EUP3485_4A21V同步降压稳压器
- 格式:pdf
- 大小:897.52 KB
- 文档页数:11
lm3485原理
LM3485是一款降压型开关稳压器集成电路,主要应用于电源管理、
DC/DC开关稳压器等场合。
其工作原理主要包括以下几个部分:
1. 振荡器:LM3485内置一个振荡器,用于产生固定频率的脉冲信号。
这个信号控制后续的开关管,实现电源的开关作用。
2. 开关管:在LM3485中,开关管在振荡器产生的脉冲信号的控制下进行
开关动作,从而实现输入电压的斩波,进而调整输出电压。
3. 输出电压调整:通过开关管的斩波动作,可以调整输出电压的大小。
同时,LM3485内置的反馈环路会根据输出电压的变化自动调整开关管的开关时间比,从而维持输出电压的稳定。
4. 保护电路:为了确保电路的安全运行,LM3485还内置了各种保护电路,如过流保护、过压保护、欠压保护等。
当电路出现异常时,这些保护电路会自动切断开关管或者降低开关频率,以保护电路不受损坏。
总的来说,LM3485通过内部的振荡器、开关管、输出电压调整以及保护电路等模块的协同工作,实现了电源的稳压输出和安全运行。
在具体应用时,需要选择适当的元件和外围电路进行配合,以达到最佳的工作效果。
Vicor为48V Cool-Power ZVS降压稳压器产品系列
提供BGA封装选项
PI354x-00-BGIZ 是48V Cool-Power ZVS 降压稳压器产品系列的最新产品,为现有PI354x-00-LGIZ LGA 系列提供了新的BGA 封装选项。
Pi354x Cool-Power ZVS 降压稳压器的高性能ZVS 拓扑可在不影响性能的条件下,实现48V 直接至PoL 的应用。
采用从更高电压电源直接降压,工程师可更高效地部署配电架构,减少I2R 功率损耗,并消除高成本、低效率的中间总线转换。
从36VIN 至60VIN ,PI354x 不仅可为从2.2V 至14V 的输出电压稳压,而且还可提供高达10A 的输出电流。
在不增加任何组件的情况下,可通过使用单线均流进一步增加供电。
IR推出IR3846 SupIRBuck 35A负载点集成式稳压器
佚名
【期刊名称】《中国集成电路》
【年(卷),期】2013(22)11
【摘要】国际整流器公司(International Rectifier,简称IR)推出IR384635A 负载点集成式稳压器,适用于空间受限且需要高功率密度的企业功率应用,如服务器、存储以及网络通信和电信设备等。
【总页数】1页(P6-6)
【关键词】稳压器;集成式;负载点;国际整流器公司;高功率密度;IR;电信设备;网络通信
【正文语种】中文
【中图分类】TN86
【相关文献】
1.IR推出第三代多功能高度集成式SupIRBuck负载点稳压器适合网络通信、服务器及存储应用 [J],
2.IR推出新系列SupIRBuck高度集成式负载点稳压器 [J],
3.IR扩充SupIRBuck在线设计工具通过集成式稳压器简化负载点设计 [J],
4.IR推出新系列SupIRBuck高度集成式负载点稳压器提供更高效率和更多功能[J],
5.IR推出全新IR3823 3A SupIRBuck 集成式稳压器 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
HZJF-121模拟局部放电检测仪使用手册武汉市合众电气设备制造有限公司尊敬的顾客感谢您使用本公司的产品。
在您初次使用设备前,请您详细地阅读本使用说明书,将可帮助您熟练地使用我公司设备。
我们的宗旨是不断地改进和完善公司的产品,因此您所使用的设备可能与使用说明书有少许的差别。
如果有改动的话,我们会用附页方式告知,敬请谅解!您有不清楚之处,请与公司售后服务部联络,我们定会满足您的要求。
由于试验设备均有可能带电压,您在插拔测试线、电源插座时,会产生电火花,小心电击,避免触电危险,注意人身安全!u慎重保证本公司生产的产品,在发货之日起三个月内,如产品出现缺陷,实行包换。
三年内如产品出现缺陷,实行免费维修。
三年以上如产品出现缺陷,实行有偿终身维修。
如有合同约定的除外。
u安全要求请阅读下列安全注意事项,以免人身伤害,并防止本产品或与其相连接的任何其它产品受到损坏。
为了避免可能发生的危险,本产品只可在规定的范围内使用。
只有合格的技术人员才可执行维修。
—防止火灾或人身伤害使用适当的电源线。
只可使用本产品专用、并且符合本产品规格的电源线。
正确地连接和断开。
当设备连线处联机状态时,请勿随意连接或断开测试导线。
产品接地。
本产品除通过电源线接地导线接地外,产品外壳的接地柱必须接地。
为了防止电击,接地导体必须与地面相连。
在与本产品做联机试验前,应确保本产品已正确接地。
注意所有终端的额定值。
为了防止火灾或电击危险,请注意本产品的所有额定值和标记。
在对本产品进行连接之前,请阅读本产品使用说明书,以便进一步了解有关额定值的信息。
请勿在无产品盖板时操作。
如盖板或面板已卸下,请勿操作本产品。
使用适当的保险丝。
只可使用符合本产品规定类型和额定值的保险丝。
避免接触裸露电路和带电金属。
产品有电时,请勿触摸裸露的接点和部位。
在有可疑的故障时,请勿操作。
如怀疑本产品有损坏,请本公司维修人员进行检查,切勿继续操作。
请勿在潮湿环境下操作。
请勿在易爆环境中操作。
低功耗低跌落电压中电流电压调整器■产品概述LN1154系列是使用CMOS技术开发的高速、低压差,高精度输出电压,低消耗电流正电压型电压稳压器。
由于内置有低通态电阻晶体管,因而压差低,能够获得较大的输出电流。
为了使负载电流不超过输出晶体管的电流容量,内置了过流等保护电路。
■用途移动电话无绳电话照相机、视频录制设备便携式游戏机便携式AV设备基准电压源以电池供电的系统■产品特点可选择输出电压:可以在1.1~5.0V的范围内选择,步进为0.1 V输出电压精度高:精度可达±2.0%输入输出压差低:典型值180 mV (输出为 3.0V的产品, I OUT=100mA时)高纹波抑制比:60dB (1 kHz)消耗电流少:典型值60μA最小输出电流:可输出300mA(V IN≥V OUT+1v)待机电流:小于1μA内置保护:内置过流保护内置泄流管■封装●SOT-23-5L●WBFBP1X1-4L■订购信息LN1154 ①②③④⑤⑥■ 引脚配置5123CE(NC)VIN VOUTVSS 4SOT-23-5■ 引脚分配■ 打印信息SOT-23-5① 表示产品系列② 表示输出电压范围和类型③ 表示输出电压51234SOT-23-5①②③④④ 表示产品批号数字0-9,A-Z 为LN1154的批号WBFBP1X1-4L① “P ” 代表LN1154 ②代表电压■ 功能框图CEVINVOUTVSS■ 绝对最大额定值注意: 绝对最大额定值是指在任何条件下都不能超过的额定值。
万一超过此额定值,有可能造成产品劣化等物理性损伤。
■ 典型应用电路CommonCommon VIN VOUT注意:上述连接图以及参数并不作为保证电路工作的依据,实际的应用电路请在进行充分的实测基础上设定参数。
■ 使用条件输入电容器(C1):2.2µF 以上 输出电容器(C2):2.2 µF 以上注意:一般而言,线性稳压电源因选择外接零件的不同有可能引起振荡。
