九年级数学上册《弧长和扇形面积》测试题含答案
- 格式:doc
- 大小:4.78 MB
- 文档页数:6
24.4 弧长和扇形面积同步练习卷一.选择题(共10小题).1.若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3πB.4πC.5πD.6π2.已知圆锥的底面半径为6cm,母线长为10cm,则这个圆锥的全面积是()A.60πcm2B.96πcm2C.132πcm2D.168πcm23.如图,用一个半径为6cm的定滑轮拉动重物上升,滑轮旋转了120°,假设绳索粗细不计,且与滑轮之间没有滑动,则重物上升了()A.πcm B.2πcm C.3πcm D.4πcm4.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2cm,绕AC所在直线旋转一周,所形成的圆锥侧面积是()A.16πcm2B.8πcm2C.4πcm2D.2πcm25.如图,点A、B、C、D都在边长为1的网格格点上,以A为圆心,AE为半径画弧,弧EF经过格点D,则扇形AEF的面积是()A.B.C.πD.6.如图,从一块半径为20cm的圆形铁皮上剪出一个圆心角是60°的扇形ABC,则此扇形围成的圆锥的侧面积为()A.200πcm2B.100πcm2C.100πcm2D.50πcm27.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为3m,那么花圃的面积为()A.6πm2B.3πm2C.2πm2D.πm28.如图,长方形ABCD中,AB=3BC,且AB=9cm,以点A为圆心,AD为半径作圆交BA 的延长线于点M,则阴影部分的面积等于()A.(π+9)cm2B.(π+18)cm2C.(π+9)cm2D.(π+18)cm2二.填空题9.弧长等于半径的圆弧所对的圆心角是度.10.一个周长确定的扇形,要使它的面积最大,扇形的圆心角应为度.11.已知扇形的弧长为6π,它的圆心角为120°,则该扇形的半径为.12.已知圆弧所在圆的半径为6,所对圆心角为60°,则这条弧的长为.13.扇形的半径为6cm,弧长为10cm,则扇形面积是.14.已知一个圆锥形零件的母线长为13cm,底面半径为5cm,则这个圆锥形的零件的侧面积为cm2.(结果用π表示).15.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为18cm,BD 的长为9cm,则纸面部分BDEC的面积为cm2.16.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C作OA的平行线分别交两弧点D、E,则阴影部分的面积为.三.解答题17.计算下图中扇形AOB的面积(保留π)18.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,求该圆锥的高h的长.19.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,求扇形OAB的弧长,周长和面积.(结果保留根号及π).20.如图,在半径为6cm的⊙O中,圆心O到弦AB的距离OE为3cm.(1)求弦AB的长;(2)求劣弧的长.21.在扇形OAB中,C是弧AB上一点,延长AC到D,且∠BCD=75°.(1)求∠AOB的度数;(2)扇形OAB是某圆锥的侧面展开图,若OA=12,求该圆锥的底面半径.22.如图所示,现有一圆心角为90°、半径为80cm的扇形铁片,用它恰好围成一个圆锥形的量筒;如果用其它铁片再做一个圆形盖子把量筒底面密封.(接缝都忽略不计).求:(1)该圆锥盖子的半径为多少cm?(2)制作这个密封量筒,共用铁片多少cm2.(注意:结果保留π)参考答案一.选择题1.解:∵扇形的半径为6,圆心角为120°,∴此扇形的弧长==4π.故选:B.2.解:根据题意,这个圆锥的全面积=×2π×6×10+π×62=60π+36π=96π(cm2).故选:B.3.解:根据题意,重物的高度为=4π(cm).故选:D.4.解:∵∠ACB=90°,∠BAC=30°,BC=2cm∴AB=4,则圆锥的底面周长=4π,旋转体的侧面积=×4π×4=8π,故选:B.5.解:由题意,扇形的半径AD==,∠EAF=45°,∴扇形AEF的面积==.故选:A.6.解:作OD⊥AB于D,如图,则AD=BD,∵∠OAD=∠BAC=30°,∴OD=OA=10,AD=OD=10,∴AB=2AD=20,∴扇形围成的圆锥的侧面积==200π(cm2).故选:A.7.解:∵扇形花圃的圆心角∠AOB=120°,半径OA为3cm,∴花圃的面积为=3π,故选:B.8.解:阴影部分的面积=扇形MAD的面积+矩形ABCD的面积﹣△CMB的面积=+3×9﹣×3×12=(π+9)cm2,故选:C.二.填空题9.解:设圆的半径为r,弧长等于半径的圆弧水对的圆心角是n°,根据题意得r=,即得n=,即弧长等于半径的圆弧所对的圆心角是度.10.解:设扇形的半径为r,周长为C,圆心角为n°,面积为S,S=(C﹣2r)r=﹣r2+r=﹣(r﹣)2+,∴当r=C时,S取得最大值,∴C=4r,∴=4r﹣2r,解得,n=,故答案为:.11.