高二数学函数公式知识点总结
- 格式:docx
- 大小:16.49 KB
- 文档页数:2
高中文科数学公式一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x 、那么],[)(0)()(21b a x f x f x f 在上是增函数;],[)(0)()(21b a x f x f x f 在上是减函数.(2)设函数)(x f y 在某个区间内可导,若0)(x f ,则)(x f 为增函数;若0)(x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f ,则)(x f 是偶函数;对于定义域内任意的x ,都有)()(x f x f ,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y 在点0x 处的导数的几何意义函数)(x f y 在点0x 处的导数是曲线)(x f y 在))(,(00x f x P 处的切线的斜率)(0x f ,相应的切线方程是))((000x x x f y y.*二次函数:(1)顶点坐标为24(,)24b ac baa;(2)焦点的坐标为241(,)24b ac baa4、几种常见函数的导数①'C0;②1')(n n nxx ;③x x cos )(sin ';④x x sin )(cos ';⑤a a a xxln )(';⑥xxe e ')(;⑦ax x a ln 1)(log ';⑧xx 1)(ln '5、导数的运算法则(1)'''()uv uv . (2)'''()uv u vuv . (3)'''2()(0)uu v uv vvv.6、会用导数求单调区间、极值、最值7、求函数y f x 的极值的方法是:解方程0f x.当00fx 时:(1) 如果在0x 附近的左侧0f x ,右侧0f x ,那么0f x 是极大值;(2) 如果在0x 附近的左侧0f x,右侧0fx,那么0f x 是极小值.指数函数、对数函数分数指数幂(1)mnmn aa (0,,am nN ,且1n ). (2)11mnm nmnaaa(0,,am nN ,且1n ).根式的性质(1)当n 为奇数时,nnaa ;当n 为偶数时,,0||,0nna aaa a a.有理指数幂的运算性质(1)(0,,)r sr saaaa r s Q . (2) ()(0,,)rsrs a a a r s Q .(3)()(0,0,)rrrab a b abrQ .注:若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用..指数式与对数式的互化式:log ba NbaN (0,1,0)aa N ..对数的换底公式 :log log log m a m N N a(0a ,且1a ,0m,且1m ,0N ).对数恒等式:log a Na N (0a ,且1a ,0N ). 推论log log m na a n bb m(0a,且1a ,0N).常见的函数图象k<0k>0y=kx+boyxa<0a>0y=ax2+bx+coyx-1-212y=x+1x oyx0<a<1a>11y=a xoyx0<a<1a>11y=log a xoyx二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sincos1,tan =cossin .9、正弦、余弦的诱导公式(奇变偶不变,符号看象限)k的正弦、余弦,等于的同名函数,前面加上把看成锐角时该函数的符号;2k的正弦、余弦,等于的余名函数,前面加上把看成锐角时该函数的符号。
高中数学函数知识点一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称y是x的函数,其中x是自变量,y是因变量,x的取值范围叫做这个函数的定义域,相应y的取值范围叫做函数的值域。
下面小编给大家分享一些高中数学函数知识点,希望能够帮助大家,欢迎阅读!高中数学函数知识一、一次函数定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
高二数学知识点求导公式在高二数学学习中,求导公式是一个非常重要的知识点。
它是求解函数导数的基础,掌握了求导公式,能够更加灵活地处理数学问题。
下面我们来系统整理一下高二数学常用的求导公式。
1. 基本函数的求导公式(1) 常数函数的导数为0:$y=C$,其中C为常数。