n LCD Monitor and LCD TVn Portable instrument power supply n Telecom / Networking Equipmentcomponent count.Figure1. Package Type of XL4015Pin ConfigurationsFigure2. Pin Configuration of XL4015 (Top View)Table 1 Pin DescriptionPin NumberPin Name Description1GNDGround Pin. Care must be taken in layout. This pin should be placed outside of the Schottky Diode to output capacitor ground path to prevent switching current spikes from inducing voltage noise into XL4015.2 FB Feedback Pin (FB). Through an external resistor divider network, FB senses the output voltage and regulates it. The feedback threshold voltage is 1.25V .3 SW Power Switch Output Pin (SW). SW is the switch node that supplies power to the output.4 VC Internal V oltage Regulator Bypass Capacity. In typical system application, The VC pin connect a 1uf capacity to VIN.5 VINSupply V oltage Input Pin. XL4015 operates from a 8V to 36V DC voltage. Bypass Vin to GND with a suitably large capacitor to eliminate noise on the input.Function BlockFigure3. Function Block Diagram of XL4015Typical Application CircuitFigure4. XL4015 Typical Application Circuit (VIN=8V~36V, VOUT=5V/5A)Order Information Marking ID Package Type Packing Type Supplied AsXL4015E1 XL4015E1 TO263-5L 800 Units on Tape & Reel XLSEMI Pb-free products, as designated with “E1” suffix in the par number, are RoHS compliant.Absolute Maximum Ratings(Note1)Parameter Symbol Value Unit Input Voltage Vin -0.3 to 40 V Feedback Pin Voltage V FB-0.3 to Vin V Output Switch Pin Voltage V Output-0.3 to Vin V Power Dissipation P D Internally limited mW Thermal Resistance (TO263-5L)R JA30 ºC/W (Junction to Ambient, No Heatsink, Free Air)Operating Junction Temperature T J-40 to 125 ºC Storage Temperature T STG-65 to 150 ºC Lead Temperature (Soldering, 10 sec) T LEAD260 ºC ESD (HBM) >2000 V Note1: Stresses greater than those listed under Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.XL4015 Electrical CharacteristicsT a = 25℃;unless otherwise specified.Symbol Parameter Test Condition Min. Typ. Max. Unit System parameters test circuit figure4VFB FeedbackV oltageVin = 8V to 40V, V out=5VIload=0.5A to 5A1.225 1.25 1.275 VEfficiency ŋVin=12V ,V out=5VIout=5A- 87 - %Efficiency ŋVin=24V ,V out=12VIout=4A- 93 - %Electrical Characteristics (DC Parameters)Vin = 12V, GND=0V, Vin & GND parallel connect a 220uf/50V capacitor; Iout=500mA, T a = 25℃; the others floating unless otherwise specified.Parameters Symbol Test Condition Min. Typ. Max. Unit Input operation voltage Vin 8 36 V Quiescent Supply Current I q V FB =Vin 2.1 5 mA Oscillator Frequency Fosc 144 180 216 KHz Output Short Frequency Fosp 48 KHz Switch Current Limit I L V FB =0 7 A Max. Duty Cycle D MAX V FB=0V 100 %Output Power PMOS Rdson V FB=0V, Vin=12V,I SW=5A60 80 mohmTypical System Application (VOUT=5V/5A)Efficiency VS Output currentFigure6. XL4015 System Efficiency CurveTypical System Application (VOUT=12V/4A)Efficiency VS Output currentFigure8. XL4015 System Efficiency CurveLogic level signals shutdown function can be used in typical system application with external components. When the TTL high voltage above 3.3V(referenced to ground, lower than VIN), the converter will shutdown, input current less than 5mA; when the TTL Low voltage below0.8V(referenced to ground), the converter will turn on.Figure9. XL4015 Typical Application CircuitPackage Information TO263-5L。