解:设扇形的半径为r,6π=,解得,r =9,故答案为:9.12.解:l ==2π, 故答案为2π.13.解:根据题意得,S 扇形=lR ==30(cm 2). 故答案为30cm 2.14.解:圆锥的底面周长=2π×5=10π,圆锥形的零件的侧面积=×10π×13=65π,故答案为:65π.15.解:S =S 扇形BAC ﹣S 扇形DAE =﹣=π(cm 2). 故答案是:π16.解:连接OE ,如图,∵CE ∥OA ,∴∠BCE =90°,∵OE =4,OC =2,∴CE =OC =2,∴∠CEO =30°,∠BOE =60°,∴S阴影部分=S 扇形BOE ﹣S △OCE ﹣S 扇形BCD =﹣×2×2﹣=π﹣2.故答案为π﹣2三.解答题17.解:如图,因为∠ACO=60°,OC=OA=4cm,所以△ACO是等边三角形,所以∠AOC=60°,所以∠AOB=120°,=π(cm2)答:扇形AOB的面积是πcm2.18.解:如图,由题意得:2πr=,而r=2,∴AB=6,∴由勾股定理得:AO2=AB2﹣OB2,而AB=6,OB=2,∴AO=4.即该圆锥的高为4.19.解:由图形可知,∠AOB=90°,∴OA=OB==2,∴扇形OAB的面积==2π,弧AB的长是:=π∴周长=弧AB的长+2OA=π+4.综上所述,扇形OAB的弧长是π,周长是π+4,面积是2π.20.解:(1)∵OE⊥AB,∴E为AB的中点,即AE=BE,在Rt△AOE,OA=6cm,OE=3cm,根据勾股定理得:AE==3cm,则AB=2AE=6cm.(2)在直角△OAE中,OA=6cm,OE=3cm,则OA=2OE,所以∠OAE=30°,∴∠AOE=∠BOE=60°,∴∠AOB=120°,∴劣弧的长是:=4π(cm).21.解:(1)作出所对的圆周角∠APB,∵∠APB+∠ACB=180°,∠BCD+∠ACB=180°,∴∠APB=∠BCD=75°,∴∠AOB=2∠APB=150°;(2)设该圆锥的底面半径为r,根据题意得2πr=,解得r=5,∴该圆锥的底面半径为5.22.解:(1)圆锥的底面周长是:=40πcm .设圆锥底面圆的半径是r ,则 2πr =40π.解得:r =20cm ;(2)S =S 侧+S 底=×π×802+400π=2000π(cm 2). 答:共用铁片2000πcm 2.。
第二章2.7弧长及扇形的面积一. 选择题(共13小题)1.(2019・大庆)如图,在正方形A8CD中,边长AB=1,将正方形ABCD绕点A按逆时针方向旋转180°至正方形ABiCjDi,则线段CD扫过的而积为()A. —B. —C. nD. 2n2.(2019・包头)如图,在RtAABC中,ZACB=90° , AC=BC=2据以BC为直径作半圆,交AB于点、D,则阴影部分的面积是()A. n - 1B. 4-nC. V2D. 23.(2019・山西)如图,在RtAABC中,NA8C=90‘,AB=2寸耳,BC=2,以AB的中点。
为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A. ^jL±-2LB.C. 2V3-KD. 4V3- —4 2 4 2 2 4.(2019-资阳)如图,直径为2顷的圆在直线/上滚动一周,则圆所扫过的图形而积为()A. 511B. 6nC. 20n D・ 24n5. (2019-临沂)如图,。
0中,莅=&, £4CB=75° ,BC=2,则阴影部分的面积是()6. (2019・凉山州)如图,在ZVIOC中,OA=3cm, OC=\cm.将ZVIOC绕点。
顺时针旋转90°后得到△8OD,则AC边在旋转过程中所扫过的图形的面积为()cnr.7. (2019-泰安)如图,将。
沿弦AB 折叠,莅恰好经过圆心O,若0。
的半径为3,则宛的长为()A. —nB. nC. 2nD. 3n28. (2019-南充)如图,在半径为6的中,点A, B, C 都在。
上,四边形OABC 是平 行四边形,则图中阴影部分的面积为()A. 6nB.C. 2A /3^D- 2nA .2LB. 2nC.ILr 8D. Un89. (2019-枣庄)如图,在边长为4的正方形ABCD 中,以点B 为圆心,A8为半径画弧, 交对角线BD 于点E,则图中阴影部分的而积是(结果保留IT )()A. 8 - nB. 16 - 2nC ・ 8 - 2nD. 8 - —IT210. (2018•兴安盟)如图,在扇形AO8中,NAO8=9(T ,正方形CDEF 的顶点C 是疝的中点,点。
与圆有关的弧长、面积计算一 、填空题(本大题共9小题)1.,圆心角等于的扇形内部作一个正方形,使点在上,点在上,点在上,则阴影部分的面积为____________.2.如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x=的图象上,则图中阴影部分的面积于 。
