第3章 变 压 器
- 格式:doc
- 大小:333.00 KB
- 文档页数:23
变压器设计基础知识变压器基础知识第一章变压器的概述一. 变压器的用途在各种电气设备中,往往需要不同的电压电源。
如我们日常生活的照明用电,家用电器的电压一般都为220V,而各种动力的电压是380V,而线路的电压一般为:6、10、35、110、220、500KV的电压。
这些称为供电系统。
3KV以上的称为高压系统。
现代化的工业,广泛采用了电力为能源。
电能是由水电站、发电厂的发电机转化来的,发电机所发送来的电力根据输电距离将按照不同的电压等级传输出去,这种传输需一种特殊的专门设备。
这种设备就是我们熟悉的电力变压器。
变压器在输配电系统中有着很重要的地位,要求它能安全可靠的运行。
当变压器出现故障或损坏,将造成大面积的停电。
随着技术的发展,工农业生产需要,变压器在很多的领域也广泛的应用。
如,根据需要配套的冶炼用的电炉变压器、电解化工用的整流电压器、铁路电力机车用的牵引变压器……等很多。
二. 变压器的分类按用途分类:2.1电力变压器:这是目前工农业生产上广泛使用的变压器,它主要用途是为了输配电系统上使用的变压器。
目前电力变压器形成了系列,已经大批量生产。
按容量和电压等级分成以下类别:Ⅰ、Ⅱ类 10~630 KVA Ⅲ类 800~6300 KVA Ⅳ类8000~63000 KVA Ⅴ类 63000 KVA以上按电压所用和发电厂的用途不同可分为:1. 降压变压器;2. 升压变压器;3. 其中低压为400伏的降压变压器称为配电变压器。
电能的输配电过程首先发电厂发电机发出电能,电压一般是6.3或10.5KV,这样低的电压要输送几百公里以外的地区是不可能的。
所以要将电压升高到38.5、121、242、500KV以后再输出去。
这样高的电压到供电区域后还要经过一次变电所,(把电压降为38.5或110KV)和二次变电所(降为10.5或6.3KV)变压,再把电能直接送到用户区,经过附近的配电变压器降压为(一般为400V)以供工厂或住户使用。
第二篇变压器第一章电力变压器变压器是一种静止电器,它利用电磁感应原理,把一种电压、电流的交流电能,变换为同频率的另一种电压、电流的交流电能。
变压器的种类有许多,这里主要讲述在电力系统中作为输、配电用的电力变压器。
并结合我厂变压器的配置和使用情况,主要介绍变压器的基本工作原理、基本结构、试验、投运、停运及事故处理等一些情况。
第一节基本工作原理变压器基本工作原理可用下图说明:变压器是应用电磁感应原理来进行能量转换的,其结构部分主要是两个(或两个以上)互相绝缘,且匝数不等的绕组,套装在一个由良好导磁材料制成的闭合铁芯上;两个绕组之间通过磁场而耦合,但在电的方面没有直接联系(自耦变除外),能量的转换以磁场作媒介。
在两个绕组中,一个绕组接入交流电源,另一个绕组接负载。
接入交流电源的绕组称为原绕组,也称原边或一次侧;接负载的绕组,称为副绕组,也称副边或二次侧绕组。
当原绕组接入交流电源时,原绕组中将流过交流电流,并在闭合铁芯中产生交变磁通,其频率与电源频率相同。
闭合铁芯中的磁通同时交链原、副绕组,根据电磁感应定律,原、副绕组中分别感应出相同频率的电动势。
副绕组内感应出电动势,便向负载供电,实现了电能的传递。
原、副绕组中感应电动势的大小正比于各自的匝数,同时也近似等于各自侧的电压,只要原、副绕组匝数不等,便可使原、副边具有不同的电动势和电压,变压器就是利用原、副绕组匝数不等实现变压的。
变压器在传递电能的过程中,原、副边的电功率基本相等。
当两侧电压不等时,两侧电流势必不等,高压侧电流小,低压侧的电流大,故变压器在改变电压的同时,也改变了电流。
概括地说,变压器利用电磁感应原理,借助具有不同匝数的原、副绕组之间的磁耦合作用,从而改变原、副边的电流、电压的大小,而不改变频率,以实现交流电能传递的目的。
