地铁车辆轮对异常磨耗原因及控制措施
- 格式:docx
- 大小:195.05 KB
- 文档页数:4
地铁车辆轮对踏面异常磨耗原因及解决措施分析作者:陈正阳来源:《市场周刊·市场版》2019年第56期摘;要:地铁车辆轮对踏面的异常磨损问题始终都是我国地铁车辆运行部门无法彻底攻克的难点。
轮对踏面异常磨损的形状主要分为凹形状、W形状或是梯形磨损等多种形状磨损,主要与轮对在轨道上行驶过程中踏面与轨道之间产生的摩擦力和制动过程中闸瓦和轮对踏面所造成的作用力有关。
文章根据我国某线路运行车辆造成的车辆轮对踏面造成的异常磨耗进行的调查研究,并写出个人对发生异常磨损的主要原因,提出了相对应的解决措施。
关键词:地铁车辆;轮对踏面;异常磨耗一、引言随着我国地铁线路以及地铁车辆不断普及,地铁车辆轮对踏面所造成的异常磨损问题也逐渐变得异常严重。
轮对踏面的异常磨损严重时会对地铁车辆的安全运行造成极其严重的安全隐患,也会在一定程度上降低车辆的使用时间,加大了维护部门的工作压力。
鉴于某线路运行车辆轮对踏面的异常磨损现状展开研究,对轮对踏面异常磨损的因素进行一一检查。
二、轮对踏面异常磨耗现状某线路运行车辆规格是B2型不锈钢车辆,运用日立式牵引系统以及克诺尔EP2002制动系统,编组型号为3M3T,基本制动运用的踏面制动模式,车轮选择的是整体碾钢材料,LM 型踏面模式,闸瓦选择的是合成闸瓦。
在车辆运行相应时间后,闸瓦的接触区域内以及车轮外侧的表面会形成较为光滑的条带性磨耗;待车辆运行里程达到40万km后,会出现如图1一样的梯形磨损。
根据调查表明,将地铁车辆轮对踏面外侧磨损程度深度设为X,最大值为3.95mm,最小值为2.22mm,平均磨损深度3.57mm,将磨损宽度设为Y,最大值为37.55mm,最小值23.23mm。
全部车辆车轮对两侧的磨损深度几乎相同,拖车的磨损深度则要高于动车。
三、调查过程及处理方案B2型不锈钢车辆车轮对踏面形成的梯形磨损,主要原因是因为闸瓦以及轮对的摩擦所形成的作用力所形成的,首先需要排除是否是基本制动单元TBU的原因和是否是因为闸瓦材料硬度的原因。
车辆轮轨摩擦磨损与节能降耗措施随着公路交通的快速发展,道路运输成为人们生活和经济的重要部分。
在道路上,汽车的使用成为了主流,但不可忽视的是,大量的燃油消耗和机动车辆带来的污染已经严重影响着生态环境。
相对来说,铁路、轨道交通等工具的使用不仅能够提供绿色出行的选择,而且也有更低的能源消耗和更少的排放,但其中也存在一些问题,比如车辆轮轨摩擦磨损以及能源消耗问题,这些问题需要得到关注和解决。
车辆轮轨摩擦磨损的影响在铁路道路上,车辆的轮轨摩擦磨损是一项常见的问题。
当列车行驶时,车轮和轨道之间会产生摩擦,长期的使用会导致磨损和损坏。
高速行驶的列车由于摩擦产生的热量更大,因此摩擦磨损也会更为严重。
轨道车辆的轮缘与轨道之间的相互作用和摩擦磨损不仅会影响车辆的运行效率,而且还会增加轨道的维护成本,甚至对碳排放等影响也不可忽视。
节能降耗对策车辆轮轨摩擦磨损和能源消耗是铁路运输面临的两个主要问题,因此,如何减少能源消耗和降低车辆轮轨摩擦磨损成为了铁路交通工具发展和研究中的一个热门话题。
轮轨摩擦磨损方面1.因材施工:有些铁路是从过去的道路上建立的,而摩擦系数通常比较小。
在此类铁路上,使用硬度更高、耐磨性更强的材料可减少车轮和轨道之间的摩擦磨损。
2.注意轮轨配对:轮轨配对不良,轮轨磨损加剧。
采用合适的轮径、合适的维修、合适的轮轨配对将大大延长轮轨寿命。
3.维护保养:轨道和车轮的维护保养非常重要,避免轮轨过度损耗。
定期检查和维护轮轨,保持轮缘和轨道的良好状态。
轨道平整度和垂直度的测量、检查及时调整,可以有效预防轮轨摩擦磨损。
节能方面1.采用新的动力技术:采用节能、环保的动力技术,如电、氢、气等,来代替传统的本质燃料来减少污染排放和能源消耗。
2.智能控制技术:应用各种智能控制技术,实现车辆运行的优化调度。
例如,给定稳定的行驶速度和路线,调整车辆加速度和制动系统,以避免在加速和制动时间内浪费能源。
3.轻量化设计:铁路车辆轻量化设计不仅能降低车辆的能源消耗,而且还可以减少运输物品的重量和体积,最终达到节能降耗的目的。
地铁车辆车轮异常磨耗原因与对策摘要:随着我国地铁的不断建设发展,车辆在使用过程中会时常遇到一些问题或故障,需要技术人员的及时维护。
车轮作为地铁车辆的重要组成部分,异常磨耗对车辆本身的寿命有影响之外,对运营安全存在重大安全隐患。
因此,研究车轮异常磨耗的原因,采取相应对策进行处理,具有重要意义。
关键词:地铁车辆;车轮磨耗;原因;对策前言地铁具有运载量大、快速、舒适等优点,被广大市民选择乘坐。
地铁一般速度低于80 km/h速度的制动方式主要采用路面制动,由于地铁区间站间距短,制动比较频繁,单纯空气制动是无法满足制动热负荷要求。
所以一般地铁车辆都采用空气制动+电制动的方式,正常工况下先使用电制动,然后空气制动进行补偿。