3.正n 边形内接于半径为R 的圆,这个n 边形的面积为23R ,则n 等于____________.4.如图,在等腰直角三角形中,,点为的中点,已知扇形和扇形的圆心分别为点、点,且,则图中阴影部分的面积为 (结果不取近似值).5.如图,点在直径为的上,,则图中阴影部分的面积等于 .(结果中保留π).545︒AOB CDEF C OA D E 、OB F AB FCA ABC 90C ∠=︒D AB EADFBD A B 2AC =FEBAC A B C 、、23O 45BAC ∠=︒6.如图7,在Rt ABC ∆中,9042C AC BC ∠=︒==,,分别以AC BC ,为直径画半圆,则图中阴影部分的面积为 .(结果保留)7.若一个扇形的圆心角为60°,面积为cm 2,则这个扇形的弧长为 cm (结果保留π).8.将绕点逆时针旋转到使在同一直线上,若,,则图中阴影部分面积为 cm 2.9.如图,等腰的直角边长为4,以为圆心,直角边为半径作弧1,交斜边于点,于点,设弧,,围成的阴影部分的面积为,然后以为圆心,为半径作弧,交斜边于点,于点,设弧围成的阴影部分的面积为,按此规律继续作下去,得到的阴影部分的面积= .OAπABC △B A BC ''△A B C '、、90BCA ∠=°4cm 30AB BAC ︒=∠=,A'C'ARt ABC △A AB BC AC 1C 11C B AB ⊥1B 1BC 11C B 1B B 1S A 1AB 22B C AC 2C 22C B AB ⊥2B 122221B C C B B B ,,2S 3S与圆有关的弧长、面积计算答案解析一 、填空题 1. 【解析】连结,由勾股定理可计算得正方形的边长为, 则正方形的面积为,等腰直角三角形的面积为, 扇形的面积为,所以阴影部分的面积为. 2.π【解析】根据反比例函数图像双曲线具有的性质,关于原点对称,从而可知把图中两块阴影归结在一个圆中,所以图中阴影部分的面积即为⊙A 或⊙B的面积.同时点A 、B 均在双曲线上1y x=,根据xy=1,且圆均与左边轴相切,可知圆的半径=1,所以阴影部分面积=π. 3.12 4..【解析】用三角形ABC 的面积减去扇形EAD 和扇形FBD 的面积,即可得出阴影部分的面积.∵, ∴, ∵点为的中点, ∴321A5382π-OF CDEF 1CDEF 1COD 12AOB 21588π⋅=π5382π-22π-902BC AC C AC =∠=︒=,,AB =D AB AD BD ==∴【点评】本题考查了扇形面积的计算以及等腰直角三角形的性质,熟记扇形的面积公式:.5.3342-π 【解析】首先连接,,即可求得,然后求得扇形的面积与的面积,求其差即是图中阴影部分的面积.连接, ∵, ∴, ∵的直径为,∴, ∴∴ 【点评】此题考查了圆周角的性质,扇形的面积与直角三角形面积得求解方法.此题难度不大,解题的关键是注意数形结合思想的应用. 6.542π-【解析】观察图形可知:图中阴影部分面积可分隔成两部分求解.设C 点到AB 的距离为CD ,第一部分:半圆AC 的面积-ACD S ∆,第二部分:半圆BC 的面积-BCD S ∆,最后两部分求和即可.7.3π;解:设扇形的半径为R ,弧长为l , 根据扇形面积公式得;=,解得:R =1, ∵扇形的面积=lR =,解得:l =π.=ABC FBD S S S -阴影扇形△24512222360π=⨯⨯-⨯22π=-2360n r s π=OB OC 90BOC ∠=︒OBC OBC △OB OC ,45BAC ∠=︒90BOC ∠=︒OBO CO =290313360422OBC OBCSS ππ⨯===扇形,△33=42OBC OBC S S S π-=-阴影扇形△8.3;【解析】此题需要把所在的圆补充完整,设它与线段的交点为,与的交点为.从而看出整个阴影部分可以割补成扇形的面积-扇形的面积.即.9.12-π; 【解析】每一个阴影部分的面积都等于扇形的面积减去等腰直角三角形的面积.此题的关键是求得的长.根据等腰直角三角形的性质即可求解. 根据题意,得. ∴. ∴. ∴. ∴阴影部分的面积. 【点评】此题综合运用了等腰直角三角形的性质和扇形的面积公式.πBC AB D 'A B E 'ABA BDE 221(42)34ππ-=23AB AB 、14AC AB ==21AC AB ==322AC AB ==3AB =345412136022S ππ⨯-⨯=-。
人教版九年级数学上册《24.4弧长和扇形面积》同步测试题及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.在半径为1的⊙O 中,120°的圆心角所对的弧长是 () A .3π B .23π C .πD .32π 2.用一个圆心角为150°,半径为12的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( ) A .2.5B .5C .6D .103.将一半径为6的圆形纸片,沿着两条半径剪开形成两个扇形.若其中一个扇形的弧长为5π,则另一个扇形的圆心角度数是多少?( ) A .30B .60C .105D .2104.若圆锥的底面直径为6cm ,侧面展开图的面积为215πcm ,则圆锥的母线长为( ) A .5cm 2B .2cm 5C .3cmD .5cm5.如图,在⊙ABC 中,AB=AC=,BC=2,以A 为圆心作圆弧切BC 于点D ,且分别交边AB 、AC 于E 、F ,则扇形AEF 的面积是( )A .B .C .D .6.