第二节变压器的型号及其技术数据每台变压器都在醒目位置上设有一个铭牌,上面标明了变压器的型号和额定值。
所谓额定值,是指制造厂按照国家标准,对变压器正常使用时有关参数所做的限额规定。
第三章变压器3.1 变压器中主磁通和漏磁通的性质和作用有什么不同?在分析变压器时怎样反映其作用?它们各由什么磁动势产生?[答案]3.2 变压器的R m、X m各代表什么物理意义?磁路饱和与否对R m、X m有什么影响?为什么要求X m大、R m小?[答案]3.3 变压器额定电压为220/110V,如不慎将低压侧误接到220V电源后,将会发生什么现象?[答案]3.4 变压器二次侧接电阻、电感和电容性负载时,从一次侧输入的无功功率有何不同?为什么?[答案]3.5 变压器的其它条件不变,在下列情况下, X1σ, X m各有什么变化?(1) 一次、二次绕组匝数变化±10%;(2) 外施电压变化±10%;(3) 频率变化±10%。
[答案]3.6 变压器的短路阻抗Z k、R k、X k的数值,在短路试验和负载运行两种情况下是否相等?励磁阻抗Z m、R m、X m的数值在空载试验和负载运行两种情况下是否相等?[答案]3.7 为什么变压器的空载损耗可以近似地看成铁损耗?为什么短路损耗可以近似地看成铜损耗?负载时,变压器真正的铁损耗和铜损耗分别与空载损耗、短路损耗有无差别?为什么?[答案]3.8 当负载电流保持不变,变压器的电压变化率将如何随着负载的功率因数而变化?[答案]3.9 两台完全相同的单相变压器,一次侧额定电压为220/110V ,已知折合到一次侧的参数为:一、二次侧漏抗的标么值Z1*=Z2*=0.025∠60ο,励磁电抗的标么值Z m*=20∠60ο,如图所示把两台变压器一次侧串联起来,接到440∠0οV的电源上,求下述三种情况一次侧电流的大小(用标么值表示)。
[答案]题3.9图(1)端点1和3 相连,2和4相连;(2)端点1和4 相连,2和3相连;(3)第Ⅰ台变压器二次侧开路,第Ⅱ台变压器二次侧短路。
3.10 三相变压器变比和线电压比有什么区别?折算时用前者还是后者?[答案]3.11 Yd接法的三相变压器,一次侧加额定电压空载运行,此时将二次侧的三角打开一角,测量开口处的电压,再将三角闭合测量电流,试问当此三相变压器是三相变压器或三相心式变压器时,所测得的数值有无不同?为什么?[答案]3.12 变压器并联运行的最理想情况有哪些?如何达到最理想的情况?[答案]3.13 在三相变压器中,零序电流和零序磁通与三次谐波电流和3次谐波磁通有什么相同点和不同点?[答案]3.14 为什么三相变压器组不宜采用Yyn联结,而三相心式变压器又可采用Yyn 联结?[答案]3.15 Yy连接的变压器,一次侧接对称三相电压,二次侧二线对接短路,如图所示。
压力变送器使用说明书杭州美仪自动化有限公司U-SUP-P300-S CN 5第5版杭州美仪自动化有限公司前言●感谢您购买本公司产品。
●本手册是关于产品的各项功能、接线方法、设置方法、操作方法、故障处理方法等的说明书。
●在操作之前请仔细阅读本手册,正确使用本产品,避免由于错误操作造成不必要的损失。
●在您阅读完后,请妥善保管在便于随时取阅的地方,以便操作时参照。
注意●本手册内容如因功能升级等有修改时,恕不通知。
●本手册内容我们力求正确无误,如果您发现有误,请与我们联系。
●本手册内容严禁转载、复制。
●本产品禁止使用在防爆场合。
版本U-SUP-P300-S CN5第五版2020年12月确认包装内容打开包装箱后,开始操作之前请先确认包装内容。
如发现型号和数量有误或者外观上有物理损坏时,请与本公司联系。