DESCRIPTIONThe EUP3485 is a 500KHz fixed frequency synchronous current mode buck regulator. The device integrates both 110m Ω high-side switch and 30m Ω low-side switch that provide 4A of continuous load current over a wide operating input voltage of 4.5V to 18V . The internal synchronous power switch increases efficiency and eliminates the need for an external Schottky diode. Current mode control provides fast transient response and cycle-by-cycle current limit.The EUP3485 features short circuit and thermal protection circuits to increase system reliability. In shutdown mode, the supply current drops below 1µA. The EUP3485 is available in SOP-8 package with an exposed pad.Typical Application CircuitFEATURES4A Continuous Output Current 100ns Minimum On TimeIntegrated 110m Ω High-side Switch Integrated 30m Ω Low-side SwitchWide 4.5V to 18V Operating Input Range Output Adjustable from 0.8VFixed 500KHz Switching FrequencySync from 300KHz to 2MHz External Clock Internal Compensation Internal Soft-Start<1µA Shutdown CurrentThermal Shutdown and Over current Protection Input Under V oltage Lockout Available in SOP-8 (EP) PackageRoHS Compliant and 100% Lead(Pb)-Free Halogen-FreeAPPLICATIONSDistributed Power Systems Networking SystemsNotebook Systems and I/O Power Flat Panel Television and Monitors Personal Video RecordersDigital Set Top BoxesFigure 1.Pin ConfigurationsPackage Type Pin ConfigurationsSOP-8 (EP)Pin DescriptionNumber Pin NameDescription1 IN Power Input. IN supplies the power to the IC, as well as the step-down converter switches. Drive IN with a 4.5V to 18V power source. Bypass IN to GND with a suitably large capacitor to eliminate noise on the input to the IC. See Input Capacitor.2,3 SW Power Switching Output. SW is the switching node that supplies power to the output. Connect the output LC filter from SW to the output load.4 BST High-Side Gate Drive Boost Input. BST supplies the drive for the high-side N-Channel DMOS switch. Connect a 0.01µF or greater capacitor from SW to BST to power the high side switch.5 EN/SYNC Enable Input. EN is a digital input that turns the regulator on or off. Drive EN high to turn on the regulator; low to turn it off. Attach to IN with a 100kΩ pull up resistor for automatic startup. External clock can be applied to EN pin for changing switching frequency.6 FB Feedback Input. FB senses the output voltage and regulates it. Drive FB with a resistive voltage divider connected to it from the output voltage. To prevent current limit run away during a short circuit fault condition the frequency fold-back comparator lowers the oscillator frequency when the FB voltage is below 600mV.7 VCC Bias Supply. Decouple with 0.1µF or greater capacitor.89(Exposed Pad) GNDSystem Ground. This pin is the reference ground of the regulated output voltage. Forthis reason