用一个圆心角为120°,半径为4的扇形,做一个圆锥的侧面,则这个圆锥的全面积(侧面与底面面积的和)为( ) A .563πB .643πC .569πD .649π二、填空题7.已知扇形的弧长为6π,它的圆心角为120,则该扇形的半径为 . 8.圆锥底面圆的半径2cm r =,母线长为6cm ,则圆锥全面积为 .9.如图,扇形OAB 的圆心角为30︒,半径为1,将它在水平直线上向右无滑动滚动到'''O A B 的位置时,则点O 到点'O 所经过的路径长为 .10.如图,O 的直径6AB =,圆内接ACD 中,AC=CD ,30CAD ∠=︒则阴影部分的面积为 .三、解答题11.(本小题满分10分)如图,已知扇形的半径为15cm ,⊙AOB=120°.(1)求扇形的面积;(2)用这扇形围成圆锥的侧面,求该圆锥的高和底面半径.12.如图,AB 是⊙O 的直径,BC 切⊙O 于点B ,OC 交⊙O 于点D 的半径为3 20C ∠=︒.(1)求A ∠的度数;(2)求AD 的长.(结果保留π)参考答案题号 1 2 3 4 5 6 答案BBDDB D1.【答案】B【分析】根据弧长公式可知弧长. 【详解】解: l =120121803ππ⨯=. 故选B . 2.【答案】B【分析】根据弧长公式先计算出扇形的弧长,再根据圆锥的底面周长等于这个扇形的弧长即可求解. 【详解】解:由题意知:扇形的弧长=1501210180ππ⨯= 设圆锥的底面半径为R ,圆锥的底面周长等于扇形的弧长 ⊙2πR =10π ∴R =5 故选:B .【点睛】本题考查了扇形的弧长公式及圆锥的展开图,属于基础题,熟练掌握扇形弧长的计算公式是解题的关键. 3.【答案】D【分析】根据题意可知两个扇形的弧长之和就是圆的周长,则可以求得另一个扇形的弧长,再根据弧长公式求解即可.【详解】解:由题意可求得圆的周长2612C ⨯==ππ 其中一个扇形的弧长15L =π,则另一个扇形的弧长21257L -==πππ 设另一个扇形的圆心角度数为n ︒ 根据弧长公式:180n rL =π,有: 67180n ⨯=ππ,解得210n = 故选:D .【点睛】本题考查弧长的计算,解题关键是理解题意,正确应用弧长公式进行计算.【分析】已知圆锥底面圆的半径可求出侧面展开图的弧长,根据侧面展开图的面积即可求解. 【详解】如图所示⊙圆锥的底面直径为6cm ⊙圆锥的底面半径为3cm⊙圆锥的底面圆周长是2π6πC r == ⊙侧面展开图的面积为215πcm⊙侧面展开图的面积116π15π22S l C l ==⨯=⊙圆锥的母线长为5l = 故选:D .【点睛】本题主要考查圆锥侧面展开图的面积,理解掌握面积公式的计算方法是解题的关键. 5.【答案】B【详解】试题分析:先判断出⊙ABC 是等腰直角三角形,从而连接AD ,可得出AD=1,直接代入扇形的面积公式进行运算即可. ⊙AB=AC=,BC=2⊙AB 2+AC 2=BC 2⊙⊙ABC 是等腰直角三角形 连接AD ,则AD=BC=1则S 扇形AEF =故选B .考点:1.扇形面积的计算;2.等腰直角三角形.【分析】先求出圆锥的侧面积和底面半径,再求圆锥的表面积,由此即可求出这个圆锥的表面积. 【详解】解:圆锥的侧面积=π×42×120?360?=163π圆锥的底面半径=2π×4×120?360?÷2π=43圆锥的底面积=π×(43)2=169π圆锥的表面积=侧面积+底面积=1616=39649πππ+. 故选:D .【点睛】本题考查圆锥的表面积,解题时要认真审题,掌握扇形面积、圆锥底面半径的计算方法是解题的关键. 7.【答案】9【分析】知道弧长,圆心角,直接代入弧长公式L=180n rπ即可求得扇形的半径. 【详解】解:⊙扇形的圆心角为120°,它所对应的弧长6π ⊙6π=120180rπ 解得:r=9. 故答案为9.【点睛】此题主要考查了扇形弧长的应用,要掌握弧长公式:L=180n rπ才能准确的解题. 8.【答案】216πcm【分析】圆锥的全面积是底面圆的面积与侧面扇形的面积,由此即可求解. 【详解】解:如图所示,圆锥底面圆的半径2cm r =,母线长为6cm⊙底面圆的周长为2π2π24πcm r =⨯=,底面圆的面积为222ππ24πcm r ==,侧面扇形的面积为214π612πcm 2⨯= ⊙圆锥的全面积为24π12π16πcm +=故答案为:216πcm .【点睛】本题主要考查立体几何图形的面积,掌握圆锥面积是底面圆面积与侧面扇形的面积之和是解题的关键. 9.【答案】76π【分析】点O 到点O ′所经过的路径长分三段,先以A 为圆心,1为半径,圆心角为90度的弧长,再平移了AB 弧的长,最后以B 为圆心,1为半径,圆心角为90度的弧长.根据弧长公式计算即可. 【详解】解:⊙扇形OAB 的圆心角为30°,半径为1 ⊙AB 弧长=301180π⨯⨯=6π⊙点O 到点O ′所经过的路径长=90172=18066πππ⨯⨯⨯+ 故答案为:76π. 【点睛】本题考查了弧长公式,旋转的性质和圆的性质,理解点O 到点O ′所经过的路径长分三段是解题的关键.10.