(2) 幂函数的导数:$y=x^n$,其中n为整数,导数为$y'=nx^{n-1}$。
(3) 指数函数的导数:$y=a^x$,其中a为常数且a>0且a≠1,导数为$y'=a^x\cdot ln(a)$。
(4) 对数函数的导数:$y=log_a(x)$,其中a为常数且a>0且a≠1,导数为$y'=\dfrac{1}{x\cdot ln(a)}$。
(5) 三角函数的导数:正弦函数的导数:$y=sin(x)$,导数为$y'=cos(x)$。
余弦函数的导数:$y=cos(x)$,导数为$y'=-sin(x)$。
正切函数的导数:$y=tan(x)$,导数为$y'=sec^2(x)$。
2. 基本运算法则(1) 基本规律:$[f(x)\pm g(x)]' = f'(x)\pm g'(x)$,即两个函数的和(差)的导数等于这两个函数的导数的和(差)。
(2) 乘法法则:$[f(x)\cdot g(x)]' = f'(x)\cdot g(x) + f(x)\cdot g'(x)$,即两个函数的乘积的导数等于第一个函数的导数乘以第二个函数再加上第一个函数乘以第二个函数的导数。
(3) 除法法则:$\left[\dfrac{f(x)}{g(x)}\right]'=\dfrac{f'(x)\cdotg(x)-f(x)\cdot g'(x)}{[g(x)]^2}$,即两个函数的商的导数等于第一个函数的导数乘以第二个函数再减去第一个函数乘以第二个函数的导数,然后除以第二个函数的平方。
高二数学知识点及公式总结5篇第一篇:高二数学必备知识点及公式总结1.函数的概念及其性质函数是一种特殊的关系,它将一组自变量的值映射到另一组因变量的值上。
函数的三要素为定义域、值域和对应关系。
常见的函数有一次函数、二次函数、指数函数、对数函数等,不同的函数具有不同的性质。
常见函数的公式:一次函数:y = kx + b二次函数:y = ax^2 + bx + c指数函数:y = a^x (a > 0, a ≠ 1)对数函数:y = loga(x) (a > 0, a ≠ 1)2.三角函数及其应用三角函数是指正弦函数、余弦函数、正切函数等。
由于三角函数具有周期性、奇偶性、单调性等特点,因此在物理、工程、数学等领域中被广泛应用。
三角函数的公式:正弦函数:y = sinx余弦函数:y = cosx正切函数:y = tanx割函数:y = secx余割函数:y = cotx3.微积分基础微积分是研究函数变化的过程的一门学科,包括导数和积分两个方面。
导数表示函数在某一点的变化率,积分则表示函数在一段区间内的累积变化量。
微积分在自然科学、社会科学、工程技术等领域中均有广泛应用。
微积分的公式:导数公式:f'(x) = lim├_(∆x→0) (f(x + ∆x) - f(x))/∆x积分公式:∫_a^b f(x)dx = lim├_n→∞ □(□(□(Δx )))Σ▒f(xi)Δx第二篇:高二数学解析几何知识点及公式总结1.向量及其运算向量是数学中的一种对象,具有大小和方向两个要素。
向量的运算包括加、减、数乘、点乘等,可以用来描述物体的运动、力的作用等。
向量运算的公式:向量加法: A + B = (Ax + Bx, Ay + By)向量减法: A - B = (Ax - Bx, Ay - By)向量数乘: kA = (kAx, kAy)向量点乘:A·B = |A||B|cosθ2.平面及直线的方程平面是空间内的一种二维图形,可以通过点和法向量来确定。
高中数学必修二知识点总结及公式大全高中数学是培养学生逻辑思维和抽象能力的重要学科。
《必修二》作为高中数学课程的重要组成部分,涉及了许多核心知识点和基础公式。
本文将为您详细总结《必修二》的知识点,并整理出一份公式大全,帮助您更好地掌握这门学科。
一、高中数学必修二知识点总结1.函数概念与性质- 函数的定义、表示方法、分类- 函数的性质(单调性、奇偶性、周期性、对称性等)- 反函数及其求法2.指数函数与对数函数- 指数函数的定义、性质、图像- 对数函数的定义、性质、图像- 指数方程与对数方程的解法3.三角函数- 角度制与弧度制互换- 三角函数的定义、图像、性质- 三角恒等变换- 三角方程与不等式的解法4.数列- 等差数列与等比数列的定义、性质、求和公式- 数列的通项公式与求和公式- 数列的极限5.平面向量- 向量的定义、表示、线性运算- 向量的坐标表示与几何表示- 向量的数量积与垂直关系- 向量的平行四边形法则与三角形法则6.