现出优异的稳定性,如图3(b )所示㊂图3㊀二维平面结构传感器件原理和结构示意Fig.3㊀Schematic diagram of the principle and structure of atwo-dimensional planar structure sensor element综上所述,二维平面结构传感器件只能在有限的压力范围内具有高灵敏度,为了提高其应力监测范围,设计新型的织物表面微结构,增大阻值变化是有效的解决途径㊂同时在对织物进行导电处理时选择适合的导电材料,增加导电通道,通过改善导电材料的分散性可提高织物的导电性㊂1.3㊀多维立体结构传感器件多维立体结构设计的电阻式压力传感器,得益于其空间结构存在高孔隙且基材具有良好的弹性,相邻多孔骨架之间的 接触效应 可产生大幅度的电阻变化,使其总能在宽线性范围内具有高灵敏度㊂常见的制备多维立体空间结构的策略主要包括多层微结构叠加[52,57,58]㊁赋予三维(3D )多孔基材传感性能[59-61]㊁导电 骨架 团聚三维结构[62]㊂多层微结构构筑的立体结构可以很好地优化传感器线性传感范围,相较于单层微结构,使传感器能够在大的压力范围下保持高灵敏度[63]㊂Lee 等[28]堆叠多层具有互锁微圆顶结构设计的传感层,如图4(a )所示㊂由于逐层之间的应力分布,使传感器在0.0013~353kPa 的宽压力范围内可线性响应㊂直接赋予三维(3D )多孔基材传感性能的策略,避免了逐层组装的麻烦,具有低成本㊁可大规模制备等优点㊂常用的多孔基材主要包括泡沫[64]㊁海绵[65]㊁热塑性弹性体(TPE )[66]等,这些材料具有丰富的3D 网络结构,便于将导电材料涂覆到其弹性体骨架上㊂Zhang 等[67]在海绵上浸渍碳纳米管(CNT ),上下电极采用银浆涂覆作为导电层,制作了一款价格低廉且具有高性能和简单制造工艺的传感器㊂其中,将海绵经预压缩处理后在其骨架上获得裂纹结构的设计[68],对于弹性三维微孔压阻材料来说具有重要研究意义㊂Zhang 等[69]将通过导电纤维素纳米纤维(CNF )㊁AgNWs 制备的导电海绵经预压缩处理后,在海绵骨架表面产生裂纹结构,如图4(b )所示(根据压缩速率不同,裂纹产生的密度也会随之变化),基于小应变的 裂纹效应 ,该传感器的检测限可低至0.2%㊂虽然基于聚合物材料的传感器具有高灵敏度和较大的工作压力范围,但聚合物材料普遍存在弹性回复性差㊁恢复滞后等问题,因此继续探索其他新型材料构筑3D 结构是必要的㊂Chen 等[70]将水性MXene 油墨和植物纤维通过物理发泡的方法来制作类似于海绵的三维结构,再对其通过组装㊁浸涂㊁封装后制备的压阻式传感器表现出的可压缩应变达60%㊂图4㊀多维立体结构传感器件原理和结构示意Fig.4㊀Schematic diagram of the principle and structure of a multidimensional three-dimensional structure sensor element87第61卷㊀第2期电阻式柔性触觉传感器的研究与医养健康领域应用现状综上所述,多维立体结构的传感器件主要存在弹性回复性差㊁制造难度较大等问题,弹性回复性差主要是由于传感器材料在反复压缩过程中发生塑性失真㊁疲劳等㊂其次传感器立体结构设计得不均匀,弹性变形后也很难回复到原有状态㊂在未来可以引入新的材料制备技术和制造工艺,如微纳米加工技术㊁3D打印等,以提高传感器的制造精度,从根本上改善传感器的回复性㊂2㊀电阻式柔性触觉传感器在医养健康领域应用现状2.1㊀临床医学及生命体征监测应用随着医疗技术和条件的快速发展,多样化的传感器作为可穿戴医疗设备的重要组成部分,已经应用于各个方面㊂其中,电阻式柔性触觉传感器对微小应力变化非常敏感,可以检测到细微的触摸和压力信息,对临床应用兴起的机器人辅助微创手术的发展具有重要意义㊂Aubeeluck等[71]将多壁碳纳米管(MWCNTs)和热塑性聚氨酯(TPU)复合材料制备的油墨进行丝网印刷得到柔性薄膜,再将具有微结构的叉指电极薄膜进行多层叠加后进行封装,设计和制造了一种9mm2的超薄柔性电阻触觉传感器,用于机器人辅助微创手术中磁性微夹持器手术工具,提高了手术的安全性㊂生命体征是人体基本身体机能的测量值,用于评估人体的身体健康状况㊂而传感器是各类探知生命体征智能端口的核心元器件,是采集生命体征信息㊁构建数字化管理平台㊁实现健康风险科学预警的重要途径㊂电阻式柔性触觉传感器通过模仿皮肤的传感特性制备的电子皮肤可有效地克服传统医疗设备笨重㊁繁琐等缺陷,实现对人体体征信息的全方位监测㊂Chao等[24]将MXene油墨丝网印刷到丝素纳米纤维膜上制备的MXene∕蛋白质的电阻式压力传感器组装的电子皮肤具有良好的生物相容性,通过电阻变化检测人类的脉冲波型,来评估佩戴者的心血管状况及判断是否存在血管老化和动脉僵硬等问题,如图5(a)所示㊂Li等[27]通过将壳聚糖和MXene交替涂覆到PU海绵骨架上制备的传感器能有效检测许多非接触运动,可以隔着塑料面罩检测呼吸和说话,并进行语音识别,在未来临床医学监测方面具有巨大的潜力,如图5 (b)所示㊂此外,针对当代年轻人的生活需求及生活方式的转变,将传感器集成在腕带㊁手表㊁护膝等可穿戴设备中,更易于在日常生活运动中对心率进行监测㊂Gao等[72]演示了一种具有微流体膜片的压力传感器,分别将传感器嵌入聚二甲基硅氧烷(PDMS)腕带和PDMS手套,在触摸或握住物体时,根据阻值变化可提供手的全面触觉反馈㊂佩戴该传感手腕进行运动,可实时测量运动者脉搏变化,进行心率监测㊂图5㊀电阻式柔性触觉传感器在生命体征监测领域的应用Fig.5㊀Application of resistive flexible tactile sensors in thefield of vital sign monitoring2.2㊀居家健康监测及康复治疗应用居家健康监测可以有效地进行个人健康管理及中老年疾病预防,不仅能提高治疗效果,而且还可节省公共医疗资源㊂对于老年人和慢性病患者而言,居家健康监测设备可提供长期的照护支持㊂足底压力监测对损伤预防㊁运动生物力学具有重要意义㊂Lee等[28]通过传感器阵列制作的智能鞋垫,可以清楚地监测行走过程中的高脚压分布,如图6(a)所示㊂对于一些老年人的步态监测,某些区域的异常步态和过度的脚压可能与很多疾病相关,如糖尿病足溃疡㊁帕金森病患者的特征性步态模式,监测老年人的步态模式和姿势可以对这些疾病进行早期诊断㊂Kim等[73]以隐形眼镜为基板,设计了一款可以监测眼内压的透明和可拉伸的多功能隐形眼镜传感器,如图6(b)所示㊂用于无线监测佩戴者的葡萄糖和眼内压,不仅适用于糖尿病患者,还可以帮助青年佩戴者评估眼睛健康,如青光眼筛查㊁视力保护等㊂Hu等[39]使用制备的碳杂化纤维(CHF)组装的光纤传感器,将其安装在腰椎和颈椎上,可捕获各种生理信号,时实精确记录坐姿信号,当坐姿不规范时,基于该传感器的警告系统会发出警示,帮助指导纠正坐姿,改善不良的生活方式㊂此外,通过与触觉显示器相结合,实现人机交互,将日常监测数据可视化,对康复治疗具有重要意义㊂Zhong等[23]将传感器固定在纺织手套的指关节区域,并且基97Vol.61㊀No.2Research on resistive flexible tactile sensors and their current applications in the field