马氏体和奥氏体不锈钢焊接性研究
- 格式:pdf
- 大小:436.36 KB
- 文档页数:9
奥氏体马氏体铁素体不锈钢区别?铁素体型不锈钢它的内部显微组织为铁素体,其铬的质量分数在11.5%~32.0%范围内。
随着铬含量的提高,其耐酸性能也提高,加入钼(Mo)后,则可提高耐酸腐蚀性和抗应力腐蚀的能力。
这类不锈钢的国家标准牌号有00C r12、1Cr17、00Cr17Mo、00Cr30Mo2等。
430是铁素体不锈钢。
铁素体不锈钢是含铬大于14%的低碳铬不锈钢,含铬大于27%的任何含碳量的铬不锈钢,以及在上述成分基础上再添加有钼、钛、铌、硅、铝、、钨、钒等元素的不锈钢,化学成分中形成铁素体的元素占绝对优势,基体组织为铁素。
这类钢在淬火(固溶)状态下的组织为铁素体,退火及时效状态的组织中则可见到少量碳化物及金属间化合物。
属于这一类的有Crl7、Cr17Mo2Ti、Cr25,Cr25Mo3Ti、Cr28等。
铁素体不锈钢因为含铬量高,耐腐蚀性能与抗氧化性能均比较好,但机械性能与工艺性能较差,多用于受力不大的耐酸结构及作抗氧化钢使用。
马氏体型不锈钢它的显微组织为马氏体。
这类钢中铬的质量分数为11.5%~18.0%,但碳的质量分数最高可达0.6%。
碳含量的增高,提高了钢的强度和硬度。
在这类钢中加入的少量镍可以促使生成马氏体,同时又能提高其耐蚀性。
这类钢的焊接性较差。
列入国家标准牌号的钢板有1Cr13、2 Cr13、3Cr13、1Cr17Ni2等。
410是马氏体不锈钢,其中碳最大含量为0.15%,锰最大含量1.00%,硅最大含量为1.00%,铬含量为11.50~13.50%。
为通用型可热处理不锈钢,耐腐蚀,耐热,硬度可达42HRC或更高些。
奥氏体型不锈钢其显微组织为奥氏体。
它是在高铬不锈钢中添加适当的镍(镍的质量分数为8%~25%)而形成的,具有奥氏体组织的不锈钢。
第2期2019年3月锅炉制造BOILER MANUFACTURINGNo.2Mar.2019 SA-213T91管子与奥氏体不锈钢承载附件焊接的焊材选择Selection of Welding Materials for SA-213T91Tube and Load一bearing Fittings of Austenitic Stainless Steel刁旺战,王萍,徐祥久(高效清洁燃煤电站锅炉国家重点实验室(哈尔滨锅炉厂有限责任公司),黑龙江哈尔滨150046)摘要:为研究SA-213T91管子与不锈钢承载附件是否可采用AWS E9015-B9焊材,本文采用手工氮弧焊+焊条电弧焊的方法对SA-387Gi91+06Cr25Ni20异种钢进行焊接。
对焊接接头进行RT检测、室温力学性能检测和金相显微组织分析。
从焊接工艺评定和模拟件焊接试验的角度认为.SA-213T91小口径管子与承受载荷的奥氏体不锈钢附件之间焊接,可以选用合金钢焊材AWS E9015-B9。
关键词:异种钢接头;承载附件;AWS E9015-B9中图分类号:TG4文献标识码:B文章编号:CN23-1249(2019)02-0044-030引言目前,燃煤电站锅炉中的塔式锅炉的受热面都为水平布置,其受热面在炉膛内从上到下都需要采用吊挂管进行串联吊挂。
根据管子内蒸汽温度和炉膛的烟气温度,吊挂管的管子材质为马氏体耐热钢SA-213T91,而管子上焊接的角板附件的材质为奥氏体不锈钢12Crl8Ni9或SA-240Type304o马氏体耐热钢与奥氏体不锈钢焊接之间的异种钢焊接一直以来是业界的难题,对于二者之间的对接焊缝,普遍选择的焊接材料为镰基合金U7,J.F.King选用了12%Cr类型的马氏体钢作填充材料进行了持久强度等相关实验⑶。
对于角接焊缝,焊接材料不选择不锈钢焊材,如果为非承载附件,考虑其成本因素,目前选用的焊接材料为GB E5515-2C1ML[4-51;如果为承载附件,以往选择的焊接材料为镰基合金⑷,但采用鎳基合金焊材在焊接过程中容易产生气孔、未熔合和热裂纹等焊接缺陷⑷,会影响结构的寿命。