合成闸瓦的散热性较差,因此制动过程产生的热负荷90%以上被车轮吸收;同时由于车轮承担支撑车辆的重量,运行导向,传递牵引力、制动力等交叉工作,从而使得车轮承受过多的热负荷,当车轮承受的热负荷超过自身承受极限时,车轮踏面出现剥离、热裂纹、异常磨耗等热损伤。
另外部分司机的误操作(频繁使用快速制动),让车轮踏面产生大量热应力,导致异常磨耗的产生。
这些异常磨耗如不及时修复,严重影响地铁车辆运营安全。
1.异常磨损的现象在地铁车轮踏面异常磨损研究中,我们首先需要了解的是异常磨损都有哪些主要表现。
在实际工作实践中,将踏面异常磨损问题表现归纳为以下几类。
1.1踏面沟槽状磨耗异常磨损:在我国的地铁车轮踏面异常磨损中,踏面沟槽状磨耗的出现是最常见的磨损形式在实际的研究中我们发现,这一磨损主要是因为以下问题综合情况造成的: 对于制动频繁、热负荷较大的城轨车辆,若电空制动力的分配比例、空气制动的切入点设置不合理,很容易导致此种磨耗,且基本全部出现在拖车车轮。
其根源在于过高的热负荷使闸瓦温升过高,导致闸瓦的材质、物理性能发生变化,引起合成闸瓦摩擦材料局部摩擦热膨胀,温度越高,这种磨耗在车轮踏面的外侧越容易发展;再加上闸瓦在横向分力下发生横向摩擦,反作用于车轮踏面,使得踏面出现此磨耗形成沟槽状磨的出现,异常磨耗的先期表现为踏面热裂纹、剥离等缺陷。
轮缘磨耗原因分析及相应对策1、轮轨不匹配(主要原因)轮、轨的磨耗与其断面形状有较大关系,在运用调查中发现,在旧线和调车线路上运行的机车,由于钢轨头部已磨耗成稳定的外形,且差异较小,这样磨耗后的踏面外形与钢轨头部相对应部分的外形有较好的匹配,因此减少了磨耗,轮缘偏磨程度也较轻。
而那些在新开通时间不长或刚进行换轨的线路上运行的机车,由于钢轨的头部磨耗量不大,还未形成稳定的外形,且内外轨头部磨耗成的外形差异较大,使踏面外形与钢轨头部相对应的形状没有良好的匹配,就加大了磨耗,轮缘偏磨程度也较严重。
解决措施:通过对运行线路的调查,找出对机车轮缘磨耗影响大的弯道,会同工务部门采取对其钢轨内侧面涂油的辅助减磨措施。
2、走形部技术状态不佳由于左右轮径差、左右轴距差、转向架对角线差、轴颈两侧载荷差及机车球形侧挡间隙等因素,引起轮对的纵向中心线偏向线路的一侧,导致轮缘偏磨。
(1)左右轮径差超过1mm时轮对在运行中就必须依靠踏面斜度来调整左右轮同径,使轮径小的一侧轮缘靠近钢轨,出现轮缘偏磨,踏面异磨。
同时迫使整个转向架向轮径小的一侧偏移,其它轮对也产生同向偏移,导致其它轮对也产生不同程度的轮缘磨耗。
(2)左右轴距有偏差时,轴距短的一侧的两个轮子易产生偏磨。
(3)轴颈两侧载荷不均时,载荷小的一侧轮子易产生偏磨。
(4)转向架对角线不等时,对角线较短的两个对角上的轮子易产生偏磨。
(5)车体侧挡间隙变化时,间隙小的一侧轮缘靠近钢轨,易出现偏磨。
解决措施:严格控制机车走行部的检修质量,按范围、工艺及限度进行检修,保证机车机车转向架各结构参数的最佳匹配,从而有效降低机车转向架在不平顺线路或过曲线时产生的横向冲击,以减轻轮缘的偏磨。
3、驱动机构的轮齿上载荷分布不均由于抱轴承与车轴间存在间隙而使牵引电机壳体产生倾斜、轮齿圆周力引起电枢轴的弯曲、车轴轴颈荷重引起的车轴变形导致大齿轮偏斜等,使牵引齿轮没能正常啮合,作用在齿宽上的力不是均匀分布而是集中在轮齿上靠电动机一侧。
0引言对于轨道交通车辆来说,车轮是保证车辆安全运行的重要前提。
由于车辆进行工作时,车辆会非常频繁的进行启动、加速、过弯以及制动等,会严重造成车轮的损耗而影响车轮的使用寿命,对列车的安全运行产生较大的隐患。
因此必须对车轮的异常损耗情况进行研究,明确影响车轮异常损耗的主要因素,并有针对性的进行解决,才能够保障车轮运行的安全性和可靠性,加强车辆的动力性能和提高车辆的乘车舒适度。
车轮的异常损耗会造成钢轨和车轮之间匹配关系的恶化,影响车轮使用的安全性,增加了维护车辆的成本和相关人员的工作,不利于企业经济效益的提高和持续健康的发展。
1重型轨道车车轮异常损耗的主要原因1.1车轮材质重型轨道车一般使用的车轮是辗钢,整体车轮车轮整体材料的性能直接关系着重型轨道车车轮质量和运行安全性,车轮异常损耗的主要原因包括车轮材料性能的弱化。
当车轮在经过长时间的运行之后,必然材料会产生一定的损伤,与其他的制动参数和轴重参数相同的轨道车相比如果车轮发生在经过相同运行里数之后更重的车轮损耗,则需要考虑车轮的材质是否合格的问题。
车轮是承载车辆载荷最主要的部件,也是轨道外力的直接承受者,在运行过程中,需要承受极大地载荷,因此,需要车轮具有较强的强度、抗热、疲劳性能、韧性以及耐磨损性能等,一般来说,车轮耐磨性与自身硬度相关,硬度越高车轮的耐磨性越强。
但这并不代表车轮硬度越高越好,还需要结合运行的实际情况以及钢轨的硬度,合理选择车轮的硬度,综合各种因素保证钢轨系统和车轮总磨损量控制在一定的水平。
[1]1.2轮缘厚度重型轨道车运行时当轨道车通过曲线,会造成轮缘厚度的磨损,轮缘厚度是重要的轮缘参数之一,主要在于避免列车在行驶过程中产生较大的或者异常的横向移动情况,抑制车轮蛇形运动,保证车轮运行的安全性。