【答案】9332π 【分析】连接OC 、OD ,交AD 与点K ,根据AC CD =,30CAD ∠=︒得到1230∠=∠=︒ AOC ∆ COD ∆为等边三角形,证明出四边形ACDO 为菱形,,进而求出阴影部分的面积. 【详解】解:连接OC 、OD ,交AD 与点K ,如图所示:⊙AC CD = 30CAD ∠=︒ ⊙1230∠=∠=︒⊙32260∠=∠=︒ 42160∠=∠=︒ ⊙AO OC OD ==⊙AOC ∆,COD ∆为等边三角形 ⊙OA OD OC AC CD ==== ⊙四边形ACDO 为菱形⊙CO AD ⊥ ⊙360∠=︒ ⊙530∠=︒⊙AB 为圆O 直径为6 ⊙3AO = ⊙1322OK AO == ∴22333()322AK =-= 23CO KO ==∴233AD AK ==⊙19322ACDO S AD CO =⋅=菱形312033360AOD S ππ=⨯⨯=扇形 ⊙9332S π=阴 【点睛】本题考查了求扇形阴影部分的面积,正确作出辅助线是解题的关键. 11.【答案】(1)150π平方厘米(2)r=10cm ;5cm 【分析】(1)根据扇形的面积公式S=2360n r π,代值计算即可(2)利用弧长公式可求得扇形的弧长,除以2π即为圆锥的底面半径,再利用勾股定理求得高即可.【详解】解:(1)⊙S=2360n r π ⊙S=224015360π⨯=150πcm 2(2)⊙弧长=24015180π⨯=20π ⊙2πr=20π,r=10cm⊙圆锥的高221510-55cm )【点睛】本题考查了扇形的面积公式以及圆锥有关计算,解本题的关键是掌握圆锥的侧面展开图的弧长等于圆锥的底面周长.12.【答案】(1) 35A ∠=︒;(2) 弧AD 的长为116π. 【分析】(1)由切线性质结合已知得70BOD ∠=︒,根据⊙OAD 是等腰三角形即可计算出⊙A =35°.(2)由(1)可知⊙AOC =110°,根据弧长公式即可计算. 【详解】解:(1)BC 是⊙O 的切线90B ∴∠=︒.又⊙⊙C =20°.902070BOC ∴∠=︒-︒=︒⊙OA =OD ⊙⊙A =⊙ADO1 352A BOC ∴∠=∠=︒(2)180AOC BOC ∠=︒-∠18070110AOC ∴∠=︒-︒=︒∴弧AD 的长为110111806ππ=. 【点睛】本题考查了切线的性质,等腰三角形的性质,弧长的计算等知识点,能求出⊙BOC 的度数是解此题的关键,注意:圆的切线垂直于过切点的半径.。
2020年人教版九年级数学上册 24.4《弧长和扇形面积》随堂练习第1课时 弧长和扇形面积基础题知识点1 弧长公式及应用1.(岳阳中考)已知扇形的圆心角为60°,半径为1,则扇形的弧长为( ) A.π2 B .π C.π6 D.π3 2.(衡阳中考)圆心角为120°,弧长为12π的扇形的半径为( )A .6B .9C .18D .36 3.一个扇形的半径为8 cm ,弧长为163π cm ,则扇形的圆心角为( )A .60°B .120°C .150°D .180° 4.如图,用一个半径为5 cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )A .π cmB .2π cmC .3π cmD .5π cm5.如图,⊙O 是△ABC 的外接圆,BC=2,∠BAC=30°,则劣弧BC ︵的长等于( )A.2π3B.π3C.23π3D.3π3知识点2 扇形的面积公式及应用6.半径为6,圆心角为120°的扇形的面积是( ) A .3π B .6π C .9π D .12π7.一个扇形的圆心角是120°,面积是3π cm 2,那么这个扇形的半径是( ) A .1 cm B .3 cm C .6 cm D .9 cm8.已知扇形的半径为6 cm ,面积为10π cm 2,则该扇形的弧长等于 cm .9.一个扇形的半径为3 cm ,面积为π cm 2,则此扇形的圆心角为 度.10.如图,△ABC 是⊙O 内接正三角形,⊙O 的半径为3,则图中阴影部分面积是 .11.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且BC=6 cm ,AC=8 cm ,∠ABD=45°. (1)求BD 的长;(2)求图中阴影部分的面积.易错点 忽视题中条件12.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25 cm ,贴纸部分的宽BD 为15 cm.若纸扇两面贴纸,则贴纸的面积为 cm 2.中档题13.如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB=12,∠C=60°,则FE ︵的长为( )A.π3B.π2 C .Π D .2π14.如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是(C)A .(10π-923)米2B .(π-923)米2C .(6π-923)米2D .(6π-93)米15.如图,在△ABC 中,∠B=30°,∠C=45°,AD 是BC 边上的高,AB=4 cm ,分别以B ,C为圆心,以BD ,CD 为半径画弧,交边AB ,AC 于点E ,F ,则图中阴影部分面积是 cm 2.16.