奥氏体不锈钢焊接材料(如309系)来焊接马氏体不锈钢
裂纹的倾向大对于Fe-Cr-C系马氏体不锈钢来说,采用同质焊接材料,在焊接热循环的作用下,焊缝金属和焊接热影响区焊后状态的组织皆为硬脆的马氏体组织,一般来说,与C含量有关,硬度可达450HV以上,塑性、韧性较低,在扩散氢作用下,易形成冷裂纹。
由于氢在马氏体不锈钢中的扩散速度比在碳钢中慢,所以,这种延迟裂纹的产生会比在碳钢中慢。
这一点也如焊接高强钢一样,为防止产生冷裂纹,可以进行预热,并保持相应的层间温度。
应预热到
200~300℃温度,并保持相应的层间温度。
微信公众号:hcsteel为了降低拘束应力,在焊接顺序、接头形状及接头位置上也应改进。
为了改善焊接接头的塑性,也应该进行700~800℃的焊后热处理。
薄板焊接可以不预热,但若是高速焊接,由于冷速加快,也应进行预热。
厚板焊接,由于比薄板冷速快,更容易硬化,从防止冷裂纹的观点,应预热到100℃以上的温度,而且后热600℃。
若采用奥氏体不锈钢焊接材料(如309系)来焊接马氏体不锈钢,如果用同质焊接材料那样的预热和层间温度,就不会产生冷裂纹,而且,焊态的焊缝金属的塑性和韧性也比较好。
但是,应该指出,由于母材和焊缝金属在线胀系数上的差异而产生热应力的问题,以及650℃以上焊后热处理脆化的问题,都应加以注意。
但若是使用Incolloy系镍合金焊接材料,焊后热处理就可以省去。
随着钢中碳含量的提高,形成冷裂纹的倾向会愈来愈大,形成热
裂纹的倾向也大。
比如1Cr13、2Cr13钢的焊接性还是可以的;但随着C含量的提高,比如3Cr13、4Cr13、3Cr16、9Cr18等,其焊接性就很差。
不锈钢与马氏体钢异种钢的焊接工艺的探索——TP347与SA213-T91用 TIG焊接的工艺试验摘要:本文通过对TP347与SA213- T91异种钢焊接工艺的试验研究,制定了合理的焊接工艺参数及工艺过程,对施焊过程进行了详细的论述,对安装、检修现场实际焊接工作有着较高的指导作用。
作者从事焊接工作30余年,拥有丰富的焊接制造、施工及培训经验,多次被人社部、省人社厅、省市总工会、省质监局、团省委、各职业院校聘请担任大赛裁判、教练、考核专家、理论和实操培训师等。
所承担负责完成的超临界锅炉小径管异种钢焊接工艺、管状对接药(实)芯焊丝CO2气体保护焊焊接工艺填补了云南电力行业焊接技术的空白。
关键词:异种钢焊接工艺; TIG; 熔合比;线能量前言:目前,云南电力正在朝着大容量、高参数的趋势发展。
焊接工作面临钢材品种越来多、技术难度大越来越大。
对金属材料的焊接可靠性及焊接修复工作提出了更高的要求,设备安装、检修的焊接工作不仅要求适应不断变化的钢材规格、品种及结构的需要,同时要求有足够的焊接可靠性以及伴随产生的结构可修复性。
焊接难度增加。
这就要求焊接培训工作者除了熟练掌握同种钢材工艺的前提下,还应及时了解和掌握新材料、新工艺,设备更新,更重要的应是对多种异种结构的焊接工艺进一步的研究运用,评定实验制定科学合理的焊接工艺,提供有效的技术支撑。
根据教研活动的工作安排,对TP347与SA213- T91钢的异种钢小径管焊接进行了工艺试验研究。
1.焊接性分析1.1 TP347与SA213- T91钢的化学成分及常温机械性能见下表SA213-T91钢和TP347钢母材的化学成分组MATP347与SA213- T91钢母材的常温机械性能1.2焊接性分析:SA213- T91钢是一种改进的9CrlMo 钢,它是在9Cr1Mo 钢的基础上通过添加V 、Nb 等微量元素形成的。
具有较低的热膨胀系数和良好的导热性,抗拉强度和屈服强度较高,特别是在高温下具有较高的蠕变强度和持久强度及许用应力。
马氏体不锈钢:标准马氏体钢材的改良,含有类如镍、钼、钒等的添加元素,主要是用于将标准钢材受限的容许工作温度提升至高于1100K,当添加这些元素时,碳含量也增加,随着碳含量的增加,在焊接物的硬化热影响区中避免龟裂的问题变成更严重。