在列车运行过程中,如果轮缘厚度数值过小,则会发生轮缘磨损过量的情况,造成钢轨之间的导向间隙过大,从而造成列车在运行时会发生较大的横向移动,影响列车运行的稳定性。
城市轨道车辆轮轨磨耗问题分析及减磨措施摘要:地铁车辆的轮轨在长期行驶过程中,钢轨对于车辆轮轨会不可避免产生锈蚀、磨耗和损伤等状况。
而非正常磨耗问题的产生,就需要采取减磨措施。
本文主要对影响轮轨磨耗的因素和减磨系统进行分析,提出减磨措施。
关键词:地铁车辆;磨耗问题;减磨措施前言地铁是人们出行首选的主要交通工具,如北京、上海、广州、深圳这样一线城市,地铁运营已形成了网络。
深圳日均客流量200万人次,上海地铁日均700万以上大客流已常态化,广州日均客流量500万人次,在这种情况下,轮轨磨耗在地铁运营中产生的负面影响越发突出,也增加了脱轨风险,降低了乘客的舒适度及安全系数,如何降低轮轨磨耗,是地铁设计、施工和维修管理人员迫切希望解决的问题。
一、地铁车辆的特点(一)站间距短,起动、制动频繁地铁站间距的长短直接关系到列车的最高运行速度、惰行时间与距离以及制动距离,市区站间距一般为1km左右。
由于站间距短,不得不加大起动加速度和制动减速度,才能完成起动、惰行、制动3个阶段的运行。
(二)地铁线路曲线半径小地铁建设受各种原因影响,不得不减小线路的曲线半径。
在GB50157《地铁设计规范》中,规定了线路平面最小曲线半径不能小于300m。
(三)地铁车辆轮轨关系与铁道车辆相比,地铁车辆的轮轨关系有着自己的突出特点,主要是低速小半径脱轨安全性、轮轨磨耗等。
二、轮轨磨耗问题的调研轮轨磨耗受多种因素影响,除了车辆走行部结构、线路状况和运用条件外,还与轮轨材质、硬度、表面状态和形状等有密切关系。
一般将车轮磨耗分为轮缘磨耗和踏面磨耗。
(一)轮缘磨耗一般,地铁线路曲线半径小,造成车辆曲线通过时,产生过大的冲角和导向力,在小半径曲线上,主要是车轮轮缘和钢轨轨距角出现的磨耗。
对付这3种因素的措施,主要是,通过向轮缘涂油减小轮缘与钢轨轨距角之间的摩擦系数m;轮轨型面的合理匹配可以保证良好的轮轨接触关系;采用径向转向架,降低轮缘与钢轨轨距角之间的导向力和减小冲角b。
车辆轮轨摩擦磨损与节能降耗措施随着经济的发展和城市化进程的加快,城市轨道交通正在成为城市公共交通的重要组成部分,其运营成本对于城市发展和经济活力的影响也越来越大。
而车辆轮轨的摩擦磨损是城市轨道交通运营成本的重要组成部分之一,因此如何降低车辆轮轨的摩擦磨损,实现节能降耗是城市轨道交通运营管理的重要课题。
车辆轮轨摩擦磨损的原因车辆轮轨的摩擦磨损主要由以下几个方面造成:1.轮轨间的摩擦车辆行驶的过程中,车轮和轨道之间的不断摩擦会导致轮轨磨损。
此外,车轮上的铁锈、污垢也会增加车轮与轨道的摩擦,加快轮轨的磨损。
2.轨道几何形态的变化轮轨的接触面积极小,轨道几何形态的变化会导致轮轨接触面的变化,造成了轮轨间的磨损。
3.车辆及轨道的质量车辆质量过大、轮径不一致、轴向力过大等都会增加轮轨摩擦磨损;而轨道质量的不良状况,如弯道半径过小、轨枕松动、轨道表面不平等等,都会加剧轮轨磨损。
节能降耗措施为了降低车辆轮轨摩擦磨损,实现节能降耗,需要采取一系列有效的措施,如下:1.轨道表面的治理轨道表面的光洁度和平整度是降低轮轨摩擦磨损的重要因素。
铁路部门可以利用先进的技术和设备,对轨道表面进行高效的清洗、打磨和涂覆等处理,提高轨道表面的平整度和光洁度,减少轮轨间的摩擦,从而达到降低磨损的目的。
2.轮轨的材质轮轨的材质对于降低磨损有着至关重要的作用。
优质轮轨材料具有较好的耐磨性、抗疲劳性、抗变形性和抗裂性,长期使用不易损坏,能够减少轮轨间的磨损。
3.轮轨的维护轮轨的定期保养和修补可以使得轮轨的表面在一定程度上恢复平整度和光洁度,减少轮轨磨损的程度。
而对于轮轨断裂、严重锈蚀等情况,则需要及时更换轮轨,避免出现磨损累积导致车轮及轨道变形的情况。
4.轨道车辆的协调运营轨道车辆的协调运营可以减少轮轨间的不同步摩擦,降低磨损。
通过优化轨道曲线半径、优化车辆设计、安装轮对转向架、压缩列车间隔等方式,可以从根本上减少车轮与轨道之间的摩擦,实现节能降耗的目的。
地铁车辆车轮踏面异常磨耗原因分析摘要:地铁车辆不仅启动制动次数多,而且站间距离短,减速大,在列车制动过程中,电空配合占据着非常重要的地位,通常以电动制动为主要方法。
仅当电制动不充足时,才使用空气制动做替补。
而当电动制动和空气制动不协调,势必会影响车轮踏面,甚至造成车轮踏面异常磨损、剥离等,进而缩短车轮使用年限。
针对城市基础制动应用中存在的实际问题和城市轨道车辆的制动特性,深入探究了地铁车辆踏面异常磨损的原因,同时提出几点可行性应对方案。
关键词:车轮踏面;磨耗;地铁车辆1.车轮踏面异常磨损原因分析1.1进一步分析易踏面磨损异常情况车轮踏面不可避免地会与闸瓦、钢轨直接接触,本文进一步探究了地铁列车拖车车轮踏面发生异常磨损,而动车并未发现此现象,由此断定不是钢轨造成的。
进一步调查研究列车的运营线路,发现正线弯道非常多,且弯道方向都向着一个方向。
因此,本文重点研究了车轮踏面磨损的根本原因,主要因拖车在弯道上多次施加控制制动导致的。