of medical and health care于该传感器建立人机界面,如图6(c )所示㊂佩戴患者根据电脑提示做出指定手势,开发了一个智能康复训练平台,以有趣和具有挑战性的方式帮助患者训练和提高手指关节技能,在康复医疗㊁外骨骼机械手甚至工业制造方面显示出潜在的应用前景㊂图6㊀电阻式柔性触觉传感器在居家健康监测及康复治疗领域的应用Fig.6㊀Application of resistive flexible tactile sensors in the field ofhome health monitoring and rehabilitation therapy3㊀结㊀论电阻式柔性触觉传感器因其原理简单㊁成本较低等特点,在柔性可穿戴领域中具有显著优势㊂本文综述了近年来电阻式柔性触觉传感器结构设计在不同维度上的最新进展,结果表明:不论是一维纤维∕纱线基传感器件㊁二维平面结构设计传感器件,还是多维立体传感器件,都需要对其结构进行创新设计,才能够在原有的基础上,实现传感性能大幅度提升㊂在已确定传感器件的形状和尺寸要求下,构筑 微结构 增大两电极间的接触点∕空隙是提升传感器灵敏度较为有效的策略㊂同时,除了注重其结构设计,还可以围绕材料的选择进行创新㊂此外,虽然电阻式柔性传感器虽已经在柔性电子㊁医疗监测㊁人机交互等各个领域都有了较大的进展,但目前同样存在一些方向需要突破㊂1)柔性电阻式触觉传感器在长时间使用或复杂环境中可能会受到损坏或性能下降的影响㊂为了提高稳定性和可靠性,需要改进材料的耐久性和稳定性,解决电阻元件的老化问题,并增强传感器的保护措施㊂2)根据使用者的需求对传感器进行功能设计,整合其他传感器模块,如温度㊁湿度等,提供更广泛的应用领域㊂3)在进行传感器设计和制造时,考虑成本效益和生产难度,开发低成本且可批量生产的传感器是未来的发展重点㊂‘丝绸“官网下载㊀中国知网下载参考文献:[1]CASTELLANOSG M ,CONZALEZ M C ,RUBIO G B ,et al.ACognitive Psychological Approach to Identify the Significant of the Role of Visual Sense in Haptic Sense [C ].Wuhan :International Conference on Biometrics and Kansei Engineering (ICBAKE ),2013.[2]WANG C ,LIU C ,SHANG F ,et al.Tactile sensing technology inbionic skin :A review [J ].Biosensors and Bioelectronics ,2023(220):114882.[3]王康.基于MXene 的高性能柔性触觉传感器[D ].长春:吉林大学,2021.WANG Kang.High Performance Flexible Tactile Sensor Based on MXene [D ].Changchun :Jilin University ,2021.[4]CAO M ,SU J ,FAN S ,et al.Wearable piezoresistive pressuresensors based on 3D graphene [J ].Chemical Engineering Journal ,2021(406):126777.[5]潘晓君,鲍容容,潘曹峰.可穿戴柔性触觉传感器的研究进展[J ].高等学校化学学报,2021,42(8):2359-2373.PAN X J ,BAO R R ,PAN C F.Research progress of flexible tactile sensors applied to wearable electronics [J ].Chemical Journal of Chinese Universities ,2021,42(8):2359-2373.[6]ZHONG M J ,ZHANG L ,LIU X ,et al.Wide linear range andhighly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces [J ].Chemical Engineering Journal ,2021(412):128649.[7]LI X P ,LI Y ,LI X ,et al.Highly sensitive ,reliable and flexiblepiezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets [J ].Journal of Colloid and Interface Science ,2019(542):54-62.[8]LEE Y ,PARK J ,CHO S ,et al.Flexible ferroelectric sensors withultrahigh pressure sensitivity and linear response over exceptionally broad pressure range [J ].Acs Nano ,2018,12(4):4045-4054.8第61卷㊀第2期电阻式柔性触觉传感器的研究与医养健康领域应用现状[9]LEE H J,YANG J C,CHOI J,et al.Hetero-dimensional2DTi3C2T x MXene and1D graphene nanoribbon hybrids for machine learning-assisted pressure sensors[J].Acs Nano,2021,15(6): 10347-10356.[10]IQBAL S M A,MAHGOUB I,DU E,et al.Advances inhealthcare wearable devices[J].Npj Flexible Electronics,2021,5(1):9.[11]MENG K,XIAO X,WEI W,et al.Wearable pressure sensors forpulse wave monitoring[J].Advanced Materials,2022,34(21): 2109357.[12]HWANG J,KIM Y,YANG H,et al.Fabrication of hierarchicallyporous structured PDMS composites and their application as a flexible capacitive pressure sensor[J].Composites Part B: Engineering,2021(211):108607.[13]BAI N,WANG L,WANG Q,et al.Graded intrafillablearchitecture-based iontronic pressure sensor with ultra-broad-range high sensitivity[J].Nature Communications,2020(1):209. [14]BOUTRY C M,KAIZAWA Y,SCHROEDER B C,et al.Astretchable and biodegradable strain and pressure sensor for orthopaedic application[J].Nature Electronics,2018(1):314-321.