马氏体不锈钢能在退火、硬化和硬化与回火的状态下焊接,无论钢材的原先状态如何,经过焊接后都会在邻近焊道处产生一硬化的马氏体区,热影响区的硬度主要是取决于母材金属的碳含量,当硬度增加时,则韧性减少,且此区域变成较易产生龟裂、预热和控制层间温度,是避免龟裂的最有效方法,为得最佳的性质,需焊后热处理。
马氏体不锈钢是一类可以通过热处理(淬火、回火)对其性能进行调整的不锈钢,通俗地讲,是一类可硬化的不锈钢。
这种特性决定了这类钢必须具备两个基本条件:一是在平衡相图中必须有奥氏体相区存在,在该区域温度范围内进行长时间加热,使碳化物固溶到钢中之后,进行淬火形成马氏体,也就是化学成分必须控制在γ或γ+α相区,二是要使合金形成耐腐蚀和氧化的钝化膜,铬含量必须在10.5%以上。
按合金元素的差别,可分为马氏体铬不锈钢和马氏体铬镍不锈钢。
马氏体铬不锈钢的主要合金元素是铁、铬和碳。
图1-4是Fe-Cr系相图富铁部分,如Cr大于13%时,不存在γ相,此类合金为单相铁素体合金,在任何热处理制度下也不能产生马氏体,为此必须在内Fe-Cr二元合金中加入奥氏体形成元素,以扩大γ相区,对于马氏体铬不锈钢来说,C、N是有效元素,C、N元素添加使得合金允许更高的铬含量。
在马氏体铬不锈钢中,除铬外,C是另一个最重要的必备元素,事实上,马氏体铬不锈耐热钢是一类铁、铬、碳三元合金。
当然,还有其他元素,利用这些元素,可根据Schaeffler图确定大致的组织。
马氏体不锈钢主要为铬含量在12%-18%范围内的低碳或高碳钢。
各国广泛应用的马氏体不锈钢钢种有如下3类:1.低碳及中碳13%Cr钢2.高碳的18%Cr钢3.低碳含镍(约2%)的17%Cr钢马氏体不锈钢具备高强度和耐蚀性,可以用来制造机器零件如蒸汽涡轮的叶片(1Cr13)、蒸汽装备的轴和拉杆(2Cr13),以及在腐蚀介质中工作的零件如活门、螺栓等(4Cr13)。
12Cr13马氏体不锈钢的焊接工艺研究戚祥健(常州宝菱重工机械有限公司,江苏 常州 213019)摘 要:结合12Cr13马氏体不锈钢的焊接问题,本文对该种不锈钢的焊接工艺改善问题展开了研究。
从工艺试验结果来看,通过加强预热温度、电弧电压等参数的控制,得到的焊件力学性能较好,焊缝无任何缺陷,拥有较好内部质量,强度、塑性、韧性等均能满足产品使用要求。
关键词:12Cr13不锈钢;焊接工艺;马氏体中图分类号:TG457.11 文献标识码:A 文章编号:11-5004(2018)05-0156-2在生产实践中,12Cr13马氏体不锈钢的焊接性较差,需要采取科学的焊接工艺才能得到高质量产品。
因此,还应加强对12Cr13马氏体不锈钢的焊接工艺研究,以便更好的进行产品焊接。
1 12Cr13马氏体不锈钢的焊接问题12Cr13马氏体不锈钢在焊接的过程中将体现一定特性,关系到不锈钢的焊接质量。
从焊缝和热影响区常温组织表现形式来看,12Cr13不锈钢为马氏体组织,带有硬脆的特点,导热性较差,拥有较大的焊接残余应力。
在焊接接头刚度大或焊接过程氢含量高的情况下,容易导致氢致裂纹的产生。
而焊接后直接从高温冷却到100℃以下,也容易导致裂纹的产生。
分析焊接过程发生的相变可以发现,加热到奥氏体相区域的热影响区金属和熔池金属,在焊接后由奥氏体转变为马氏体。
而伴随着金属的凝固,会有铁素体产生,即马氏体的焊缝组织。
经过热加工轧制后,沿着轧制方向,马氏体和铁素体区域可以得到均匀有序排列。
在不受厚度方向拉力影响的情况下,应力可以得到均匀分布。
然而,焊缝中存在的铁素体则呈现出凌乱分布的特点,表面受到的应力导致应力集中于某个区域,继而引发了低应变断裂的产生[1]。
此外,受12Cr13马氏体不锈钢焊接性能差的影响,在不锈钢焊接冷却期间会出现面心立奥氏体向体心立方马氏体转变的情况,伴随着熔碳能力快速恶化和体积不断改变,导致不锈钢塑性降低而硬度增加,出现淬硬问题。