在曲线上,由于轮对与转向架构架往往存在一定偏角,迫使内侧车轮踏面外侧承担着巨大的闸瓦压力,使得车轮踏面磨损非常严重,这也正是轮对一侧踏面花纹磨损较为严重的原因。
1.2常用制动混合分析本次研究的地铁列车经常运用制动混合逻辑,一旦电制动能力储备不充足,必须在拖车上补充空气制动力。
空气制动和电制动之间的转换速度约为15km/h,6辆编组列车需要维持最大制动。
在不载荷作用下,列车制动相应计算也随时发生改变。
在计算列车制动时,等效减速度以每秒1.12米为主。
大量实践推理得出,其他线路列车通常以制动混合逻辑为主。
比如,ATO控车期间,很多地铁车轮踏面出现异常磨损和消耗,因为卡斯柯信号系统频繁触及大级别常用制动,在此情形下,电制动力无法达到制动减速度相应标准要求,致使制动系统充分融合列车制动力混合逻辑。
列车制动过程中,拖车必须持续不断地补充空气制动力,而本文研究的地铁列车出现很多同方向弯道,由此我们不难推断,车轮出现不同程度凹陷和损耗都与其存在必然联系。
重型轨道车车轮异常磨耗原因分析及应对措施发布时间:2021-12-31T07:54:09.855Z 来源:《电力设备》2021年第11期作者:周小龙[导读] 确保车轮硬度选择的合理性,从而有效控制钢轨和车轮总磨损量。
(广东城际铁路运营有限公司)摘要:本文首先分析重型轨道车车轮异常磨耗原因,然后对重型轨道车车轮异常磨耗的应对措施进行详细论述,主要包括降低制动时间、改变车轮材质及硬度、改进现有车辆基础制动结构、采取经济性的镟修方式、安装轮缘润滑装置,通过不断分析旨在顺利解决重型轨道车车轮异常磨耗现象,实现及时发现问题并解决问题。
关键词:重型轨道车车轮异常磨耗原因应对措施1.重型轨道车车轮异常磨耗原因分析1.1车轮材质一般来说,辗钢在重型轨道车车轮得到了广泛应用,整体车轮(见图1)材料的性能,是重型轨道车车轮质量的重要影响因素之一,因此车轮材料性能一旦出现弱化现象,极容易引发车轮异常损耗。
在车轮不断运行过程中,其材料的损伤难以避免,相比于其他的制动参数相同的轨道车,如果车轮损耗更为严重,应对车轮的材质问题进行深入分析。
分析承载车辆载荷的部件,在车轮这一方面得到了充分体现,同时也承受着轨道外力,运行过程中承受的载荷较大,故明确提出了对于车轮强度、抗热、疲劳性能等方面的要求。
在常规上,车轮耐磨性与自身硬度之间的关系是紧密联系的,硬度与车轮的耐磨性成正比,但是仍然需要依据运行实际情况,确保车轮硬度选择的合理性,从而有效控制钢轨和车轮总磨损量。
图11.2轮缘厚度对于重型轨道车来说,在轨道车通过曲线时,轮缘厚度的磨损难以避免,在诸多轮缘参数中,轮缘厚度不容忽视,可以防止列车异常横向移动情况,将安全的运行环境提供给车轮。
在列车运行过程中,轮缘厚度数值过小的情况下,轮缘磨损过量的情况无法规避,使钢轨之间的导向间隙愈发明显,从而造成横向移动发生于列车运行时,这使得列车运行的稳定性受到了严重威胁。
反之,在轮缘厚度数值较大的情况下,轮缘虚增厚情况必然产生,难以高度匹配轮缘踏面磨损速度,从而加剧踏面异常损耗的发生。
0 引言北京地铁电动客车随着运行间隔的缩短、运力运量的攀升及运行速度的提高,车轮踏面、轮缘的磨耗速率也随之加快。
目前,北京地铁中,车辆老旧、运营环境恶略且车轮轮缘异常磨耗较严重的是13号线DKZ5型电动客车。
北京地铁13号线正线线路全长40.85 km,其中地下线长3.47 km、地面线长26.10 km、高架线长11.28 km,是一条由大坡度、多弯道及一个大U形线路组成的线路。
13号线DKZ5型电动客车车轮轮缘磨耗速率(2012年和2013年)均达到0.4 mm/万km,是北京地铁2号线电动客车车轮轮缘磨耗速率的7倍多。
从月修中采集的各项数据及跟踪数据可以看出其轮缘磨耗的发展趋势,采取相应措施使轮缘磨耗速率降低。
这些措施可为北京地铁新开线路电动客车车轮轮缘磨耗的解决起到一定指导或借鉴作用。
1 轮缘异常磨耗分布情况2012年和2013年,13号线共56组电动客车运营载客。
每列电动客车一般在2个月内进行一次月修,车轮轮缘磨耗速率采集数据周期为2个月一次。
月修修程的平均运行公里数为1.945万km。
在每个月修修程中都进行轮缘厚度的数据采集工作,通过数据分析,可以得出轮缘磨耗速率分布情况(见图1)。
城轨车辆车轮轮缘异常磨耗原因及措施分析郭燕辉:北京市地铁运营有限公司运营三分公司,工程师,北京,100035摘 要:根据北京地铁13号线DKZ5型电动客车月修数据及跟踪统计资料,在大量数据的支持下,分析轮缘异常磨耗的原因;并进行系列试验,找出减少电动客车车轮轮缘磨耗的措施;根据北京地铁13号线DKZ5型电动客车车轮轮缘磨耗的发展趋势,判定出最佳恢复轮缘原形的镟修时间阶段,更高效、更节省、更便捷地恢复电动客车轮对使用状态,以保证13号线DKZ5型电动客车安全运营。