图1是以AB 为直径的半圆形纸片,AB=6 cm ,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 方向平移至扇形O ′A ′C ′,如图2,其中O ′是OB 的中点,O ′C ′交BC ︵于点F ,则BF ︵的长为 cm.17.如图1,正方形ABCD 是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图2的程序移动. (1)请在图1中画出光点P 经过的路径; (2)求光点P 经过的路径总长(结果保留π).18.如图,已知PA为⊙O的切线,A为切点,B为⊙O上一点,∠AOB=120°,过点B作BC ⊥PA于点C,BC交⊙O于点D,连接AB,AD.(1)求证:OD平分∠AOB;(2)若OA=2 cm,求阴影部分的面积.综合题19.“莱洛三角形”是一种等宽曲线,在游标卡尺上,它在任何方向上的宽度都相等,其构造方法是分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到的封闭图形就是莱洛三角形,如图1.莱洛三角形在日常生活中有广泛的应用,如汽车发动机就有莱洛三角形,如图2,若图1中等边三角形的边长是2,则该莱洛三角形的周长是2π.第2课时 圆锥的侧面积和全面积基础题知识点1 圆柱的侧面积与全面积1.圆柱形水桶底面周长为3.2π m ,高为0.6 m ,它的侧面积是( )A .1.536π m 2B .1.92π m 2C .0.96π m 2D .2.56π m 22.一个圆柱的底面直径为6 cm ,高为10 cm ,则这个圆柱全面积是 cm 2(结果保留π). 知识点2 圆锥的侧面积与全面积3.已知圆锥的底面半径为4 cm ,母线长为6 cm ,则它的侧面展开图的面积等于( )A .24 cm 2B .48 cm 2C .24π cm 2D .12π cm 24.已知一个圆锥的侧面积是底面积的2倍,圆锥母线长为2,则圆锥底面半径是( ) A.12 B .1 C. 2 D.325.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为( ) A .1.5 B .2 C .2.5 D .36.如图,圆锥的底面半径r=3,高h=4,则圆锥的侧面积是( )A .12πB .15πC .24πD .30π7.一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是( ) A .120° B .180° C .240° D .300° 8.若一个圆锥的底面圆半径为3 cm ,其侧面展开图圆心角为120°,则圆锥母线长是 cm. 9.如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,已知圆锥的高h 为12 cm ,OA=13 cm ,则扇形AOC 中AC ︵的长是 cm.(结果保留π)10.如图,已知圆锥的高为3,高所在直线与母线的夹角为30°,则圆锥侧面积为 .11.已知圆锥的侧面展开图是一个半径为12 cm,弧长为12π cm的扇形,求这个圆锥的侧面积及高.易错点考虑不全面导致漏解12.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为.中档题13.如图,Rt△ABC中,∠B=90°,AB=2,BC=1,把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则( )A.l1∶l2=1∶2,S1∶S2=1∶2B.l1∶l2=1∶4,S1∶S2=1∶2C.l1∶l2=1∶2,S1∶S2=1∶4D.l1∶l2=1∶4,S1∶S2=1∶414.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8 cm,圆柱体部分的高BC=6 cm,圆锥体部分的高CD=3 cm,则这个陀螺的表面积是( )A.68π cm2 B.74π cm2 C.84π cm2 D.100π cm215.如图,从一张腰长为60 cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )A.10 cm B.15 cmC.10 3 cm D.20 2 cm16.一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为 cm2.17.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC围成一个圆锥的侧面,则这个圆锥底面圆的半径是.18.如图,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为 (结果保留π).19.如图,有一直径是1米的圆形铁皮,圆心为O,要从中剪出一个圆心角是120°的扇形ABC,求:(1)被剪掉阴影部分的面积;(2)若用所留的扇形ABC铁皮围成一个圆锥,该圆锥底面圆的半径是多少?综合题20.