目录第一章:金属材料的性能 (1)第一节:金属材料的力学性能 (2)一、强度指标 (2)二、刚度指标 (3)三、塑性指标 (4)四、硬度指标 (4)五、韧性指标 (5)第二节:金属材料的物理和化学性能 (6)一、金属材料的物理性能 (6)二、金属材料的化学性能 (7)第三节:金属的工艺性能 (8)一、铸造性能 (8)二、锻造性能 (8)三、焊接性能 (8)四、切削加工性能 (8)第二章常用金属材料 (9)第一节碳钢 (9)一、常存元素对钢性能的影响 (9)二、碳钢的分类 (10)三、碳素钢的牌号、主要性能及用途 (10)第二节合金钢 (13)一、合金钢分类 (13)二、合金钢的牌号、主要性能及用途 (14)1、合金结构钢: (14)2、合金工具钢: (15)3、特殊性能钢: (19)第三节铸铁 (25)一、灰铸铁 (25)二、可锻铸铁 (26)三、球墨铸铁 (26)四、蠕墨铸铁 (27)第四节有色金属及其合金 (27)一、铝及其合金 (28)二、铜及其合金 (30)三、钛及其合金 (32)四、镁及其合金 (33)第一章:金属材料的性能金属材料的性能,是指用来表征材料在给定外界条件下的行为参量。
当外界条件发生变化时,同一种材料的某些性能也会随之变化。
通常所指的金属材料的性能包括以下两个方面:1、使用性能:即为了保证零件、工程构件或工具等的正常工作,材料所应具备的性能,它包括力学性能、物理性能、化学性能等。
金属材料的使用性能决定了其应用范围、安全可靠性和使用寿命等。
2、工艺性能:是指反映金属材料在被制造成各种零件、构件或工具的过程中,材料适应各种冷、热加工的性能。
主要包括铸造性能、压力加工性能、焊接性能、切削加工性能以及热处理性能等。
第一节:金属材料的力学性能定义:金属材料的力学性能是指金属材料在加工和使用过程中受不同形式的外力作用时所表现出来的一些性能(如强度、刚度、韧性、硬度、耐磨性等),这种性能称为材料的力学性能。
马氏体不锈钢的焊接工艺属于马氏体不锈钢的钢号有1Cr13、2Cr13、3Cr13、4Cr13、3Cr13Mo、 1Cr17Ni2、 2Cr13Ni2、 9Cr18、 9Cr18MoV 等。
⑴焊接性有强烈的冷裂倾向,焊缝及热影响区焊后均为硬而脆的马氏体组织,钢中含碳量越高,冷裂倾向越大。
焊接时在温度超过1150℃ 的热影响区内,晶粒显著长大。
过快或过慢的冷却都可能引起接头脆化。
例如,1Cr13钢焊后冷却速度小于10℃/s时,在热影响区将得到粗大的铁素体加碳化物组织,使塑性显著降低;当冷却速度大于40℃/s时,则会产生粗大的马氏体组织,同样也使塑性下降。
马氏体不锈钢的晶间腐蚀倾向很小。
⑵焊接工艺1)焊前预热焊前预热是防止产生冷裂纹的主要工艺措施。
当C的质量分数为0.1%〜0.2%时,预热温度为200〜260℃,对高刚性焊件可预热至400〜450℃。
2)焊后冷却焊件焊后不应从焊接温度直接升温进行回火处理,因为焊接过程中奥氏体可能未完全转变,如焊后立即升温回火,会出现碳化物沿奥氏体晶界沉淀和奥氏体向珠光体转变,产生晶粒粗大的组织,严重降低韧性。
因此回火前应使焊件冷却,让焊缝和热影响区的奥氏体基本分解完了。
对于刚性小的焊件,可以冷至室温再回火;对于大厚度的焊件,需采用较复杂的工艺;焊后冷至100〜150℃,保温0.5〜1h,然后加热至回火温度。
3)焊后热处理目的是降低焊缝和热影响区的硬度,改善塑性和韧性,同时减少焊接残余应力。
焊后热处理分回火和完全退火两种。
回火温度为650〜750℃,保温小,空冷;若焊件焊后需机加工的,为了得到最低硬度,可采用完全退火,退火温度为830〜880℃,保温2h炉冷至595℃,然后空冷。
4)焊条的选用焊接马氏体不锈钢用焊条分为铭不锈钢焊条和铭银奥氏体不锈钢焊条两大类。
常用铭不锈钢焊条有E1-13-16 (G202)、E1-13T5(G207);常用铭银奥氏体不锈钢焊条有E0-19-10T6(A102)、E0-19-10-15 (A107)、E0-18-12Mo2-16 (A202)、E0T8T2Mo2T5(A207)等。
两种常用奥氏体不锈钢形变马氏体研究李顺荣;陈海云;邢璐;杨象岳;褚玲爱【摘要】基于奥氏体不锈钢马氏体磁性特征,用 MP30E -S 型铁素体测定仪定量测定马氏体相转变量。