关键词:DKZ5型;电动客车;轮缘;异常磨耗中图分类号:U260.331+.1 文献标识码:A 文章编号:1001-683X(2016)06-0098-04图1 月修修程数据采集得出的轮缘磨耗速率柱状图0.60.50.40.30.20.10轮缘磨耗速率/(m m ·(万k m )-1)2012年2月2012年4月2012年6月2012年8月2012年10月2012年12月2013年2月2013年4月2013年6月2013年8月2013年10月2013年12月可以看出,从每年的10月份后到次年4月份前,车轮轮缘磨耗速率偏快,是由冬季涂油器及油脂状态不稳定造成的。
南宁地铁1号线轮轨磨耗分析与改善措施在城市軌道交通中,轮轨关系的好坏影响着电客车运行安全与舒适度。
针对南宁地铁1号线部分列车在正线运行过程中出现异响的情况,测量实验车辆车轮的外径及径向跳动值,对车轮踏面磨耗程度、趋势进行分析。
结果表明,列车车轮踏面在磨合期磨耗较为严重,后期磨损趋于稳定,列车行驶在未经打磨的轨道会加重踏面的磨损。
在新线投入使用前对钢轨进行打磨能有效改善轮轨关系,延长车轮踏面使用寿命,为指导现场的检修工作与预防性维修提供依据。
标签:地铁;轮轨关系;踏面磨损;改善措施0 引言轮轨关系是轮对与钢轨相互作用关系的简称,是城市轨道交通领域比较关注的热点问题。
良好的轮轨关系不仅能保障电客车的安全运行,消除异响的发生,延长轮对、钢轨的服务周期,还能减缓车辆运行中的振动,提高乘客的乘坐舒适性。
轮对是转向架的重要组成部分,承载着电客车的自身重量,并与钢轨作用后提供电客车的牵引力与制动力,同时具有导向与自动对中功能,是电客车重要的机械部件[1]。
轨道是地铁线路重要的组成部分,直接承担着电客车的重量并引导电客车运行,由钢轨、轨枕、道床等部件组成,是影响电客车安全运行的关键因素之一。
轮对、钢轨其一和其相互作用关系,都对电客车的安全运行与舒适便捷产生重要影响。
因此如何减少车轮、钢轨的非正常磨耗,增加车辆与轨道的RAMS 性能,消除电客车正线运营时的车底异响,改善轮轨关系等,成为众多科研院所、电客车制造厂商和城市轨道运营单位的研究重点[2]。
南宁地铁 1 号线是南宁城轨规划中“十”字骨架结构的“横”,它东起南宁东站,西至石埠站,全长32.1 km,正线最小半径是300 m,最大坡度为30‰,正线、辅助线及试车线采用60 kg/m 的钢轨,车辆段和停车场内均采用50 kg/m 的钢轨。
电客车采用的是6 节编组的“4 动 2 拖”结构的B2 型电客车,为中车株洲电力机车有限公司制造。
车轮采用的是马钢车轮公司生产的材料为ER9 的双S 型幅板整体辗钢车轮,其踏面形状为LM 型磨耗形踏面。
地铁车辆车轮偏磨原因分析与对策研究摘要:近年来,我国的交通工程建设有了很大进展,随之地铁车辆越来越多,轮对偏磨是铁道车辆常见的车轮磨耗形式。
本文针对地铁车辆的车轮偏磨和制动梁缓解不良等问题相对突出,分析问题产生的原因,并提出改进的措施与建议。
关键词:地铁车辆;车轮磨耗;偏磨;数值仿真;小半径曲线引言随着车辆运行速度的提高,轮轨伤损日趋严重,其表现形式也更为复杂。
车轮镟修是各地铁公司广泛采用的车轮维修方法,但盲目的镟修必将导致高额的维修成本。
为减少运营成本,必须对轮轨伤损形式及其对车辆系统动力学性能的影响进行研究,从而制定合理的车轮镟修策略。
1车轮不均匀磨耗原因分析1.1倾斜杠杆的排布方式为适应车辆制动系统的排布要求,转向架基础制动装置采用倾斜式杠杆系统。
倾斜式杠杆系统势必会在车辆制动和缓解过程中产生横向分力,虽然随着车辆空重车状态不同车体上拉条对转向架游动杠杆作用力的方向会发生一定的变化,但转K2和转K6型转向架的基础制动装置结构形式决定了上拉条的拉力方向只能是向转向架纵向中心线倾斜,所以,转向架基础制动装置所受横向力也只能是同一方向,即指向转向架纵向中心。
转向架基础制动装置杠杆系统采用倾斜方式排布可同时导致游动端和固定端制动梁产生横向位移,与车轮实际表现出来的不均匀磨耗状态存在一定的差异,且该因素只能导致车轮轮缘偏磨而与踏面偏磨无关,因此仅是原因之一,而非主要原因。
1.2制动梁缓解不良依靠转向架基础制动装置自身重力在侧架滑槽斜面上的分力和运行过程中的振动产生垂向加速度使制动梁的缓解力增大,当缓解力大于缓解阻力时,制动梁缓解,闸瓦脱开轮缘。
但在缓解过程中,在扭矩和基础制动装置自身重力的作用下,制动梁滑块在侧架滑槽斜面上产生的摩擦阻力以及各杆件间铰结处始终存在的摩擦、卡滞导致缓解阻力上升,造成缓解不良导致抱闸或“虚抱”(闸瓦与车轮之间没有间隙,但闸瓦压力实际比制动时小或者为零),加剧了闸瓦和轮缘的磨耗。
随着时代的变迁和技术的不断进步,铁路运输在我们的生活中发挥着越来越重要的作用。
然而,在铁路系统中,轮轨接触磨耗是一个不可忽视的问题。
本文将探讨cm2024轮轨接触磨耗的成因、影响及应对策略。
一、轮轨接触磨耗的成因轮轨接触磨耗主要是由于列车行驶过程中,车轮与钢轨之间的摩擦和冲击所导致的。
在列车制动、启动和变速时,车轮与钢轨之间会产生更加明显的摩擦和冲击,从而加速了轮轨接触磨耗。
此外,列车转弯时产生的横向力也会导致轮轨接触面的磨损。
二、轮轨接触磨耗的影响轮轨接触磨耗对铁路运输的效率和安全性产生了严重的影响。