[15]YANG Y,PAN H,XIE G,et al.Flexible piezoelectric pressuresensor based on polydopamine-modified BaTiO3∕PVDF composite film for human motion monitoring[J].Sensors and Actuators A: Physical,2020(301):111789.[16]CHEN Z,WANG Z,LI X,et al.Flexible piezoelectric-inducedpressure sensors for static measurements based on nanowires∕graphene heterostructures[J].Acs Nano,2017,11(5):4507-4513.[17]CAI Y W,ZHANG X N,WANG G G,et al.A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS∕MXene composite films for E-skin[J].Nano Energy,2021(81):105663.[18]JIN T,SUN Z,LI L,et al.Triboelectric nanogenerator sensors forsoft robotics aiming at digital twin applications[J].Nature Communications,2020(11):5381.[19]ZHU G,YANG W Q,ZHANG T,et al.Self-powered,ultrasensitive,flexible tactile sensors based on contact electrification [J].Nano Letters,2014,14(6):3208-3213.[20]JIA J,HUANG G,DENG J,et al.Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles[J].Nanoscale,2019,11(10):4258-4266. [21]CHENG Y,MA Y,LI L,et al.Bioinspired microspines for a high-performance spray Ti3C2T x MXene-based piezoresistive sensor[J].Acs Nano,2020,14(2):2145-2155.[22]PAN L,CHORTOS A,YU G,et al.An ultra-sensitive resistivepressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film[J].Nature Communications, 2014(5):3002.[23]PENG Y,YANG N,XU Q,et al.Recent advances in flexibletactile sensors for intelligent systems[J].Sensors,2021,21(16): 5392.[24]DING Y,XU T,ONYILAGHA O,et al.Recent advances inflexible and wearable pressure sensors based on piezoresistive3D monolithic conductive sponges[J].Acs Applied Materials& Interfaces,2019,11(7):6685-6704.[25]CHEN B,ZHANG L,LI H,et al.Skin-inspired flexible and high-performance MXene@polydimethylsiloxane piezoresistive pressure sensor for human motion detection[J].Journal of Colloid and Interface Science,2022(617):478-488.[26]YAN J F,MA Y,JIA G,et al.Bionic MXene based hybrid filmdesign for an ultrasensitive piezoresistive pressure sensor[J].Chemical Engineering Journal,2022,431(4):133458. [27]佘明华,徐瑞东,韦继超,等.纺织基柔性触觉传感器及可穿戴应用进展[J].丝绸,2023,60(3):60-72.SHE M H,XU R D,WEI J C,et al.Textile-based flexible tactile sensors and wearable applications[J].Journal of Silk,2023,60(3):60-72.[28]CHAO M Y,HE L,GONG M,et al.Breathable Ti3C2T x MXene∕Protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents[J].Acs Nano,2021,15(6):9746-9758.[29]OH Y S,KIM J H,XIE Z,et al.Battery-free,wireless softsensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries[J].Nature Communications,2021,12(1):5008.[30]CHO S,HAN H,PARK H,et al.Wireless,multimodal sensorsfor continuous measurement of pressure,temperature,and hydration of patients in wheelchair[J].Npj Flexible Electronics,2023,7(1):8.[31]HAN J,XU C,ZHANG J,et al.Multifunctional coaxial energyfiber toward energy harvesting,storage,and utilization[J].Acs Nano,2021,15(1):1597-1607.[32]YU R,ZHU C,WAN J,et al.Review of graphene-based textilestrain sensors,with emphasis on structure activity relationship[J].Polymers,2021,13(1):151.