解析几何- 直线方程的求法(点斜式、截距式、一般式等)- 圆的方程与性质- 常见图形的面积、周长、体积计算二、高中数学必修二公式大全1.函数类- y=f(x) 的反函数:y=f^(-1)(x)- 幂函数:y=x^a(a 为常数)- 指数函数:y=a^x(a>0 且a≠1)- 对数函数:y=log_a(x)(a>0 且a≠1)2.三角函数类- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 三角恒等变换公式(和差公式、倍角公式、半角公式等)3.数列类- 等差数列通项公式:a_n=a_1+(n-1)d- 等差数列求和公式:S_n=n/2(a_1+a_n)- 等比数列通项公式:a_n=a_1q^(n-1)- 等比数列求和公式:S_n=a_1(1-q^n)/(1-q)(q≠1)4.向量类- 向量加法:A+B=(a_x+b_x, a_y+b_y)- 向量减法:A-B=(a_x-b_x, a_y-b_y)- 向量数量积:A·B=a_xb_x+a_yb_y- 向量模长:|A|=√(a_x^2+a_y^2)5.解析几何类- 点斜式直线方程:y-y_1=k(x-x_1)- 截距式直线方程:x/a+y/b=1- 圆的标准方程:(x-a)^2+(y-b)^2=r^2总结:本文为您详细总结了高中数学必修二的知识点,并整理了一份公式大全。
高二期末数学知识点公式一、代数与函数1. 平方差公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^22. 二次方程求解公式:对于二次方程 ax^2 + bx + c = 0:x = (-b ± √(b^2 - 4ac)) / (2a)3. 因式分解公式:完全平方式:a^2 ± 2ab + b^2 = (a ± b)^2平方差公式:a^2 - b^2 = (a + b)(a - b)三项平方法:a^2 + 2ab + b^2 = (a + b)^2立方差公式:a^3 - b^3 = (a - b)(a^2 + ab + b^2)4. 二次函数的顶点坐标:对于二次函数 y = ax^2 + bx + c,其顶点的横坐标为 x = -b / (2a),纵坐标为 y = -D / (4a),其中D = b^2 - 4ac。
5. 贝叶斯公式:对于事件 A 和事件 B,且 P(B) > 0,P(A | B) = (P(B | A) ×P(A)) / P(B)。
二、几何与三角函数1. 直角三角形关系:勾股定理:c^2 = a^2 + b^2,其中 c 为斜边,a 和 b 为直角边。
正弦定理:a / sin A = b / sin B = c / sin C,其中 A、B、C 分别表示三角形的角,a、b、c 分别表示对边和斜边的长度。
余弦定理:c^2 = a^2 + b^2 - 2abcosC,其中 a 和 b 表示两边的长度,C 表示夹角。
2. 圆的相关公式:圆的周长:C = 2πr,其中 r 表示半径。
圆的面积:A = πr^2,其中 r 表示半径。
扇形的面积:A = (θ / 360) × πr^2,其中θ 为扇形的弧度。
3. 三角函数:正弦函数:sin(θ) = 对边 / 斜边余弦函数:cos(θ) = 邻边 / 斜边正切函数:tan(θ) = 对边 / 邻边余切函数:cot(θ) = 邻边 / 对边正割函数:sec(θ) = 斜边 / 邻边余割函数:csc(θ) = 斜边 / 对边4. 极坐标和直角坐标的转换:x = rcos(θ)y = rsin(θ)r^2 = x^2 + y^2tan(θ) = y / xθ = arctan(y / x)以上只是高二期末数学知识点公式的一部分,希望对你的学习有所帮助。
高二上公式数学知识点一、一次函数的公式一次函数的一般形式为y=ax+b,其中a和b都是常数。
二、二次函数的公式二次函数的一般形式为y=ax^2+bx+c,其中a、b和c都是常数。
三、指数函数的公式指数函数的一般形式为y=a^x,其中a是一个实数且a≠0。
四、对数函数的公式对数函数的一般形式为y=loga(x),其中a是一个正实数且a≠1。
五、三角函数的公式1. 正弦函数的公式:正弦函数的一般形式为y=sin(x)。
2. 余弦函数的公式:余弦函数的一般形式为y=cos(x)。
3. 正切函数的公式:正切函数的一般形式为y=tan(x)。