首先,轮轨接触面的磨损会导致列车行驶过程中的噪音和振动,影响乘客的舒适度。
其次,轮轨接触磨耗会导致列车行驶过程中的阻力增加,从而增加了燃料的消耗。
此外,轮轨接触磨耗还会导致车轮和钢轨的损坏,增加维修成本。
三、应对轮轨接触磨耗的策略为了减少轮轨接触磨耗,我们可以采取以下策略:1. 采用更加耐磨的材料来制造车轮和钢轨。
例如,使用高强度合金钢来制造车轮和钢轨,可以显著提高它们的耐磨性能。
2. 优化列车的设计。
例如,优化车轮和钢轨的接触面形状和尺寸,可以减少摩擦和冲击。
此外,减轻列车的重量也可以减少行驶过程中的振动和阻力。
3. 加强列车的维护和检修。
定期对车轮和钢轨进行检查和维修,及时更换磨损严重的车轮和钢轨,可以保证列车的安全性和效率。
4. 开发和应用新的技术。
例如,应用润滑技术可以减少车轮和钢轨之间的摩擦;应用电子控制系统可以控制列车的制动和启动过程,从而减少对车轮和钢轨的冲击。
总之,轮轨接触磨耗是铁路运输中一个重要的问题。
我们应该加强对其成因和影响的研究,并采取有效的应对策略来减少轮轨接触磨耗,提高铁路运输的效率和安全性。
浅谈地铁车辆轮对异常磨耗原因及控制作者:马骏豪来源:《市场周刊·市场版》2020年第05期摘要:地铁车辆轮对异常磨损是困扰地铁车辆运营部门难题。
轮对模式异常磨损可分为凹槽、W形磨损和梯形磨损,这主要与车轮组沿履带移动时胎面和履带之间摩擦以及制动钳与制动模式之间摩擦有关。
在日常操作和维护中,随着车辆里程增加,车轮磨损异常现象逐渐暴露出来。
根据对A市地铁1号线车辆轮对磨损情况研究和分析,指出异常磨损原因,并提出解决胎面异常磨损方案。
轮组作为地铁、汽车的重要组成部分,关系到列车运行的稳定性和安全性。
以A市地铁1号线异常胎面和轮式磨损为研究对象,其主要原因是电力系统与空气制动不协调,ATO控制不力。
进行合理控制后,车辆轮对异常磨损将得到有效控制。
关键词:地铁;车辆轮对;异常磨耗一、引言随着我国地铁和地铁车辆里程表增加,地铁车辆轮对保护器异常磨损现象逐渐暴露出来。
轮对异常磨损会影响地铁列车安全稳定,也影响乘客舒适度,缩短车辆使用寿命,增加维修部门的。
据调查,A市地铁1号线多个车辆轮对有不同程度异常磨损。
车轮胎面异常磨损会降低车轮与铁轨之间接触连接,影响道路稳定性、乘客安全性和便利性,缩短履带系统部件使用寿命。
鉴于这种现象进一步恶化会降低驾驶安全系数,因此,有必要进行彻底研究和分析,以确保地铁安全。
地铁具有承载能力高、速度快、舒适性大等优点,是市民日常出行常见选择。
路面制动是地铁主要制动方式,由于地铁站距离短,制动频繁,只有空气制动不能满足热负荷要求。
当车轮承载车辆横向负载时,驱动驾驶员、牵引力传动力和制动力,轮对承载量过高。
当轮对承受热负荷超过其自身轴承限制时,轮对保护器将受到热损伤,如剥落、热裂纹和异常磨损。
以A 市地铁1号线为例,驾驶员频繁使用快速制动会导致车轮胎面产生大量热应力,从而导致轮对异常磨损。
如果这些异常磨损不能及时修复,地铁车辆安全将受到严重影响。
在研究轮对异常磨损现象时,需要了解异常磨损主要表现。
地铁车辆轮对异常磨耗原因及控制措施摘要:地铁车辆轮的磨耗是影响轨道交通系统运行质量的重要问题,当车轮出现磨耗时,不但会影响列车的运行状况,还会影响列车的运行安全。
地铁车轮磨耗的原因与日常运营有着密切联系,而对磨耗的各种原因进行分析,则是最大限度地减少地铁运营风险,保持地铁运营稳定性的一个重要前提。
因此,必须对异常磨耗产生的具体原因进行分析,并有针对性地提出解决办法。
关键词:地铁车辆;异常磨耗;原因分析;控制措施前言异常磨耗不仅会影响轨道交通的安全性和稳定性,而且还会影响乘坐人的舒适性,降低轨道交通工具的使用寿命,增加维护成本。
车轮的非正常磨耗将导致车轮与轨道的接触性变差,影响行车稳定性、乘坐安全性和便捷性,并缩短轨道传动部件的使用寿命。
考虑到其发展趋势将影响行车安全性,必须对其进行深入研究,从而保证地铁行车的安全性。
1、地铁车辆轮对异常磨耗原因分析1.1车轮分析车轮磨耗相关性研究工作的开展,要求车轮磨耗分别从车轮的轮对部位和闸瓦片部位着手[1]。
车辆闸瓦的磨耗主要发生在踏面区和接近车轮缘部位,以沟槽型为主。
一般地,沟槽的宽度可达26毫米,平均深度为3.48毫米。
随着行驶里程的增大,这些沟槽会变得越来越深,此外,异常磨耗区域也有可能主要集中在闸瓦和车轮之间。
1.2踏面制动单元分析因为踏面制动单元主要承担制动功能,所以其本身的工作状态和工作中的润滑程度会直接影响制动单元的作用发挥效果。
如果其内部的润滑油具有一定的洁净程度,而润滑油本身的质量也满足一定要求,那么,实际制动作用会更好。
此外,从系统运行角度来看,踏面制动单元零部件结构完好,零部件组装状态正常,也是不会出现异常磨耗的重要条件。
但从现实角度来看,在地铁运行过程中,部分零部件和转轴区域都是在运行中容易发生磨耗的特定区域,这些区域一旦发生磨耗,就会引起异常磨耗,除此之外,如果在踏板制动单元中具有驱动作用的推杆产生不均匀的推力,有可能引起制动单元内部的异常磨耗。