如图1,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的邻边(即腰AB 或AC)与对边(即底边BC)的比值也就确定了,我们把这个比值记作T(A),即T(A)=∠A 的对边(底边)∠A 的邻边(腰)=BCAC,当∠A=60°时,如T(60°)=1. (1)理解巩固:T(90°)= ,T(120°)= ,T(A)的取值范围是 ;(2)学以致用:如图2,圆锥的母线长为18,底面直径PQ=14,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长.(精确到0.1,参考数据:T(140°)≈0.53,T(70°)≈0.87,T(35°)≈1.66)参考答案基础题知识点1 弧长公式及应用1.(岳阳中考)已知扇形的圆心角为60°,半径为1,则扇形的弧长为(D) A.π2 B .π C.π6 D.π3 2.(衡阳中考)圆心角为120°,弧长为12π的扇形的半径为(C)A .6B .9C .18D .36 3.(自贡中考)一个扇形的半径为8 cm ,弧长为163π cm ,则扇形的圆心角为(B)A .60°B .120°C .150°D .180° 4.(兰州中考)如图,用一个半径为5 cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了(C) A .π cm B .2π cm C .3π cm D .5π cm5.(南宁中考)如图,⊙O 是△ABC 的外接圆,BC=2,∠BAC=30°,则劣弧BC ︵的长等于(A) A.2π3 B.π3 C.23π3 D.3π3知识点2 扇形的面积公式及应用6.(宜宾中考)半径为6,圆心角为120°的扇形的面积是(D) A .3π B .6π C .9π D .12π7.(维吾尔中考)一个扇形的圆心角是120°,面积是3π cm 2,那么这个扇形的半径是(B) A .1 cm B .3 cm C .6 cm D .9 cm8.(怀化中考)已知扇形的半径为6 cm ,面积为10π cm 2,则该扇形的弧长等于10π3__cm . 9.(广西中考)一个扇形的半径为3 cm ,面积为π cm 2,则此扇形的圆心角为40度.10.(常德中考)如图,△ABC 是⊙O 的内接正三角形,⊙O 的半径为3,则图中阴影部分的面积是3π. 11.(无锡中考)如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且BC=6 cm ,AC=8 cm ,∠ABD=45°. (1)求BD 的长;(2)求图中阴影部分的面积.解:(1)∵AB 是⊙O 的直径, ∴∠C=90°,∠BDA=90°. ∵BC=6 cm ,AC=8 cm , ∴AB=62+82=10(cm). ∵∠ABD=45°.∴△ABD 是等腰直角三角形. ∴BD=AD=22AB=5 2 cm. (2)连接DO ,∵△ABD 是等腰直角三角形,OB=OA , ∴∠BOD=90°. ∵AB=10 cm , ∴OB=OD=5 cm.∴S 阴影=S 扇形OBD -S △BOD =90π×52360-12×52=(25π4-252)cm 2.易错点 忽视题中条件12.(教材P116习题T8变式)如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25 cm ,贴纸部分的宽BD 为15 cm.若纸扇两面贴纸,则贴纸的面积为350πcm 2. 02 中档题13.(山西中考)如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB=12,∠C=60°,则FE ︵的长为(C)A.π3B.π2C .ΠD .2π14.(山西中考)如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是(C)A .(10π-923)米2B .(π-923)米2 C .(6π-923)米2 D .(6π-93)米15.(盘锦中考)如图,在△ABC 中,∠B=30°,∠C=45°,AD 是BC 边上的高,AB=4 cm ,分别以B ,C 为圆心,以BD ,CD 为半径画弧,交边AB ,AC 于点E ,F ,则图中阴影部分的面积是(23+2-32π) cm 2.16.(山西中考)图1是以AB 为直径的半圆形纸片,AB=6 cm ,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 方向平移至扇形O ′A ′C ′,如图2,其中O ′是OB 的中点,O ′C ′交BC ︵于点F ,则BF ︵的长为π cm.17.如图1,正方形ABCD 是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图2的程序移动.(1)请在图1中画出光点P 经过的路径;(2)求光点P 经过的路径总长(结果保留π).解:(1)如图.(2)光点P 经过的路径总长为4×90π×3180=6π.18.(山西中考适应性考试)如图,已知PA 为⊙O 的切线,A 为切点,B 为⊙O 上一点,∠AOB=120°,过点B 作BC ⊥PA 于点C ,BC 交⊙O 于点D ,连接AB ,AD.