care must be taken in PCB layout. Suggested to be connected to GNDwith copper and vias.Ordering InformationOrder Number Package Type Marking Operating Temperature RangeEUP3485WIR1SOP-8 (EP)xxxxxP3485-40 °C to +85°CEUP3485□□□□Lead Free Code1: Lead Free, Halogen Free 0: LeadPackingR: Tape & ReelOperating temperature rangeI: Industry StandardPackage TypeW: SOP (EP)Block DiagramFigure 3.Absolute Maximum Ratings (1)Supply V oltage (V IN) -------------------------------------------------------- -0.3V to +20VEN Voltage (V EN) -------------------------------------------------------- -0.3V to +6VSwitch V oltages (V SW) ------------------------------------------------------ -1V to V IN +0.3VBootstrap V oltage (V BST) ---------------------------------------------- V SW -0.3V to V SW +6VAll Other Pins ---------------------------------------------------------------------- -0.3V to +6VJunction Temperature --------------------------------------------------------------------150°CLead Temperature ------------------------------------------------------------------------260°CStorage Temperature ---------------------------------------------------------65°C to 150°CThermal Resistance: θJA (SOP-8_EP) -------------------------------------------------- 60°C /WESD Ratings: Human Body Mode --------------------------------------------------------- ±2kV Recommend Operating Conditions (2)Input Voltage (V IN) --------------------------------------------------------------- 4.5V to 18VOperating Temperature Range ----------------------------------------------- -40°C to +85°C Note (1): Stress beyond those listed under “Absolute Maximum Ratings” may damage the device.Note (2): The device is not guaranteed to function outside the recommended operating conditions.Electrical CharacteristicsV IN=12V ,T A=+25°C, unless otherwise specified.EUP3485 Symbol Parameter ConditionsMin. Typ. Max.UnitI IN Supply Current(Shutdown) V EN=0V 0.1 µAI IN Supply Current(Quiescent) V EN=2V, V FB=1V 0.9 mAR DSONH High-side Switch OnResistance110 mΩR DSONL Low-side Switch On Resistance 30 mΩSW LKG Switch Leakage V EN=0V, V SW=0V or 12V 0 10 µA I LIMIT Current Limit 4.6 6 A F SW Oscillator Frequency V FB=0.75V 350 500 650 KHz F FB Fold-back Frequency V FB=300mV 0.25 f sw D MAX Maximum Duty Cycle V FB=700mV 85 90 % F SYNC Sync Frequency Range 0.3 2 MHz V FB Feedback V oltage 788 808 828 mV I FB Feedback Current V FB=800mV 10 50 nA V ENL EN/SYNC Input Low V oltage 0.4 V V ENH EN/SYNC Input High V oltage 2 VV EN=2V 2I EN EN Input CurrentV EN=0V 0µA EN Td-off EN Turn Off Delay 8 µsV UVLO V IN Under Voltage LockoutThreshold Rising3.84.0 4.2 VV UVLO HYS V IN Under Voltage LockoutThreshold Hysteresis0.9 VV CC VCC Regulator 5 V VCC Load Regulation I CC=5mA 5 % T SD Thermal Shutdown 170 °C T SDHYS Thermal Shutdown Hysteresis 20 °CTypical Performance CharacteristicsC IN = 22µF, C OUT= 47µF, L= 2.2µH, T A=+25°C,unless otherwise noted.C IN = 22µF, C OUT= 47µF, L= 2.2µH, T A=+25°C,unless otherwise noted.C IN = 22µF, C OUT = 47µF, L= 2.2µH, TA=+25°C,unless otherwise noted.C IN = 22µF, C OUT= 47µF, L= 2.2µH, T A=+25°C,unless