对两种常用304,316材料冷成形拉伸试件、波纹管、封头进行了形变马氏体检测试验研究。
结果表明:随着工程应变量增加,形变诱发马氏体相的含量因而随之增加,316材料较304材料形变诱发马氏体相含量小得多,形变马氏体相变量的大小与材质、相对变形率有很大的关系。
%Based on the martensite magnetic characteristics of austenitic stainless steel ,the deformation -induced martensite were tested by using the MP30E -S measurement instrument for the cold formed ten -sile pieces,bellows and heads made of two common 304,316 material respectively.The research shows that the amount of deformation -induced martensite have very great relation with the deformation and the materials,it increases immediately as the engineering deformation added ,the deformation -induced mar-tensite of 316 material is more lesser than 304 material.【期刊名称】《压力容器》【年(卷),期】2013(000)007【总页数】6页(P1-5,23)【关键词】奥氏体不锈钢;磁性测定法;冷成形;形变马氏体【作者】李顺荣;陈海云;邢璐;杨象岳;褚玲爱【作者单位】杭州市特种设备检测院,浙江杭州310003;杭州市特种设备检测院,浙江杭州 310003;杭州市特种设备检测院,浙江杭州 310003;杭州市特种设备检测院,浙江杭州 310003;杭州市特种设备检测院,浙江杭州 310003【正文语种】中文【中图分类】TH142.2;TG142.250 引言奥氏体不锈钢一般采用固溶处理,即将钢加热至1050~1150℃,然后水冷,以获得单相奥氏体组织,常用牌号有 0Cr18Ni9(304),00Cr17Ni14Mo2(316L),其具有良好的塑性、韧性、焊接性和耐蚀性能,广泛应用于化工、石化、核工业、轻工、纺织等行业。
马氏体不锈钢和奥氏体不锈钢一、马氏体不锈钢马氏体不锈钢是一种具有优异耐腐蚀性的不锈钢材料。
它的特点是具有良好的强度和韧性,同时具备优异的耐热性和耐蚀性。
马氏体不锈钢通常由奥氏体不锈钢经过淬火和时效处理得到。
马氏体不锈钢的主要组织结构是马氏体,这是一种具有高硬度的组织形态。
通过淬火处理,奥氏体不锈钢中的铁素体和奥氏体会转变为马氏体,从而提高材料的强度和韧性。
此外,马氏体不锈钢还具有较高的耐腐蚀性能,可以在恶劣的环境中长时间使用。
马氏体不锈钢在工业领域具有广泛应用。
它广泛用于制造各种耐腐蚀的零部件,如阀门、管道、泵体等。
此外,马氏体不锈钢还被广泛用于制造刀具、弹簧和机械零件等。
二、奥氏体不锈钢奥氏体不锈钢是一种具有良好耐腐蚀性和机械性能的不锈钢材料。
奥氏体不锈钢的主要组织结构是奥氏体,这是一种具有良好塑性和韧性的组织形态。
奥氏体不锈钢具有高强度、良好的焊接性能和优异的耐腐蚀性能。
奥氏体不锈钢的耐腐蚀性能主要取决于其中的铬含量。
铬是一种具有良好抗氧化性的元素,可以形成一层致密的氧化铬膜来保护材料表面免受腐蚀的侵害。
因此,奥氏体不锈钢中的铬含量越高,其耐腐蚀性能就越好。
奥氏体不锈钢具有广泛的应用领域。
它被广泛用于制造化工设备、食品加工设备、医疗器械等对耐腐蚀性能要求较高的领域。
此外,奥氏体不锈钢还被应用于建筑装饰、家具制造等领域,其优雅的外观和良好的耐腐蚀性能使其成为理想的材料选择。