[33]XU L,JIAO X,SHI C,et al.Single-walled carbon nanotube∕copper core-shell fibers with a high specific electrical conductivity [J].Acs Nano,2023,17(10):9245-9254.18Vol.61㊀No.2Research on resistive flexible tactile sensors and their current applications in the field of medical and health care[34]TANG Z,JIA S,WANG F,et al.Highly stretchable core-sheathfibers via wet-spinning for wearable strain sensors[J].Acs Applied Materials&Interfaces,2018,10(7):6624-6635. [35]WU J,WANG M,DONG L,et al.A trimode thermoregulatoryflexible fibrous membrane designed with hierarchical core-sheath fiber structure for wearable personal thermal management[J].Acs Nano,2022,16(8):12801-12812.[36]LI P,GAO X,ZHAO B,et al.Multi-color tunable and whitecircularly polarized luminescent composite nanofibers electrospun from chiral helical polymer[J].Advanced Fiber Materials,2022, 4(6):1632-1644.[37]INNOCENT M T,ZHANG Z,CAO R,et al.Piezoresistive fiberswith large working factors for strain sensing applications[J].Acs Applied Materials&Interfaces,2023,15(1):2277-2288. [38]LIU Z,ZHENG Y,JIN L,et al.Highly breathable and stretchablestrain sensors with insensitive response to pressure and bending[J].Advanced Functional Materials,2021,31(14):2007622. [39]HU Y F,HUANG T,ZHANG H,et al.Ultrasensitive andwearable carbon hybrid fiber devices as robust intelligent sensors [J].Acs Applied Materials&Interfaces,2021,13(20):23905-23914.[40]ZHONG W B,MING X,JIANG H,et al.Full-textile humanmotion detection systems integrated by facile weaving with hierarchical core-shell piezoresistive yarns[J].Acs Applied Materials&Interfaces,2021,13(44):52901-52911. [41]ZHOU J,XU X,XIN Y,et al.Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors[J].Advanced Functional Materials,2018,28(16): 1705591.[42]WANG Y H,ZHU J,SHEN M,et al.Three-layer core-shell Ag∕AgCl∕PEDOT:PSS composite fibers via a one-step single-nozzle technique enabled skin-inspired tactile sensors[J].Chemical Engineering Journal,2022(442):136270.[43]DING X C,ZHONG W,JIANG H,et al.Highly accuratewearable piezoresistive sensors without tension disturbance based on weaved conductive yarn[J].Acs Applied Materials&Interfaces, 2020,12(31):35638-35646.[44]YU L T,YEO J C,SOON R H,et al.Highly stretchable,weavable,and washable piezoresistive microfiber sensors[J].Acs Applied Materials&Interfaces,2018,10(15):12773-12780. [45]ZHANG J,WANG Y,ZHOU J,et al.Multi-functional STF-basedyarn for human protection and wearable systems[J].Chemical Engineering Journal,2023,453(2):139869.[46]LI W,JIN X,HAN X,et al.Synergy of porous structure andmicrostructure in piezoresistive material for high-performance and flexible pressure sensors[J].Acs Applied Materials&Interfaces, 2021,13(16):19211-19220.[47]YANG M,CHENG Y,YUE Y,et al.High-performance flexiblepressure sensor with a self-healing function for tactile feedback[J].Advanced Science,2022,9(20):2200507.[48]YAO B,YE Z,LOU X,et al.Wireless rehabilitation trainingsensor arrays made with hot screen-imprinted conductive hydrogels with a low percolation threshold[J].Acs Applied Materials& Interfaces,2022,14(10):12734-12747.