六、三角恒等式的公式1. 余弦定理:在一个任意三角形ABC中,设边长分别为a、b和c,角ABC 的对边长度为c,那么余弦定理可以表示为:c^2 = a^2 + b^2 - 2abcos(C)2. 正弦定理:在一个任意三角形ABC中,设边长分别为a、b和c,角ABC 的对边长度为c,那么正弦定理可以表示为:a/sin(A) = b/sin(B) = c/sin(C)七、解析几何的公式1. 直线的一般式方程:直线的一般式方程为Ax + By + C = 0,其中A、B和C为常数。
2. 点到直线的距离公式:点P(x0, y0)到直线Ax + By + C = 0的距离公式为:d = |Ax0 + By0 + C| / sqrt(A^2 + B^2)八、概率论的公式1. 排列组合公式:排列的总数为An,组合的总数为Cn。
排列和组合的计算公式如下:An = n!Cn = n! / (r!(n-r)!)2. 事件的概率计算公式:事件A的概率表示为P(A),概率的计算公式为:P(A) = n(A) / n(S),其中n(A)表示事件A发生的次数,n(S)表示样本空间中的总事件数。
以上是高二上公式数学知识点的介绍。
通过掌握这些公式,可以更好地理解和解决与数学相关的问题。
高二上学期数学知识点公式【高二上学期数学知识点公式】数学是一门重要的学科,学习数学需要牢记各种数学知识点和公式。
下面将为您详细介绍高二上学期数学知识点以及相关公式。
一、函数与图像1. 一次函数:- 二点式:y - y₁ = (y₂ - y₁)/(x₂ - x₁)(x - x₁)- 斜截式:y = kx + b- 一般式:Ax + By + C = 02. 二次函数:- 顶点式:y = a(x - h)² + k- 标准式:y = ax² + bx + c- 一般式:Ax² + Bxy + Cy² + Dx + Ey + F = 03. 指数函数:- 指数函数通式:y = aᵘ4. 对数函数:- 对数函数通式:y = logₐ(x)二、三角函数1. 正弦函数:- 正弦函数通式:y = a sin(bx + c) + d2. 余弦函数:- 余弦函数通式:y = a cos(bx + c) + d3. 正切函数:- 正切函数通式:y = a tan(bx + c) + d三、立体几何1. 三角形:- 面积公式:S = (1/2) * a * b * sin(C)- 余弦定理:c² = a² + b² - 2ab * cos(C)2. 圆锥:- 侧面积公式:SA = πrl- 体积公式:V = (1/3)πr²h四、概率统计1. 排列组合:- 排列公式:Aₚ = n!/(n - p)!- 组合公式:Cₚ = n!/(p!(n - p)!)2. 概率:- 事件概率:P(A) = n(A)/n(S)- 加法公式:P(A or B) = P(A) + P(B)- 乘法公式:P(A and B) = P(A) * P(B|A)五、微积分1. 导数:- 导数定义:f'(x) = lim┬(△x→0)(f(x + △x) - f(x))/△x - 基本导数公式:(xⁿ)' = nxⁿ⁻¹2. 积分:- 积分定义:∫[a,b]f(x)dx = F(b) - F(a)- 基本积分公式:∫xⁿdx = (1/(n+1))xⁿ⁺¹ + C六、数列与数学归纳法1. 等差数列:- 通项公式:aₚ = a₁ + (n - 1)d2. 等比数列:- 通项公式:aₚ = a₁ * rⁿ⁻¹3. 数学归纳法:- 归纳假设:假设命题在 k = m 的情况下成立- 归纳步骤:推导得出 k = m + 1 时命题成立以上是高二上学期的数学知识点和相关公式,希望对您的学习有所帮助。
高二数学知识点公式总结1. 代数与函数a) 二次函数公式:- 标准型:f(x) = ax² + bx + c,其中a≠0。
- 顶点式: f(x) = a(x - h)² + k,其中(h, k)为顶点坐标。
- 因式分解: f(x) = a(x - x₁)(x - x₂),其中x₁, x₂为根。
b) 判别式:- 二次方程 ax² + bx + c = 0 的判别式:Δ = b² - 4ac。
c) 等差数列公式:- 第n项:an = a₁ + (n - 1)d,其中a₁为首项,d为公差。
- 前n项和:Sn = (a₁ + an)n/2 或 Sn = (2a₁ + (n - 1)d)n/2。
2. 平面几何a) 直角三角形公式:- 勾股定理:c² = a² + b²,其中c为斜边,a、b为直角边。
- 正弦定理:a/sinA = b/sinB = c/sinC。