otherwise noted.Functional DescriptionThe EUP3485 regulates input voltages from 4.5V to 18V down to an output voltage as low as 0.8V , and supplies up to 4A of load current.The EUP3485 uses a fixed frequency, peak current control mode to regulate the output voltage. A PWM cycle is initiated by the internal clock. The integrated high-side power MOSFET is turned on and remains on until its current reaches the value set by the COMP voltage. When the power switch is off, it remains off until the next clock cycle starts. If, in 90% of one PWM period, the current in the power MOSFET does not reach the COMP set current value, the power MOSFET will be forced to turn off.Application InformationSetting the Output VoltageThe output voltage is set using a resistive voltage divider connected from the output voltage to FB (see Figure 1.). The voltage divider divides the output voltage down to the feedback voltage by the ratio:Thus the output voltage is:The feedback resistor R 1 also sets the feedback loop bandwidth with the internal compensation capacitor. Choose R 1 for optimal transient response. R 2 is then given by:Table 1. Recommended Divider Resistor Selection:V OUT (V) R 1 (k Ω) R 2 (k Ω) 1.2 60.4 124 1.8 60.4 48.7 2.5 60.4 28.7 3.3 100 32.4 5 150 28.7 InductorThe inductor is required to supply constant current to the load while being driven by the switched input voltage. A larger value inductor will result in less ripple current that will in turn results in lower output ripple voltage. However, the larger value inductor will have a larger physical size, higher series resistance, and/or lower saturation current. A good rule for determining inductance is to allow the peak-to-peak ripple current to be approximately 30% of the maximum switch current limit. Also, make surethat the peak inductor current is below the maximum switch current limit.The inductance value can be calculated by:V V1(I f V L INOUT L S OUT −×∆×=Where V OUT is the output voltage, V IN is the inputvoltage, f S is the switching frequency, and ∆I L is the peak-to-peak inductor ripple current.Choose an inductor that will not saturate under the maximum inductor peak current, calculated by:V V1(L f 2V I I INOUT S OUT LOAD LP −×××+=Where I LOAD is the load current.The choice of which style inductor to use mainly depends on the price vs. size requirements and any EMI constraints.Optional Schottky DiodeDuring the transition between the high-side switch and low-side switch, the body diode of the low-side power MOSFET conducts the inductor current. The forward voltage of this body diode is high. An optional Schottky diode may be paralleled between the SW pin and GND pin to improve overall efficiency.Input CapacitorThe input current to the step-down converter is discontinuous, therefore a capacitor is required to supply the AC current while maintaining the DC input voltage. Use low ESR capacitors for the best performance. Ceramic capacitors are preferred, but tantalum or low-ESR electrolytic capacitors will also suffice. Choose X5R or X7R dielectrics when using ceramic capacitors.Since the