[49]CHEN D,LIU Z,LI Y,et al.Unsymmetrical alveolate PMMA∕MWCNT film as a piezoresistive e-skin with four-dimensional resolution and application for detecting motion direction and airflow rate[J].Acs Applied Materials&Interfaces,2020,12(27): 30896-30904.[50]CHOONG C L,SHIM M B,LEE B S,et al.Highly stretchableresistive pressure sensors using a conductive elastomeric composite on a micropyramid array[J].Advanced Materials,2014,26(21): 3451-3458.[51]PARK H,JEONG Y R,YUN J,et al.Stretchable array of highlysensitive pressure sensors consisting of polyaniline nanofibers and au-coated polydimethylsiloxane micropillars[J].Acs Nano,2015, 9(10):9974-9985.[52]SHI J,WANG L,DAI Z,et al.Multiscale hierarchical design of aflexible piezoresistive pressure sensor with high sensitivity and wide linearity range[J].Small,2018,14(27):1800819. [53]PANG Y,ZHANG K,YANG Z,et al.Epidermis microstructureinspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity[J].Acs Nano,2018,12(3):2346-2354.[54]SUN Q J,ZHUANG J,VENKATESH S,et al.Highly sensitiveand ultrastable skin sensors for biopressure and bioforce measurements based on hierarchical microstructures[J].Acs Applied Materials& Interfaces,2018,10(4):4086-4094.[55]ZHOU Y,ZHAO L,TAO W,et al.All-nanofiber networkstructure for ultrasensitive piezoresistive pressure sensors[J].Acs Applied Materials&Interfaces,2022,14(17):19949-19957. [56]GAO X,ZHOU F,LI M,et al.Flexible stannum-doped SrTiO3nanofiber membranes for highly sensitive and reliable piezoresistive pressure sensors[J].Acs Applied Materials&Interfaces,2021,13(44):52811-52821.[57]XU J,ZHANG L,LAI X,et al.Wearable RGO∕MXenepiezoresistive pressure sensors with hierarchical microspines for detecting human motion[J].Acs Applied Materials&Interfaces,28。
仿生学灵敏触觉传感器的研究与设计绪论近年来,随着科技的迅速发展,仿生学在机器人领域中扮演着重要的角色。
仿生学的目标是从自然界中汲取灵感,将生物的优秀特性应用于工程设计中。
在机器人领域中,灵敏触觉传感器的研究与设计是一个具有挑战性的任务。
它模拟了人类的触觉系统,使机器人能够感知和理解环境,从而更好地适应各种任务和工作场景。
本文将介绍仿生学灵敏触觉传感器的研究与设计。
第一部分:仿生学灵敏触觉传感器的原理1.1 仿生学灵敏触觉传感器的概述仿生学灵敏触觉传感器是一种模拟生物触觉系统的传感器。
它通过感知外部环境的物理量变化,如接触力、振动、形状等来获取信息,并将其转化为电信号进行处理和分析。
1.2 仿生学灵敏触觉传感器的感知机制仿生学灵敏触觉传感器主要通过两种感知机制来获取外部环境信息:压力感知机制和振动感知机制。
压力感知机制通过感知接触物体的压力大小来获取信息,振动感知机制则通过感知外部环境的振动频率和幅度来获取信息。
1.3 仿生学灵敏触觉传感器的结构仿生学灵敏触觉传感器通常由传感元件、信号处理电路和数据输出组成。
传感元件负责感知外部环境的物理量变化,信号处理电路将传感元件采集到的信号进行放大、滤波和编码处理,数据输出则将处理后的信号输出为可理解的形式。
第二部分:仿生学灵敏触觉传感器的应用2.1 仿生学灵敏触觉传感器在机器人领域的应用仿生学灵敏触觉传感器在机器人领域中具有广泛的应用前景。
它可以使机器人更好地感知外部环境,从而更好地完成各种任务。
例如,它可以用于机器人的自主导航,使机器人能够避免障碍物并规避危险。
此外,它还可以用于机器人的物体抓取,使机器人能够更精准地抓取物体并进行操作。
2.2 仿生学灵敏触觉传感器在医疗领域的应用仿生学灵敏触觉传感器在医疗领域中也具有重要的应用价值。
例如,它可以用于仿生机器人辅助手术,使医生在进行手术时能够更好地感知患者的组织和器官状态,从而提高手术精确度。
此外,它还可以用于制造智能假肢,使残疾人能够感受到外界的触觉刺激。
新型传感器的研究现状及未来发展趋势传感器是一种现代化技术所必需的元件,它能够将各种物理量转化为电信号。
传感器的应用范围广泛,例如自动化生产、交通运输、医疗诊断、安全监测等领域,因此传感器技术的发展对现代化生产、生活、科学技术的发展有着非常重要的作用。
传感器的种类很多,根据测量的物理量不同,可以分为温度传感器、压力传感器、流量传感器、湿度传感器、加速度传感器、光学传感器等等。
在这些传感器中,新型传感器是一种备受关注的技术。
一、新型传感器的研究现状1. MEMS技术传感器MEMS是微电子机械系统(Micro-Electro-Mechanical System)的缩写,它是一种微型化的电气机械系统,它能够将机械元件和电子元件进行集成化处理。
因此,MEMS技术传感器的优势在于体积很小、功耗低、响应速度快、可靠性高、价格便宜等等。
如今,MEMS技术传感器的应用已经非常广泛,例如手机中的加速度传感器、陀螺仪、磁力计、压力传感器等等,这些传感器的应用大大提升了手机的功能和用户体验。
2. 光纤传感器光纤传感器是一种基于光学原理的传感器,它使用光的传输来测量物理量。
与传统传感器相比,光纤传感器具有很多优势,例如高灵敏度、抗干扰能力强、安全可靠、经济实用,能够实现长距离传递、分布式检测等等。