产品清单产品包装内容目录第一章产品概述 (1)第二章主要特点 (2)第三章外形尺寸及安装 (3)第四章技术参数 (9)第五章电气连接 (10)5.1赫斯曼结构电气连接图 (10)5.2直接引线结构电气连接 (13)第六章使用与安装 (14)第七章压力变送器安全说明 (15)第八章注意事项 (16)第九章质保及售后服务 (17)第十章Modbus地址和举例 (18)第一章产品概述第一章产品概述扩散硅压力变送器选用进口高精度、高稳定性压力敏感芯片。
敏感芯片采用先进的微机械刻蚀加工工艺,通过在硅片上扩散四个高精度电阻,从而形成惠斯通电桥。
由于压阻效应,四个桥臂电阻的阻值发生变化,电桥失衡,敏感元件输出一个对应压力变化的电信号。
输出的电信号通过放大和非线性矫正电路的补偿,产生与输入压力成线性对应关系的电压、电流信号。
第二章主要特点第二章主要特点●结构小巧、安装方便。
●先进的膜片/充油隔离技术。
●高稳定性、高可靠性。
●耐震,抗射频干扰。
●316L不锈钢隔离膜片结构。
●高精度、全不锈钢结构。
●微型放大器,电压、电流、RS485信号输出。
第三章变压器3.1 变压器中主磁通和漏磁通的性质和作用有什么不同?在分析变压器时怎样反映其作用?它们各由什么磁动势产生?[答案]3.2 变压器的R m、X m各代表什么物理意义?磁路饱和与否对R m、X m有什么影响?为什么要求X m大、R m小?[答案]3.3 变压器额定电压为220/110V,如不慎将低压侧误接到220V电源后,将会发生什么现象?[答案]3.4 变压器二次侧接电阻、电感和电容性负载时,从一次侧输入的无功功率有何不同?为什么?[答案]3.5 变压器的其它条件不变,在下列情况下, X1σ, X m各有什么变化?(1) 一次、二次绕组匝数变化±10%;(2) 外施电压变化±10%;(3) 频率变化±10%。
[答案]3.6 变压器的短路阻抗Z k、R k、X k的数值,在短路试验和负载运行两种情况下是否相等?励磁阻抗Z m、R m、X m的数值在空载试验和负载运行两种情况下是否相等?[答案]3.7 为什么变压器的空载损耗可以近似地看成铁损耗?为什么短路损耗可以近似地看成铜损耗?负载时,变压器真正的铁损耗和铜损耗分别与空载损耗、短路损耗有无差别?为什么?[答案]3.8 当负载电流保持不变,变压器的电压变化率将如何随着负载的功率因数而变化?[答案]3.9 两台完全相同的单相变压器,一次侧额定电压为220/110,已知折合到一次侧的参数为:一、二次侧漏抗的标么值Z1*=Z2*=0.025∠60ο,励磁电抗的标么值Z m*=20∠60ο,如图所示把两台变压器一次侧串联起来,接到440∠0οV的电源上,求下述三种情况一次侧电流的大小(用标么值表示)。
[答案]题3.9图(1)端点1和3 相连,2和4相连;(2)端点1和4 相连,2和3相连;(3)第Ⅰ台变压器二次侧开路,第Ⅱ台变压器二次侧短路。
3.10 三相变压器变比和线电压比有什么区别?折算时用前者还是后者?[答案]3.11 Yd接法的三相变压器,一次侧加额定电压空载运行,此时将二次侧的三角打开一角,测量开口处的电压,再将三角闭合测量电流,试问当此三相变压器是三相变压器或三相心式变压器时,所测得的数值有无不同?为什么?[答案]3.12 变压器并联运行的最理想情况有哪些?如何达到最理想的情况?[答案]3.13 在三相变压器中,零序电流和零序磁通与三次谐波电流和3次谐波磁通有什么相同点和不同点?[答案]3.14 为什么三相变压器组不宜采用Yyn联结,而三相心式变压器又可采用Yyn 联结?[答案]3.15 Yy连接的变压器,一次侧接对称三相电压,二次侧二线对接短路,如图所示。
试用对称分量法分析出一、二次侧电流的对称分量,这种情况是否有中点位移?为什么?题3.15图[答案]3.16 一台三相电力变压器: S N=31500kVA,U1N/U2N=220/11kV, YNd11联接,f =50Hz, R1=R2´=0.038Ω, X1σ=X´2σ=8Ω, R m=17711Ω, X m=138451Ω,负载三角接,每相阻抗Z=11.52+j8.64Ω。