车辆轮轨摩擦磨损与节能降耗措施随着全球汽车普及水平的提高,车辆轮轨摩擦磨损和节能降耗也越来越引起人们的关注。
车辆轮轨摩擦磨损会导致能源浪费和消耗,而节能降耗则是未来可持续发展的趋势。
本文将介绍车辆轮轨摩擦磨损的原因以及如何通过采取相应的措施来降低摩擦磨损并实现节能降耗。
一、车辆轮轨摩擦磨损原因车辆轮轨摩擦磨损是指在轮子和铁轨接触时,由于轮子不能完全匹配铁轨的排列,导致两者在相互作用时出现摩擦而引起搓擦,最终导致摩擦磨损。
车辆轮轨摩擦磨损的原因主要包括以下三个方面:1.铁轨和轮子之间没有保持良好的接触。
铁轨和轮子表面不平,造成了摩擦和磨损。
2.轮子的滑行。
车辆在行驶过程中,轮子滑动、打滑或空转等情况,也会导致轮轨之间的磨损。
3.轮轴高低差。
轮轴高低差大的车辆在行驶过程中,轮轴和铁轨之间的摩擦增加导致了磨损。
二、车辆轮轨摩擦磨损的影响车辆轮轨摩擦磨损对交通运输的可持续发展产生了很大的影响,它不仅会导致车轮、铁轨等设备的磨损,降低了运行效率,同时还会产生大量的噪音和振动,影响环境和人体健康。
1.磨损会增加能量损耗。
在摩擦的过程中,会有大量能量转化为热能,最终成为无用的热量散失在空气中,导致能源的浪费和消耗。
2.会消耗轮轨和车轴的寿命。
车辆轮轨摩擦磨损,不仅消耗了轮轨的材料和寿命,同时对于车轮的磨损也会增加,影响整个车辆的使用寿命。
3.会产生噪音和振动。
车辆轮轨摩擦还会产生大量的噪音和振动,影响周边环境和人体健康。
三、降低车辆轮轨摩擦磨损的措施为了降低车辆轮轨摩擦磨损,提高交通运输的效率和质量,我们可以采取以下措施:1.使用高质量的轮轨材料。
提高轮轨的材料质量可以降低车辆轮轨摩擦磨损的程度,同时也能够延长轮轨的使用寿命。
2.改善铁路线路和轮轴磨损。
铁路线路和轮轴磨损是车辆轮轨摩擦磨损的重要原因之一,改善铁路线路的平整度和轮轴的精度可以有效降低车轮对铁轨的摩擦磨损。
3.采用新型的钢轮制造工艺。
新型的钢轮制造工艺可以有效降低热处理过程中的应力,减缓了轮轨摩擦磨损的程度。
轨道车辆轮缘磨耗原因探究及应对策略摘要:针对某出口项目轨道交通车辆在开通运行之初,存在轮缘磨耗严重,车轮频繁进入镟修以确保其轮缘厚度尺寸不要超限。
经过分析,线路小曲线过多,是造成轮缘过度磨耗的主要原因。
通过润滑车轮和润滑轨道可以延缓轮缘磨耗的进程,延长车轮的使用寿命。
关键词:轮缘磨耗;Qr值;镟修;小曲线;润滑1.引言某出口项目铁路客车自开通运营以来,轮缘普遍磨耗较快,车轮镟修频繁导致多个转向架车轮轮径减少量已超过20㎜,最大减少量已将近30㎜。
轮缘磨耗严重,使轮轨匹配关系恶化,影响行车安全。
车轮频繁镟修,导致车轮使用寿命降低,最终导致列车的运营维护成本增加。
2.轮缘厚度及Qr值定义该出口项目列车轮对踏面外形采用LMA 型,LMA型轮缘踏面外形轮廓示意图见图1所示。
图1轮缘Qr值即图2中所示的l4的数值。
在列车日常运用维护过程中该Qr值须≥6.5㎜,轮缘厚度26㎜≥l6㎜≥34㎜。
图21.a点:轮缘最高点;2.b点:轮缘最高点向下2㎜垂线与轮缘交点;3.c点:踏面基点向上12㎜垂线与轮缘交点;4.d点:踏面基点;5.l1:12㎜;6.l2+ l1=轮缘高度;7.l3:取2㎜;8.l4:车轮Qr值;9.:70线;l510.l:轮缘厚度;63.数据采集及分析为跟踪轮缘磨耗规律,在列车运行交路基本不变的情况下,选取9组列车进行为期两个月的跟踪测量。
检测发现,在轮缘厚度大于26㎜的条件下。
部分列车最小轮缘磨耗量为1㎜/月,部分列车最大轮缘磨耗范围超过2㎜/月,平均轮缘磨耗均超过1.5㎜/月。
具体见图3所示。
图 3通过跟踪轮缘厚度及对应的Qr值,详见表1所示,通过分析发现:第1、2、3列车组在四级修修形后,在正式开通前已试运行近4个月,自正式开通运行1个月后,初始Qr值接近8㎜,Qr值下降趋势平缓;第4、5、6列车组在三级修镟修之后,初始Qr值接近9㎜,自正式开通运行1个月后,Qr值下降较快、下降趋势明显(异常);第7、8、9列车组未经高级修、未经镟修。
地铁车辆轮对异常磨耗原因及控制措施
作者:王曌
来源:《名城绘》2020年第11期
摘要:地铁车轮在运行中的磨损与消耗对于地铁运行而言是会产生重要影响的结构。
车轮一旦发生磨损,不仅影响地铁的运行状态,地铁运行的安全也会同步受到相应的影响。
地铁车轮的磨耗原因与日常运行存在一定的关系,但磨耗的原因中,异常现象的磨耗原因分析是尽可能降低地铁运行风险,维持地铁运行稳定的重要条件。
针对具体的磨耗原因进行分析并提出相应的控制措施是非常重要的。
关键词:地铁车辆;异常磨耗;原因分析;控制措施
引言
地铁车轮的异常磨耗的现象中,车辆轮对磨耗现象分析需要针对车轮的磨耗关系进行调查分析。
另外,轮对以及踏面制动磨耗情况也是影响地铁车辆轮对异常磨耗的主要因素,需要分别进行调查分析,并找到具体的控制措施。
一、车轮分析
车轮的磨耗关系的调查工作开展需要分别从车辆的轮对和闸瓦区域入手对其磨耗情况进行调查。