目前,光纤传感器主要应用在石油天然气、交通运输、环境监测、生命科学等领域。
例如,在石油天然气开采中,光纤传感器可以测量油井的温度、压力、流量等参数,可以帮助确定油井的产量和工作状态,并且可以提高油井的生产效率。
3. 生物传感器生物传感器主要是应用在医疗诊断领域中的,它能够检测人体内的生物分子、细胞和组织等信息。
例如,可以测量血液中的血糖、白细胞计数、酸碱度等指标,可以帮助医生进行疾病的诊断和治疗。
目前,生物传感器技术发展非常迅速,尤其是以DNA、RNA 等为基础的生物传感器,它可以快速、准确地检测病原体、基因变异等信息,有望成为未来医疗诊断中的主要手段。
2023年触觉传感器行业市场发展现状近年来,随着智能科技的快速发展,触觉传感器的应用范围不断扩大,市场需求逐渐增长,触觉传感器行业也不断壮大。
本文将就当前触觉传感器市场的发展现状进行分析。
一、市场规模当前,触觉传感器市场呈现出逐渐扩大的趋势。
根据市场研究公司的数据显示,2019年全球触觉传感器市场规模约为30.9亿美元,预计到2025年将达到60.2亿美元,年复合增长率约为11.3%。
从应用领域来看,触觉传感器广泛应用于自动驾驶、工业机器人、虚拟现实、医疗设备、智能家居等领域,市场潜力巨大。
在自动驾驶领域,触觉传感器可以通过感知车辆接触路面的情况,进而提升车辆行驶的安全性和舒适性;在工业机器人领域,触觉传感器可以实现机器人的力量控制、物体识别和精细操纵等功能;在虚拟现实领域,触觉传感器可以增强用户的沉浸感和互动感;在医疗设备领域,触觉传感器可以为手术操作提供精确的指引,减少手术风险;在智能家居领域,触觉传感器可以实现用户与智能家居设备的更加智能、直观的交互方式。
二、市场主要厂商当前,全球触觉传感器市场具有一定的竞争格局,市场主要厂商包括Synaptics、Tekscan、Tacterion、Sensel、Touchsense等。
Synaptics是全球最大的触摸屏和触控板解决方案供应商之一,同时也是触觉传感器领域的重要企业。
其触摸解决方案广泛应用于智能手机、平板电脑、电视、笔记本电脑等各种终端设备中。
Tekscan是一家专门从事压力传感技术领域的企业,其研发的Force Sensing Resistor(FSR)技术广泛应用于工业机器人、医疗设备等领域。
Tacterion是一家创新型企业,其核心技术是基于柔性传感器的触觉传感解决方案,可以用于工业机器人、虚拟现实、汽车等领域。
Sensel是一家创新型触觉传感器公司,其产品可以实现多点触控和力度感应,适用于智能手机、平板电脑、笔记本电脑、智能手表等设备。
传感器国内外发展现状传感器是现代科技中非常重要的一个组成部分,它们广泛应用于各个领域,包括工业制造、医疗保健、智能家居、物联网等。
然而,由于各种原因,国内外在传感器技术发展方面存在一定的差距。
国外传感器技术的发展相对较早,尤其是发达国家如美国、德国等。
这些国家有着强大的科研实力和创新能力,不断推动着传感器技术向前发展。
目前,国外在传感器技术的研究和应用上具有一定的优势。
首先,在传感器技术方面,国外已经研发出许多先进的传感器产品。
这些产品具有高精度、高灵敏度和高可靠性的特点。
比如,气体传感器可以实现对环境中各种有害气体的检测和监测;压力传感器可以测量和控制各种气体和液体中的压力变化;温度传感器能够精确测量温度值等等。
此外,国外还研发出了许多新型的传感器技术,如光纤传感器、生物传感器、MEMS传感器等,这些传感器在不同领域有着广泛的应用。
其次,在传感器应用领域方面,国外的发展也比较成熟。
工业制造、汽车行业、医疗保健领域是传感器应用的主要领域。
国外的制造业在传感器技术的应用上更加广泛,能够精确地监测和控制生产过程中的各种参数变化。
汽车行业则广泛应用各种传感器来提高安全性和驾驶体验。
医疗保健领域也借助传感器技术来监测患者的健康状况。
但是,国内在传感器技术的发展上也有一定的突破。
近年来,我国政府加大了对科技创新的支持力度,鼓励企业和科研机构加大对传感器技术的研发投入。
国内一些企业也开始在传感器领域进行技术创新,并取得了一些成果。
例如,一些高校和科研机构在MEMS传感器、光纤传感器等领域取得了较好的研究成果。
同时,国内的制造业、医疗保健、智能家居等领域也开始广泛应用传感器技术。
综上所述,国内外在传感器技术发展方面存在一定的差距。
国外在传感器技术的研发和应用上具有较大的优势,但国内也在积极迎头赶上,通过政府的支持和企业的努力,国内传感器技术的发展正在逐步加快。
未来,传感器技术的发展将有望推动各个领域的创新与进步。
机器人智能感知技术研究与应用近年来,机器人智能感知技术成为了机器人领域中的热门研究方向。
通过模拟人类的感知能力,提高机器人的感知能力和智能水平,使其能够更好地适应复杂和不确定的环境。
本文将围绕机器人智能感知技术的研究和应用展开讨论。
一、机器人智能感知技术的研究现状1. 感知传感器技术的发展机器人的感知能力依赖于传感器技术的进步。
随着计算机视觉、听觉和触觉等传感器技术的发展,机器人能够通过摄像头、麦克风、触觉传感器等获取周围环境信息,实现对物体、声音和触觉的感知。
2. 感知数据处理与融合技术机器人智能感知需要对传感器获取的数据进行处理和融合。
通过使用计算机视觉、模式识别、机器学习等方法,将感知数据转化为机器可理解的信息,实现对环境的理解和解释。
3. 主动感知技术机器人不仅能够 passively sense 环境信息,还可以 actively sense 环境信息。
通过主动决策和控制,机器人能够主动地寻找、跟踪和感知目标,提高对特定对象或事件的感知能力。
4. 多模态感知技术随着智能感知领域的发展,多模态感知技术在机器人中得到了广泛应用。
多模态感知技术包括视觉和声音等多种感觉模态的融合,使机器人能够从多维度获得环境信息,提高感知的准确性和鲁棒性。
二、机器人智能感知技术的应用领域1. 自动驾驶机器人智能感知技术在自动驾驶领域具有重要的应用价值。
机器人通过感知周围的交通和道路状况,实现自主导航和智能驾驶。
通过使用摄像头、激光雷达等感知器件,机器人可以实时感知道路、车辆和行人等重要信息,从而确保行驶安全。
2. 机器人协作在工业生产和服务领域,机器人智能感知技术可以实现人机协作,提高工作效率和工作质量。
例如,在工业生产中,机器人可以通过感知周围环境和人员,实现自动化的物料搬运和装配操作。
在医疗服务中,机器人可以通过视觉感知技术辅助医生进行手术操作。
3. 家庭服务机器人机器人智能感知技术在家庭服务领域有着广阔的应用前景。
传感器技术研究现状及发展趋势传感器是一种能够感知、检测并转换环境中各种物理量、化学量或生理量的装置或设备。
它们广泛应用于各个领域,如工业控制、交通运输、医疗健康、环境监测等。
近年来,随着科技的不断发展,传感器技术也在不断突破创新,展现出了许多新的研究现状和发展趋势。
一、研究现状1.微纳传感器技术:随着半导体制造工艺的进步,微纳加工技术不断发展,使得制造出尺寸小、功耗低、灵敏度高的微纳传感器成为可能。
微纳传感器在医疗检测、精密制造等领域有着广泛的应用前景。
2.多模态传感器技术:传感器可以通过测量多个不同的物理量来提高其感知能力和准确性。
多模态传感器技术将不同类型的传感器结合起来,使得传感器可以实现多种功能,提高数据采集的全面性和稳定性。
3.智能化传感器技术:传感器通过与智能算法的结合,可以实现数据的自动处理和分析,从而提供更加准确的信息。