- 余弦定理:c² = a² + b² - 2ab*cosC。
b) 圆的相关公式:- 圆周长:C = 2πr,其中r为半径。
- 圆面积:S = πr²。
c) 向量公式:- 向量的模:|A| = √(x² + y² + z²),其中(x, y, z)为向量坐标。
- 向量点乘:A·B = ax·bx + ay·by + az·bz,其中(Ax, Ay, Az)为向量A的坐标,(Bx, By, Bz)为向量B的坐标。
- 向量叉乘:A×B = (AyBz - AzBy, AzBx - AxBz, AxBy - AyBx)。
3. 解析几何a) 二次曲线方程:- 椭圆方程:(x²/a²) + (y²/b²) = 1,其中a为x轴半轴长,b为y 轴半轴长。
高中数学函数知识点总结高中数学函数知识点总结篇一一、增函数和减函数一般地,设函数f(x)的定义域为I:如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数。
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2),那么就是f(x)在这个区间上是减函数。
二、单调区间单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大(或减小)恒成立。
如果函数y=f(x)在某个区间是增函数或减函数。
那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间。
一、指数函数的定义指数函数的一般形式为y=a^x(a0且≠1) (x∈R)。
二、指数函数的性质1、曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞)2、曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞)一、对数与对数函数定义1、对数:一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
2、对数函数:一般地,函数y=log(a)X,(其中a是常数,a0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,因此指数函数里对于a的规定,同样适用于对数函数。
二、方法点拨在解决函数的综合性问题时,要根据题目的具体情况把问题分解为若干小问题一次解决,然后再整合解决的结果,这也是分类与整合思想的一个重要方面。
一、幂函数定义形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
二、性质幂函数不经过第三象限,如果该函数的指数的分子n是偶数,而分母m是任意整数,则y0,图像在第一;二象限。
这时(-1)^p的指数p的奇偶性无关。
高二数学函数公式知识点总结高中函数公式的变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:①若两个变量,间的关系式可以表示成的形式,则称是的一次函数。
②当=0时,称是的正比例函数。
高中函数的一次函数的图象及性质
①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数=的图象是经过原点的一条直线。
③在一次函数中,当0,O,则经2、3、4象限;当0,0时,则经1、2、4象限;当0,0时,则经1、3、4象限;当0,0时,则经1、2、3象限。
④当0时,的值随值的增大而增大,当0时,的值随值的增大而减少。
高中函数的二次函数:
①一般式:(),对称轴是
顶点是;
②顶点式:(),对称轴是顶点是;
③交点式:(),其中,是抛物线与x轴的交点
高中函数的二次函数的性质
①函数的图象关于直线对称。
②时,在对称轴左侧,值随值的增大而减少;在对称轴右侧;的值随值的增大而增大。
当时,取得最小值
③时,在对称轴左侧,值随值的增大而增大;在对称轴右侧;的值随值的增大而减少。
当时,取得最大值9高中函数的图形的对称
轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。
中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。
②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
XX就和大家就分享到这,祝愿各位愉快!。