结合实践经验进行观察分析可知。
车辆闸瓦的磨耗主要集中在踏面区域以及靠近轮辋外侧的区域,磨损的形式主要是沟槽形式。
通常情况下,沟槽的宽度会达到26mm,平均深度3.48mm[1]。
随着车辆运行里程的增加,这种沟槽会进一步加深,另外,异常磨耗的区域还以偶可能集中在闸瓦与车轮的部分,且在实际中这部分通常不与轨道接触。
下图1为地铁轮对实物图。
二、轮对闸瓦硬度分析
(一)轮对硬度方面。
这方面的硬度程度需要结合专业的标准对硬度进行测量和观察,具体的检测方法是分别在在车轮运行初期、车轮运行3至5年后、车轮运行过程中三个时间节点,在前期的运行阶段,测试的位置主要集中在踏板滚动出以及沟槽磨耗处,分别在不同阶段的测试结果通常表现为在初步运行阶段的硬度与运行3至5年后的硬度所产生的硬度差异一般会在30HB的范围内[2]。
从这个角度入手进行观察分析,可知车轮滚动的位置区域由于受到了与轮轨接触过程中的应力,出现了塑性硬化现象。
这种塑性硬化的发生导致沟槽区域的磨耗硬度值是相对更高的。
另外,通常情况下地铁车辆轮对踏面的沟槽硬度基础值是处在相对稳定一致的水平层次上的,这在一定程度上反映出了轮对踏面发生异常磨耗的情况与踏面本身的硬度水平无关。
(二)闸瓦硬度方面。
闸瓦硬度与闸瓦结构本身的材质有直接的关系,通常情况下,闸瓦结构本身在形态的平整度和均匀度上都能够达到一定的程度。
但这一区域的显著特点是容易受到外部环境因素的影响[3]。
比较典型的因素包括了温度因素、压力因素、拍打频次因素等。
在实际运行中,一些技术性参数也会随着这一结构本身的材质不同二出现一些变化。
针对闸瓦硬度指标的检验可见,硬度指标与磨耗现象的关系如下。
①硬度范围的标准化指标要求。
关于标准化的硬度要求,对于闸瓦结构来讲,要求在100至120HRC范围内,且硬度测量点的分布要保证均匀性。
除了对硬度指标的标准化要求,密度也是影响硬度效果的一个重要因素。
关于密度指标的标准要求,一般范围为最大1.95g/cm3,最小为1.80g/cm3。
除此之外,摩擦系
数指标的要求中,不同原因引发的异常情况所呈现出来的摩擦系数指标水平有所不同,可分为0.35、0.38等多种不同的系数类型。
经过综合分析可见,闸瓦对于异常磨耗而言也不属于影响因素的内容。
三、踏面制动单元分析
踏面制动单元由于主要承担制动的任务,因此其本身的运行状态和运行中的润滑程度对于制动单元的作用发挥效果会产生非常直接的影响。
若能够保证其内部的润滑油具备一定的清洁度,并且润滑油本身的质量也能够达到一定的指标水平,则意味着实际的制动作用发挥效果会更好。
另外,从系统运行的角度上来说,踏面制动单元的零件结构完整,且零部件装配状态正常,也是保证不发生异常磨耗現象的主要条件。
但从实际出发来讲,地铁运行的过程中部分零部件以及转轴区域都存在在运行中容易发生磨损的具体区域,这些区域一旦发生磨损现象,则会导致异常磨耗,另外,如果踏板制动单元中起到驱动作用的推杆所产生的推力发生不均匀的现象,则更有可能造成制动单元内部出现异常磨耗。
通常情况下,三年是踏面制动单元作用正常发挥的常规期限[4]。
四、异常磨耗的控制措施
(一)修改电制动控制模式。
地铁运行中对于电力牵引系统的依赖性是较高的,为了减少异常的磨耗现象,可积极优化控制电力牵引系统的软件和平台,通过牵引控制效果的本质性提升减低可能造成磨耗的程度,在优化了制动控制模式后,应当达到空气制动与电制动相结合的模式。
下图2为一种永磁地铁牵引电机系统结构示意图。
(二)控车逻辑的优化。
地铁车辆的控制逻辑对于控制效果的影响也是非常明显的,这里所探讨的控车逻辑是指ATO逻辑。
在具体的执行中,主要通过将制动阶段的瞬间牵引消除来达到优化效果,优化后制动的方式更加稳定有效,这种现象能够有效避免45km/h时速状态下出现异常的补气抱闸现象。
这不仅是为了保证车辆运行的安全,抱闸问题本身也属于车辆运行中的一种典型故障,及时解决故障问题对于维持稳定的地铁运行状态也有重要的意义。
五、结束语
综合分析可知,地铁列车轮对的磨耗现象会分别受到闸瓦硬度、踏面制动单元等方面因素的影响,需要从控制系统优化的角度对整体的运行状态进行优化,尽可能在运行中减少异常原因造成的磨耗,提升列车运行的安全系数。
作为专业技术人员而言,其应当认识到磨耗现象的常规性,并且重视在日常的检修、分析工作中关注磨耗现象,及时发现并采取措施进行处理。
参考文献:
[1]刘晓东.重型轨道车车轮异常磨耗原因分析及应对措施[J].内燃机与配件,2019,000(007):124-125.
[2]昌超,肖乾,王亚朋.高速列车车轮型面磨耗对轨道、桥梁振动特性影响分析[J].振动与冲击,2019,38(13):185-196.
[3]祁亚运,戴焕云,魏来,等.变刚度转臂定位节点对地铁车辆车轮磨耗的影响[J].振动与冲击,2019,38(06):100-107.
[4]孙良玉,蒲发金.汽车轮胎异常磨损的成因分析及早期预防措施[J].黑龙江交通科技,2019,042(002):163,166.
(作者单位:南京地铁运营有限责任公司)。