当高压方接额定电压时,试求:(1)高压方电流,从高压方看进去cosφ1;(2)低压方电动势E2;(3)低压方电压、电流、负载功率因数、输出功率。
[答案]3.17一台S9系列的三相电力变压器,高低压方均为Y接,S N=200kVA,U1N/U2N=10/0.4kV。
在低压方施加额定电压做空载试验,测得P0=470W,I0=0.018×I2N=5.2A,求励磁参数。
[答案]3.18 对习题3-20的变压器在高压方做短路试验:U k=400V、I k=11.55A、P k=3500W,求短路参数。
[答案]3.19 一台三相电力变压器铬牌数据为:S N=20000kVA,U1N/U2N=110/10.5 kV,高压方Y接、低压方Δ接, f =50Hz , Z k*=0.105, P0=23.7kW, I0*=0.65%,P kN=104kW。
若将此变压器高压方接入110kV电网、低压方接一对称三角形联接的负载,每相阻抗为16.37+j7.93Ω,试求低压方电流、电压、高压方电流及从高压方看进去的功率因数。
[答案]3.20 仍采用习题3.19变压器的数据,当高压方施加额定电压,低压方负载电流为953.5A,负载功率因数(滞后),求电压变化率,低压方电压,效率。
[答案]3.21 试画出图所示各变压器的高、低压方电动势相量图,并判断其联接组。
题3.21图[答案]3.22 一台三相变压器,高低压绕组同名端和高压绕组的首末端标记如图所示。
试将该变压器联接成Yd7、Yy4和Dy5。
并画出它们的电动势相量图。
题3.22图[答案]参考答案3.1 答主磁通:沿铁心闭合,同时与一次绕组和二次绕组相交链,并在所交链的绕组中感应电动势,它是实现能量转换的媒介,是变压器的工作磁通,占总磁通的绝大部分。
漏磁通:主要沿非铁磁材料闭合,仅与一次绕组或二次绕组交链,在所交链绕组中感应电动势,起漏抗压降作用,在数量上远小于主磁通。
分析变压器时常以励磁电抗X m反映主磁通的作用。
由于主磁通的磁路是非线性的,故X m不是常数,随铁心饱和程度的提高而减小。
另外以漏电抗Xσ反应漏磁通的作用。
由于漏磁通基本上是线性的,故Xσ基本上为常数。
主磁通由一次绕组和二次绕组磁动势共同产生,漏磁通仅由一次绕组或二次绕组磁动势单独产生。
[返回]3.2 答R m代表变压器的励磁电阻,它是反映变压器铁耗大小的等效电阻,不能用伏安法测量。
X m代表变压器的励磁电抗,反映了主磁通对电路的电磁效应。
R m、X m都随磁路饱和程度增加而下降。
X m越大、R m越小时,当主磁通一定时,铁耗越小,所以希望X m大、R m小。
为此变压器铁心材料都用导磁性能好(磁导率高)、铁损小、0.27mm、0.3mm、0.35mm厚冷轧硅钢片叠成。
[返回]3.3 答此时主磁通增加接近2倍,磁路饱和程度大增,励磁电流大大增加,铜耗增大,铁耗可能增加3~4倍,而R m、X m减小。
此时将出现下列现象:电流过大,噪声过大,振动过大,变压器过热。
[返回]3.4 答因为变压器等效电路是感性的,因此当二次侧接电感性负载时,从一次侧输入的无功功率最大,电阻性负载次之,电容性负载时最小,若负载电容足够大时甚至可能向电网发送感性无功功率。
[返回]3.5 答漏电抗,励磁电抗,在忽略漏阻抗压降的情况下,U1≈E1=4.44fN1Фm。
(1)当N1增加时,由于N1Φm=常数,因此主磁通减小,磁路饱和程度下降,Λm上升,Λ1σ而与磁路饱和程度无关,Λ1σ不变。
因此,当N11=1.1N1时,X1σ1=1.21X1σ,X m1>1.21X m;当N11=0.9N1时,X1σ1=0.81X1σ,X m1<0.81X m。
N2变化,X1σ、X m不变。