三、马氏体不锈钢与奥氏体不锈钢的比较1. 结构:马氏体不锈钢的主要组织结构是马氏体,而奥氏体不锈钢的主要组织结构是奥氏体。
2. 性能:马氏体不锈钢具有较高的强度和硬度,同时具备良好的耐热性和耐蚀性。
奥氏体不锈钢具有良好的塑性和韧性,同时具备优异的耐腐蚀性。
3. 应用:马氏体不锈钢广泛应用于制造耐腐蚀的零部件,如阀门、管道、泵体等。
奥氏体不锈钢广泛应用于制造化工设备、食品加工设备、医疗器械等领域。
四、总结马氏体不锈钢和奥氏体不锈钢都是具有优异耐腐蚀性能的不锈钢材料。
浅议奥氏体不锈钢管的焊接缺陷分析及预防措施[摘要]针对奥氏体型不锈钢管焊接中出现的焊接缺陷,分析了其形成原因。
并根据其焊接缺陷产生的原因结合自己焊接教学和实际操作情况给出了相应的防止措施。
[关键词]奥氏体不锈钢;接缺陷产生的原因;预止措施随着我国石油企业的不断发展,建立起许多大型贮油库、气库等,由于输送介质有特殊性要求.需用大量使用具有抗腐蚀性较强的不锈钢材质的管道。
为确保油气管道的能够持久、安全的运行,需对油气管道焊接工艺、参数选择及其焊接缺陷的分析,下面作以简单的浅议。
不锈钢按正火状态下钢的组织状态,划分为马氏体不锈钢、铁素体不锈钢、奥氏体不锈钢和奥氏体一铁素体型不锈钢等。
下面从奥氏体不锈钢管性能进行分析。
一、奥氏体不锈钢的金属性能(一)不锈钢的性能(焊接有关的物理性能)1.不锈钢的热导率低于碳钢,尤其是奥氏体不锈钢的热导率,约为碳钢的1/3。
2.不锈钢的电阻率高,尤其是奥氏体不锈钢的电阻率,约为碳钢的5倍。
3.奥氏体不锈钢的线膨胀系数比碳钢约大50%,马氏体不锈钢和铁素体不锈钢的线膨胀系数大体上与碳钢相等。
4.奥氏体不锈钢的密度大于碳钢,马氏体不锈钢和铁素体不锈钢的密度稍小于碳钢。
5.奥氏体不锈钢没有磁性,马氏体不锈钢和铁素体不锈钢有磁性。
(二) 奥氏体不锈钢管力学性能(1Cr18Ni9Ti管为例)不锈钢力学性能(三)奥氏体不锈钢管的焊接性能奥氏体不锈钢塑性和韧性很好,具有良好的焊接性,焊接时一般不需要采取特殊的焊接工艺措施。
(四)奥氏体不锈钢管焊接工艺性能1.焊接开始时,不要在焊件上随便引弧,以免损伤焊件表面,影响耐腐蚀性。
2.由于奥氏体不锈钢的电阻大,焊接时产生的电阻热也大,所以同样直径的焊丝,焊接电流值应比低碳钢焊丝小20%左右。
3.焊接过程中,采用小电流、快焊速。
一次焊成的焊缝不宜过宽,最好不超过焊丝直径的3倍。
4.多层多道焊时,每焊完一道要彻底清除氧化渣,并控制道间温度,等到前道焊缝冷却到60℃以下时再焊接下一道。
如何辨别奥氏体不锈钢和马氏体不锈钢不锈钢可以做成各种各样的制品,就拿大家经常接触的不锈钢保温杯来说。
市面上的有卖十几的,有卖上百的,同样都是不锈钢的杯子为何价格差别如此之大?如何去辨别优质的奥氏体不锈钢和马氏体不锈钢?不锈钢分为马氏体和奥氏体不锈钢。
根据杭州佳麒不锈钢的相关市场调研分析,一般70%的超市或商场里的不锈钢保温杯或其他不锈钢制品对外宣称是优质奥氏体或奥氏体的,因为奥氏体不锈钢在不锈钢制品上的用途优于马氏体不锈钢。
在买不锈钢保温杯时,有心的朋友也许会发现,杯子的底部或其他部位有18-8,这个是什么意识呢?标注18-8的意识就是这款保温杯是优质奥氏体不锈钢制成的。
因此价格往往会卖的很贵,但是很多不锈钢制品却是挂羊头卖狗肉。
其真正的是略质奥氏体或马氏体不锈钢保温杯却卖奥氏体不锈钢保温杯的价格。
今天在这里双兴不锈钢就给大家传授几个绝招,让你轻松辨别优质不锈钢制品。
首先来说不锈钢的特性是抗生锈,耐腐蚀,无磁性。
马氏体有弱磁性,因为马氏体不锈钢含少量的铁元素。
奥氏体不锈钢无磁性,市面上以次充好的不锈钢制品一般是略质奥氏体或马氏体的,但标注的是18-8,遇到这样情况拿磁铁轻轻触碰不锈钢制品表面,如果有弱磁性则说明可能是略质奥氏体不锈钢或马氏体的。
硫酸铜试剂测试法:使用硫酸铜试剂在不锈钢制品表面滴一滴,等大约30秒,如果是优质奥氏体不锈钢做成的制品则没有反应,如果是略质奥氏体或马氏体的就会变成红色,而且很明显。