智能化传感器技术应用于智能家居、智能交通等领域,可以提升系统的智能化程度和服务质量。
4.纳米传感器技术:纳米传感器利用纳米材料的特殊性质,可以实现对微小的物理量和化学量的高灵敏度检测。
纳米传感器技术在生物医学、环境监测等领域有着广泛的应用前景。
二、发展趋势1.微型化和集成化:传感器的体积和功耗将进一步减小,同时不同类型的传感器将更加紧密地集成在一起,实现多功能一体化。
2.高性能和高灵敏度:传感器的灵敏度将进一步提高,可以实现对微小物理量或化学量的高精度检测。
同时,传感器的稳定性和可靠性也将得到增强。
3.真正智能化:传感器将具备更强的自主学习和自适应能力,能够根据环境和任务的变化来自动调整参数和模型,提供更加精准和个性化的服务。
4.多功能化和多源融合:传感器将不再局限于单一或少数物理量的感知,而是能够同时感知多个不同的物理量,实现多功能化和多源融合。
5.网络化和互联化:传感器将通过网络连接实现实时数据传输和远程控制,构建起一个庞大的传感器网络,实现对环境的全方位监测和控制。
2024年触觉传感器市场前景分析引言触觉传感器是一种用于检测和测量物体表面上的力、压力、负荷和振动的装置。
随着科技的不断发展,触觉传感器的应用范围也越来越广泛,包括工业自动化、智能手机、游戏控制器等等。
本文将对触觉传感器市场的前景进行分析。
市场概况当前,触觉传感器市场规模已经达到了相当的规模,并且呈现出快速增长的趋势。
触觉传感器在各个行业中的应用日益广泛,特别是在汽车、医疗和消费电子等领域。
触觉传感器的应用可以提供更好的用户体验,并且在提高产品性能和功能方面发挥重要作用。
市场驱动因素1. 技术进步和创新随着科技的不断革新,触觉传感器的技术也在不断提升。
新型的触觉传感器采用更先进的材料和制造工艺,可以提供更高的灵敏度和更精确的测量结果。
这些技术进步为触觉传感器市场的增长提供了强大的推动力。
2. 消费电子行业的发展消费电子产品在人们日常生活中的重要性越来越大,而触觉传感器作为一种提供更好用户体验的关键技术,在消费电子产品中得到了广泛的应用。
智能手机、平板电脑、游戏机等设备都有触觉传感器的存在,这进一步推动了触觉传感器市场的增长。
3. 工业自动化的需求工业自动化已经成为现代工业发展的重要趋势,而触觉传感器作为自动化系统中的重要组成部分,被广泛应用于工业生产线和机器人系统中。
触觉传感器可以帮助机器人实现精准的操作,提高生产效率和质量,满足了工业自动化领域对高精度测量和控制的需求。
市场挑战虽然触觉传感器市场前景广阔,但是也面临一些挑战。
以下是几个主要挑战: 1. 价格竞争:由于触觉传感器市场的竞争激烈,价格竞争也非常激烈。
企业需要降低成本,提高生产效率,以在市场中保持竞争力。
2. 技术要求:触觉传感器要求具备高精度、高灵敏度等特性,并且需要稳定可靠的工作。
企业需要不断提升技术水平,以满足市场对技术的要求。
3. 法规限制:在一些特定行业,如医疗和汽车等,触觉传感器需要符合一些特定的法规和标准。
企业需要投入更多的资源来满足法规的要求。
触觉传感器在医疗领域的应用近年来,随着科技的进步和人们对健康的关注度不断提高,越来越多的医疗设备和技术开始涌现出来。
其中,触觉传感器在医疗领域的应用受到人们的广泛关注。
本文将从触觉传感器在医疗领域的应用现状和前景、触觉传感器的原理和工作机制、触觉传感器在医疗领域的具体应用方面进行探讨。
一、触觉传感器在医疗领域的应用现状和前景触觉传感器是一种可以实现人机交互的传感器,它可以感知物体的触感、温度、湿度、压力、形状等特征。
随着医疗技术的不断提高和突破,触觉传感器的应用也得到了进一步的拓展和发展。
目前,触觉传感器在医疗领域的应用主要包括以下几个方面:1. 远程医疗随着网络技术的发展和广泛应用,远程医疗已经逐渐成为医疗行业的新趋势。
而触觉传感器作为实现远程医疗的重要技术手段,可以通过远程传输检测数据来实现远程医疗。
医生可以通过触觉传感器实时观察患者的生理数据,及时掌握患者的健康情况,做出科学的诊疗决策,从而为患者提供更好的医疗保障。
2. 物理康复物理康复是一种非常重要的康复治疗方式,它主要是通过物理手段帮助患者恢复健康。
而触觉传感器可以实时地感知患者的运动状态和姿态信息,将这些信息传输给计算机系统进行分析,从而实现针对性地康复训练。
通过感知患者的手部运动,触觉传感器可以帮助患者进行手部康复治疗,提高患者的康复效果和生活质量。
3. 可穿戴医疗设备随着可穿戴设备的广泛应用,可穿戴医疗设备也成为了医疗行业的重要发展方向。
而触觉传感器作为一种可以实现可穿戴设备的技术手段,可以帮助医生实时地监测患者的生理数据,并通过分析这些数据,做出更为科学的诊疗决策,从而为患者提供更好的医疗保障。
二、触觉传感器的原理和工作机制触觉传感器的核心部分是一种感受机构,它可以感知物体的触感、形状、温度、湿度、压力等信息。
触觉传感器可以通过不同的感受机构来实现不同的感知功能,比如通过压力传感器来实现压力感知、通过电容传感器来实现形状和位置感知。
传感器国内外发展现状
传感器是指能够对周围环境变化进行感知,并将感知到的信号转换成可用信号或者电信号输出的一种设备。
随着科技的不断进步,传感器的应用范围日益广泛,包括工业、农业、医疗、环保、智能家居等领域。
下面将介绍传感器国内外的发展现状。
国内传感器的发展现状:
1. 市场规模不断扩大:随着国内经济的发展,传感器市场规模不断扩大。
据市场研究机构统计数据显示,2019年中国传感
器市场规模达到800亿元人民币。
2. 技术水平提升:国内传感器制造领域的技术水平不断提高,相比以往,国内生产的传感器在精度、灵敏度、响应速度等方面都有了较大的提升,可以满足更高的需求。
3. 应用领域广泛:国内传感器的应用领域越来越广泛,包括工业自动化、物流、环保监测、汽车、消费电子、智能家居等多个领域。
国外传感器的发展现状:
1. 技术创新持续推进:发达国家在传感器领域技术创新方面具有一定优势,新材料、新工艺的应用不断推动传感器的性能提升。
2. 产业链完善:国外传感器产业链较为成熟,包括传感器材料、制造设备、传感器芯片、系统集成等环节都相对完善,形成了竞争优势。
3. 应用领域多样化:国外传感器的应用领域非常广泛,包括智能手机、智能家居、智能交通、医疗设备、机器人、军事等多个领域都有传感器的应用。
总体来看,国内外传感器的发展现状都呈现出快速发展的趋势。
随着物联网、人工智能等新兴技术的兴起,传感器的需求将进一步增加,传感器产业发展前景广阔。
尤其在新冠疫情推动下,非接触式的智能传感器在人体体温测量、智能门禁等场景中得到了广泛应用,进一步推动了传感器市场的发展。
光学触觉传感器研究摘要:随着科技的不断发展,越来越多的机器人应用在工业、医疗、家庭等领域,机器人的感知能力越来越重要。
其中,光学触觉传感器是一种新兴的感知技术,具有很高的灵敏度和分辨率,可为机器人提供精确的力量感知和表面形态掌握。
本文主要介绍光学触觉传感器的原理、分类及应用研究情况。
首先,介绍了光学触觉传感器的原理,包括结构设计、感光元件和信号处理等方面。
其次,从光学路径和检测方式两个方面,对光学触觉传感器进行分类。
最后,介绍了光学触觉传感器在机器人力量感知、表面形态掌握、仿生机器人等领域的应用情况,并对未来发展作出展望。
关键词:光学触觉传感器;力量感知;表面形态掌握;机器人;仿生。
1. 光学触觉传感器的原理光学触觉传感器是基于视觉系统的光学传感器,其原理与人眼及相机相似。