(2)当外施电压增加时,由于Φm增加,磁路饱和程度上升,Λm下降,Λ1σ而与磁路饱和程度无关,Λ1σ不变。
因此,当U11=1.1U1时,X1σ不变,X m下降;当U11=0.9U1时,X1σ不变,X m上升。
(3)当频率增加时,由于fΦm=常数,因此主磁通Φm下降,磁路饱和程度下降,Λm上升,而Λ1σ与磁路饱和程度无关,Λ1σ不变。
因此,当f11=1.1f1时,X1σ1=1.1X1σ,X m1>1.1X m;当f11=0.9f1时,X1σ1=0.9X1σ,X m1<0.9X m。
[返回]3.6 答: 变压器的短路阻抗和运行状态无关。
无论是短路试验状态还是负载运行状态,也无论两种状态下的电流是否相等,变压器的短路阻抗的数值相等。
因为短路电阻实质上是绕组的导线电阻,其数值仅与导线的长度、截面及材料的电导率有关,与各运行状态下的电流大小无关。
短路阻抗,实质上是由漏磁通决定的漏电抗,漏磁通的路径主要经过空气、油等介质,其磁导率是常数,与外施电压的大小或电流的大小无关。
所以,短路阻抗、短路电阻、短路电抗在短路试验及负载运行时的数值是相等的。
变压器的励磁电阻是由铁心损耗决定的等值电阻,当铁心中磁通量变化(即铁心磁密变化)时,其等效电阻值也跟着变化。
变压器的励磁电抗是与铁心中主磁通对应的电抗,其数值大小决定于铁心磁路的特性,当铁心中磁通量变化时,饱和程度变化,磁导率变化,励磁电抗值跟着变化。
可见,变压器在空载试验和负载运行两种情况下,若一次侧外施电压相同,忽略漏阻抗压降时,E1近似认为不变,主磁通Фm也没有变化,则励磁阻抗基本相等。
[返回]3.7 答: 变压器空载运行时,其损耗,即包括铁损耗、铜损耗两部分,但由于空载电流很小,,所以可以忽略铜损耗。
一般把空载损耗近似地看成铁损耗。
变压器短路试验时,其短路损耗中本来也有铁损耗、铜损耗两部分,但由于试验电压很低,铁心中磁通很小,短路时的励磁电流比额定电压时的空载电流更小,而短路电流很大,铜耗很大,所以相比较而言,铁损耗很小,可忽略。
一般把短路损耗近似看成铜损耗。
负载时和空载试验时外施电压都是额定值,两者的铁耗差不多。
严格分析起来,负载铁损耗略小于空载时的铁损耗,这是由于负载时,负载电流在一次漏阻抗上的压降比空载试验时大,这表明铁心内的磁通密度比空载时的稍低,因此铁损耗也就少些。
另外,所谓空载时的损耗,是包含少量铜损耗在内的,因此负载下的真正铁损耗比空载试验时测得的铁损耗略小。
负载和短路两种情况下的铜损耗比较,应该在同一电流(比如额定电流)下进行。
铜损耗就是电流在短路电阻上的功率损耗,因两种情况下的电流近似相等,所以两者的铜损耗也相差不大。
如果考虑到短路损耗包含少量铁损耗在内这一情况,那么负载时真正的铜损耗也比短路试验时测得的铜损耗略小。
[返回]3.8 答: 当负载的功率因数等于1时,即纯电阻负载时,变压器的电压变化率很小。
当负载呈电阻电感性时,即功率因数滞后,一般随着负载阻抗角ψ2落后的越多,电压变化率越大,当时达到最大,ψ2再增大,电压变化率又趋于减小。
当负载呈电阻电容性时,即功率因数超前,随着负载阻抗角超前得越多,电压变化率越小,当时,电压变化率将变为负值,这时负载电压将大于空载电压。
[返回]3.9 解:(1)当端点1和3相连,2和4相连时,相当于两台变压器都工作在空载状态,取U1N=220V作为电压基值,外加电压标么值为, 取外加电压作参考相量,即, 则(2)当1和4 相连,2和3相连时,相当于两台变压器都工作在短路状态(3)在该种情况下有而,所以改写为标么值的形式,即(设Z m不变)[返回]3.10 答三相变压器变比同单相变压器变比一样,表示一、二次侧相电动势之比,它等于一、二次侧绕组匝数之比。
而线电压比是指一、二次侧线电压之比,显然它可能等于变比,或等于变比的倍(或倍),它的大小既与一、二次绕组联接法(星形联接或三角联接)有关。