通过以上两种方法便可以快速辨别优质奥氏体不锈钢了,如果你对你使用的不锈钢制品有质量问题的担心,不妨按照上面的方法去试试哦。
马氏体型不锈钢中的主要合金元素为铬。
通常用在弱腐蚀性介质,如海水、淡水和水蒸汽等中,使用温度小于或等于580℃、通常作为受力较大的零件和工具的制作材料,由于此钢焊接性能不好,故一般不用作焊接件。
奥氏体型不锈钢中主要合金元素为铬和镍。
这类钢具有高的韧性、低的脆性转变温度、良好的耐蚀性和高温强度、较好的抗氧化性以及良好的压力加工和焊接性能。
不锈钢为什么也生锈?不锈钢为什么也生锈? 当不锈钢管表面出现褐色锈斑(点)的时候,人们大感惊奇:认为“不锈钢是不生锈的,生锈就不是不锈钢了,可能是钢质出现了问题”。
其实,这是对不锈钢缺乏了解的一种片面的错误看法。
不锈钢在一定的条件下也会生锈的。
不锈钢具有抵抗大气氧化的能力---即不锈性,同时也具有在含酸、碱、盐的介质中乃腐蚀的能力---即耐蚀性。
但其抗腐蚀能力的大小是随其钢质本身化学组成、加互状态、使用条件及环境介质类型而改变的。
如304钢管,在干燥清洁的大气中,有绝对优良的抗锈蚀能力,但将它移到海滨地区,在含有大量盐份的海雾中,很快就会生锈了;而316钢管则表现良好。
因此,不是任何一种不锈钢,在任何环境下都能耐腐蚀, 不生锈的。
不锈钢是靠其表面形成的一层极薄而坚固细密的稳定的富铬氧化膜(防护膜),防止氧原子的继续渗入、继续氧化,而获得抗锈蚀的能力。
一旦有某种原因,这种薄膜遭到了不断地破坏,空气或液体中氧原子就会不断渗入或金属中铁原子不断地析离出来,形成疏松的氧化铁,金属表面也就受到不断地锈蚀。
这种表面膜受到破坏的形式很多,日常生活中多见的有如下几种:1.不锈钢表面存积着含有其他金属元素的粉尘或异类金属颗粒的附着物,在潮湿的空气中,附着物与不锈钢间的冷凝水,将二者连成一个微电池,引发了电化学反应,保护膜受到破坏,称之谓电化学腐蚀。
2.不锈钢表面粘附有机物汁液(如瓜菜、面汤、痰等),在有水氧情况下,构成有机酸,长时间则有机酸对金属表面的腐蚀。
3.不锈钢表面粘附含有酸、碱、盐类物质(如装修墙壁的碱水、石灰水喷溅),引起局部腐蚀。
4.在有污染的空气中(如含有大量硫化物、氧化碳、氧化氮的大气),遇冷凝水,形成硫酸、硝酸、醋酸液点,引起化学腐蚀。
以上情况均可造成不锈钢表面防护膜的破坏引发锈蚀。
所以,为确保金属表面永久光亮,不被锈蚀,我们建议:1.必须经常对装饰不锈钢表面进行清洁擦洗,去除附着物,消除引发修饰的外界因素。
建筑结构用钢2Cr13和1Cr18Ni9焊接接头的组织与力学性能分析刘婷【摘要】分析对比了建筑用钢2Cr13马氏体钢和1Cr18Ni9奥氏体钢在不同焊接方法下的焊接接头组织,得到了不同焊接接头显微硬度的拉伸强度。
比较结果表明异体钢焊接接头的组织和力学性能比同种材料有所降低,采用适当的焊接方法可以提高焊接接头的组织和力学性能,这一研究有助于实际生产中选择适当的焊接材料和焊接方法。
%This paper analyzes and compares the construction steel Martensitic steel 2Cr13 and Austenitic steel 1Cr18Ni9 .The different tensile strengths of micro‐hardness in welded joints by different welding methods have been obtained .The results show that the organization and mechanical properties of different steel welded joints are lower than that of the same material ,and the organization and mechanical properties of welded joints can be improved by adopting the appropriate welding method .This study will help to choose the appropriate welding materials and welding methods in the process of production .