input capacitor (C IN ) absorbs the input switching current, it requires an adequate ripple current rating. The RMS current in the input capacitor can be estimated by:)V V1(V V I I INOUT IN OUT LOAD CIN −××= The worst-case condition occurs at V IN = 2V OUT ,where IC IN = I LOAD /2. For simplification, use an input capacitor with a RMS current rating greater than half of the maximum load current.The input capacitor can be electrolytic, tantalum or ceramic. When using electrolytic or tantalum capacitors, a small high quality ceramic capacitor, i.e. 0.1µF, should be placed as close to the IC as possible. When using ceramic capacitors, make sure that they have enough capacitance to provide sufficient charge to prevent excessive voltage ripple at input. The input voltage ripple for low ESR capacitors can be212OUTFB R +R R V =V 1V 808.0V R R OUT12−=221OUT R R R 808.0V +×=estimated by:)V V 1(V V f C I V INUT O IN UT O S IN OADL IN −×××=∆where C IN is the input capacitor value. Forsimplification, choose the input capacitor whose RMS current rating greater than half of the maximum load current.Output CapacitorThe output capacitor (C OUT ) is required to maintain the DC output voltage. Ceramic, tantalum, or low ESR electrolytic capacitors are recommended. Low ESR capacitors are preferred to keep the output voltage ripple low. The output voltage ripple can be estimated by:Where C OUT is the output capacitance value and R ESR is the equivalent series resistance (ESR) value of the output capacitor.When using ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance which is the main cause for the output voltage ripple. For simplification, the output voltage ripple can be estimated by:V V 1(C L f 8V V IN OUTOUT2S OUT OUT −××××=∆ When using tantalum or electrolytic capacitors, theESR dominates the impedance at the switching frequency. For simplification, the output ripple can be approximated to:ESR INOUT S OUT OUT R )V V1(L f V V ×−××=∆ The characteristics of the output capacitor also affectthe stability of the regulation system. The EUP3485 can be optimized for a wide range of capacitance and ESR values. PCB Layout GuidePCB layout is very important to achieve stable operation. Please follow these guidelines.1) Keep the connection of input ground and GND pinas short and wide as possible.2) Keep the connection of anode of input capacitorand IN pin as short and wide as possible.3) Ensure all feedback connections are short anddirect. Place the feedback resistors and compensation components as close to the chip as possible.4) Route SW away from sensitive analog areas suchas FB.5) Connect IN, SW, and especially GND respectivelyto a large copper area to cool the chip to improve thermal performance and long-term reliability.C f 81R ()V V 1(L f V V OUT S ESR IN OUT S OUT OUT ××+×−××=∆EUP3485DS3485 Ver1.1 Nov. 201011 Packaging InformationSOP-8 (EP)MILLIMETERS INCHES SYMBOLSMIN. MAX. MIN. MAX. A 1.35 1.75 0.053 0.069 A1 0.100.250.0040.010D 4.90 0.193 E1 3.90 0.153 D1 2.97 0.117 E2 2.180.086E 5.80 6.20 0.228 0.244 L 0.40 1.27 0.016 0.050 b 0.310.510.0120.020 e1.270.050。