它主要由感光元件、结构设计和信号处理三部分组成。
感光元件是传感器的核心部分,负责将光信号转化为电信号。
感光元件主要有光电二极管、CCD和CMOS等。
光线照射到光敏元件上,光子会被激发,形成电子与空穴对,由于PN势垒的作用,电子和空穴被分离,形成电流,该电流即感光元件的输出信号。
光敏元件的灵敏度和分辨率是光学触觉传感器的主要性能参数之一。
2. 光学触觉传感器的分类光学触觉传感器主要从光学路径和检测方式两个方面进行分类。
从光学路径的分类,光学触觉传感器主要分为反射式和透射式两种。
反射式光学触觉传感器采用镜头将环境中的光反射到感光元件上,具有高信噪比和高分辨率等特点,适用于机器人复杂环境中的力量关系和表面状态感知。
而透射式光学触觉传感器则采用毛细管或纤维光缆等光学导管将光引入机器人内部,具有灵活、精细感知等特点,适用于医疗机器人和微型机器人的力量关系与表面状态感知。
从检测方式的分类,光学触觉传感器主要分为时间域、频域和空间域检测三种。
3. 光学触觉传感器的应用光学触觉传感器在力量感知和表面形态掌握等方面有着广泛的应用。
例如,在机器人的力量感知中,光学触觉传感器可以提供精确的位置和力量信息,以实现精密的操作;在表面形态掌握中,光学触觉传感器可以检测表面的形态、纹理和硬度等信息。
国内外传感器技术现状与未来发展趋势传感器是一种用来感知周围环境并将感知结果转化为可用信号的设备,广泛应用于各个领域,如工业、农业、医疗、交通等。
随着技术的发展,传感器的种类不断增多,性能也得到了显著提升。
本文将对国内外传感器技术的现状和未来发展趋势进行分析。
目前,国内外传感器技术已经发展到了一定的水平,涉及到的领域也非常广泛。
以下是一些常见的传感器技术:1.温度传感器:用于测量环境温度的传感器,常见的有热电偶、热敏电阻等。
随着微电子技术的发展,温度传感器不仅在测量范围上有所扩展,同时在稳定性和精度方面也得到了显著改善。
2.湿度传感器:用于测量环境湿度的传感器,可以通过物理或者化学原理来实现。
目前,各种类型的湿度传感器已经被广泛应用于气象、农业、工业等领域。
3.压力传感器:用于测量压力变化的传感器,常见的有压阻传感器、微压传感器等。
压力传感器在航天、化工、制造业等领域有着广泛的应用。
4.光学传感器:用于测量光的传感器,常见的有光敏电阻、光电二极管等。
光学传感器在光通信、图像传感、光谱分析等领域得到了广泛应用。
5.生物传感器:用于检测生物体内或外界的生物信号的传感器,常见的有血压传感器、心率传感器等。
生物传感器在医疗、健康管理等领域有着广泛的应用。
未来,传感器技术的发展将呈现以下几个趋势:1.微型化:传感器趋向于更小、更轻、更灵活的方向发展。
微纳技术的应用使得传感器可以实现更高的集成度和更小的体积,使得传感器可以在更多的场景中得到应用。
2.智能化:传感器将越来越智能化,能够自动识别和适应环境变化。
随着物联网的发展,传感器可以通过互联互通,实现更高级的数据处理和决策能力。
3.多模式融合:传感器将越来越多地采用多模式融合的方式。
例如,光学和声学传感器的结合,可以实现更精确的测量,并获取更多的信息。
4.能源自给自足:传感器的能源供应形式将向着自给自足的方向发展。
例如,通过光能、风能、热能等方式来为传感器提供能源,减少对外界能源的依赖。
传感器技术的发展现状与未来趋势分析在现代科技高速发展的时代,传感器技术作为一项基础技术广泛应用于各个领域。
无论是智能手机、智能家居、智能交通还是环境监测都离不开传感器的作用。
传感器作为信息获取的重要组成部分,不仅能够实时感知外部环境的信息,还能将这些信息转化为数字信号进行处理,并实现自动控制和数据采集。
本文将对传感器技术的发展现状以及未来的趋势进行分析。
一、传感器技术的发展现状1.1 传感器的种类传感器可以分为多种类型,如温度传感器、湿度传感器、压力传感器、光学传感器等等。
不同的传感器根据其工作原理和应用场景,都有各自的特点和优势。
1.2 传感器的应用领域传感器技术广泛应用于各个领域,包括智能手机、智能家居、工业自动化、医疗设备等。
在智能手机这个领域,传感器被用于加速度计、陀螺仪、指纹识别等功能,实现了手机的智能化和人机交互的更加便捷。
在智能家居方面,传感器被用于检测环境的温度、湿度、烟雾等参数,实现了智能家居的智能控制和安全保护。
1.3 传感器的发展趋势随着物联网技术的快速发展,传感器技术也在不断创新和改进。
未来的传感器将具备更高的精度、更小的尺寸和更低的功耗。
同时,传感器将会更加多元化和智能化。
比如,传感器可以通过网络连接实现远程监控和数据传输,同时还可以与人工智能技术结合,实现自学习和自适应。
这些新的技术趋势将进一步推动传感器在物联网和智能设备领域的应用。
二、传感器技术的未来趋势2.1 人工智能和传感器的结合随着人工智能技术的发展,传感器的智能化程度也将不断提高。
传感器可以通过人工智能技术实现自主感知和自适应控制。
例如,利用机器学习算法,传感器可以根据历史数据自动调整参数,提高传感器的准确性和稳定性。
同时,传感器与人工智能的结合还可以实现智能识别和智能决策,为各行各业带来更多创新和发展空间。
2.2 纳米传感器的发展随着纳米技术的逐渐成熟,纳米传感器作为一种新型传感器得到了广泛关注。
纳米传感器由于其小体积和高灵敏度的特点,可以实现对微小物质、微弱信号的高精度检测。
触觉传感器的研究与应用第1章前言触觉传感器是近年来发展迅速的一种传感器,与视觉、听觉、嗅觉和味觉并称为人类感官系统的五种感觉之一。
触觉传感器的出现在机器人技术、医学设备、汽车行业、游戏娱乐设备、虚拟现实等领域应用广泛,受到了广泛的关注和重视。
本文将从触觉传感器的定义、分类、原理和特点入手,逐步地介绍触觉传感器的研究进展和应用现状。
第2章触觉传感器的定义与分类触觉传感器是一种能够检测物体表面形状、硬度、温度、纹理和压力等物理量的传感器。
它通过模拟人类的触觉感受来实现对物体的触摸和感知,具有许多其他传感器无法替代的优势。
按照工作原理和应用领域,触觉传感器可以分为以下几类。
2.1 电阻式触摸传感器这种传感器采用电学原理来检测物体的压力和形状,其基本原理是通过两层导电材料之间的接触电阻的变化来感知物体的变形。
电阻式触摸传感器适合测量小范围的变形和压力变化,通常应用于医疗设备和机器人领域。
2.2 压电式触摸传感器压电式触摸传感器利用压电材料的特性,在变形和压力作用下,产生微弱的电压和电荷,从而实现对物体的感知和检测。
该传感器适用于高精度的测量和控制,常用于自动化生产和机器人领域。
2.3 光电式触摸传感器光电式触摸传感器主要是利用光电效应来检测物体的变形和压力,通过物体表面的反射光线信号来测量场景的变化。
光电式触摸传感器适用于测量大范围的变形和挠度,通常应用于工业控制和机器人领域。
第3章触觉传感器的原理和特点触觉传感器的工作原理基本上都是建立在物理原理和电学原理的基础上,在感知物体时,其特征也各具不同。
下面分别介绍触觉传感器的原理和特点。
3.1 电阻式触触传感器的原理和特点电阻式触摸传感器的工作原理是通过监测物体对感应电极的力量或扭矩所导致的空间变形来进行检测,其主要特点包括以下几个方面:(1)适合小尺寸的变形和压力变化的检测;(2)精度较高,可用于医疗设备和机器人领域等需要高精度测量和控制的环境;(3)由于其信号响应速度较慢,不适合进行高速运动物体的感知和检测。