【期刊名称】《长春工程学院学报(自然科学版)》【年(卷),期】2015(000)003【总页数】4页(P45-48)【关键词】焊接接头;组织分析;力学性能分析【作者】刘婷【作者单位】中铁十八局勘察设计院,天津300222【正文语种】中文【中图分类】TG1710 引言焊接技术自20世纪初发展至今,已经成为现代生产中一门不可或缺的重要的制造技术[1]。
各类不锈钢的焊接特点马氏体。
可焊性较差,焊接时有强烈的淬火倾向,经焊接加热后在空气中冷却就能导致淬火,使焊缝和热影响区形成坚硬的马氏体组织,因温差引起的热应力和奥氏体转变为马氏体组织的相变应力的综合作用,导致焊后残余应力较大。
含碳量愈高,其淬硬性就愈大。
还存在由于扩散氢的作用而引起的滞后裂纹。
因此,焊接薄板时采用较小的电源,尽可能快的焊速,应使焊道狭窄,熔池体积减小,以免金属过热;厚板焊前应进行预热(200~ 400℃),焊后高温回火或退火,随后缓冷;焊丝、坡口、氩气要清洁、干燥,以消除氢的产生。
铁素体。
易在焊合线附近热影响区产生粗晶,使常温塑性、韧性降低而引起脆化;高铬(≥16%Cr)不锈钢焊后在600~400℃阶段缓慢冷却时,会出现475℃脆化,造成韧性恶化。
因此,采用小电流、快焊速、窄焊道、加快焊缝冷却的方法,以尽量避免晶粒长大,缩短高温停留时间,防止过热;对高铬不锈钢焊前应预热,使其在韧性温度范围内焊接,但预热温度不应超过150℃,以免焊后冷却缓慢,增加475℃脆性。
奥氏体。
由于在奥氏体晶界上有低熔点杂质物,冷却时在焊接收缩应力的作用下易产生热应力,从而产生热裂纹;在550~850℃长时间加热时,焊接热影响区的晶界上析出铬的碳化物,造成贫铬区,因而热影响区易发生晶间腐蚀;由于线膨胀系数较大,导热性较差,而产生较大的焊接应力和变形,易造成热裂纹。
因此,避免焊缝过热,选用较小的焊接电流、较快的焊速,缩短高温停留时间,减小熔池面积,避免焊缝、近缝区的晶粒过渡长大;控制输入的焊接热量,采用能量集中的焊接方法,加强冷却,缩短经过危险温度区域的冷却时间;焊后进行消除应力热处理和固溶处理,使焊接时析出的铬的碳化物重新固溶到奥氏体中,或进行稳定化处理;选用超低碳奥氏体焊丝(w(C)≤0.04%)焊接,防止晶粒边界产生贫铬区,提高抗晶间腐蚀的能力。
氩弧焊氩气是单原子气体,不会产生化合物,高温不分解,也不溶于金属中,不与任何元素发生反应,其稳弧性能好,热损耗小,电弧热集中,热效率高。
马氏体不锈钢与奥氏体不锈钢TIG自熔焊工艺
连军;张永生;宋海江;吕晓春
【期刊名称】《焊接》
【年(卷),期】2008(000)007
【摘要】马氏体不锈钢焊后易产生淬硬组织,焊接性差,奥氏体不锈钢比马氏体
不锈钢热胀系数大50%左右,二者焊后产生复杂的内应力,焊接接头易出现裂纹。
【总页数】3页(P62-64)
【作者】连军;张永生;宋海江;吕晓春
【作者单位】佳木斯电机股份有限公司,154002;佳木斯电机股份有限公司,154002;唐山热力公司,063000;机械科学研究院哈尔滨焊接研究所,150080
【正文语种】中文
【中图分类】TG4
【相关文献】
1.马氏体和奥氏体不锈钢TIG焊端接接头失效分析 [J], 凌伟;葛辽海;任振安;孙大
千
2.基于奥氏体焊材的Cr13型马氏体不锈钢MAG焊工艺 [J], 毛允娴;杨梦起;岳海瑞;张雅芝;张国栋
3.310S奥氏体不锈钢TIG自熔焊热源模型r与温度场模拟 [J], 刘兆全;张玉妥;董
文超
4.低碳奥氏体—马氏体双相不锈钢热处理工艺研究 [J], 赵惠;李智超
5.奥氏体不锈钢DP-TIG焊接工艺及接头性能研究 [J], 刘智君;董建国;张德金;马鸣
因版权原因,仅展示原文概要,查看原文内容请购买。