(1)求证:OD 平分∠AOB ;(2)若OA=2 cm ,求阴影部分的面积.解:(1)证明:∵PA 为⊙O 的切线,∴OA ⊥PA.∵BC ⊥PA ,∴∠OAP=∠BCA=90°.∴OA ∥BC.∴∠AOB +OBC=180°.∵∠AOB=120°,∴∠OBC=60°.∵OB=OD ,∴△OBD 是等边三角形.∴∠BOD=60°.∴∠AOD=∠BOD=60°.∴OD 平分∠AOB.(2)∵OA ∥BC ,∴点O 和点A 到BD 的距离相等.∴S △ABD =S △OBD .∴S 阴影=S 扇形OBD .∴S 阴影=60π×4360=23π(cm 2).03 综合题19.(山西中考命题专家原创)“莱洛三角形”是一种等宽曲线,在游标卡尺上,它在任何方向上的宽度都相等,其构造方法是分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到的封闭图形就是莱洛三角形,如图1.莱洛三角形在日常生活中有广泛的应用,如汽车发动机就有莱洛三角形,如图2,若图1中等边三角形的边长是2,则该莱洛三角形的周长是2π.第2课时 圆锥的侧面积和全面积01 基础题知识点1 圆柱的侧面积与全面积1.圆柱形水桶底面周长为3.2π m ,高为0.6 m ,它的侧面积是(B)A .1.536π m 2B .1.92π m 2C .0.96π m 2D .2.56π m 22.(来宾中考)一个圆柱的底面直径为6 cm ,高为10 cm ,则这个圆柱的全面积是78πcm 2(结果保留π).知识点2 圆锥的侧面积与全面积3.(无锡中考)已知圆锥的底面半径为4 cm ,母线长为6 cm ,则它的侧面展开图的面积等于(C)A .24 cm 2B .48 cm 2C .24π cm 2D .12π cm 24.(德阳中考)已知一个圆锥的侧面积是底面积的2倍,圆锥母线长为2,则圆锥的底面半径是(B)A.12B .1 C. 2 D.325.(嘉兴中考)一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为(D)A .1.5B .2C .2.5D .36.(宁夏中考)如图,圆锥的底面半径r=3,高h=4,则圆锥的侧面积是(B)A .12πB .15πC .24πD .30π7.(齐齐哈尔中考)一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是(A) A .120° B .180°C .240°D .300°8.(孝感中考)若一个圆锥的底面圆半径为3 cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是9cm.9.(广东中考)如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,已知圆锥的高h 为12 cm ,OA=13 cm ,则扇形AOC 中AC ︵的长是10πcm.(结果保留π)10.(聊城中考)如图,已知圆锥的高为3,高所在直线与母线的夹角为30°,则圆锥的侧面积为2π.11.已知圆锥的侧面展开图是一个半径为12 cm ,弧长为12π cm 的扇形,求这个圆锥的侧面积及高.解:侧面积为:12×12×12π=72π(cm 2). 设底面半径为r ,则有2πr=12π,∴r=6 cm.由于高、母线、底面半径恰好构成直角三角形,根据勾股定理可得,高为122-62=63(cm).易错点 考虑不全面导致漏解12.(黄冈中考)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为π或4π.02 中档题13.(杭州中考)如图,Rt △ABC 中,∠B=90°,AB=2,BC=1,把△ABC 分别绕直线AB 和BC 旋转一周,所得几何体的底面圆的周长分别记作l 1,l 2,侧面积分别记作S 1,S 2,则(A)A .l 1∶l 2=1∶2,S 1∶S 2=1∶2B .l 1∶l 2=1∶4,S 1∶S 2=1∶2C .l 1∶l 2=1∶2,S 1∶S 2=1∶4D .l 1∶l 2=1∶4,S 1∶S 2=1∶414.(绵阳中考)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8 cm ,圆柱体部分的高BC=6 cm ,圆锥体部分的高CD=3 cm ,则这个陀螺的表面积是(C)A .68π cm 2B .74π cm 2C .84π cm 2D .100π cm 215.(十堰中考)如图,从一张腰长为60 cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为(D)A .10 cmB .15 cmC .10 3 cmD .20 2 cm16.(恩施中考)一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为15πcm 2.17.(苏州中考)如图,AB 是⊙O 的直径,AC 是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC 围成一个圆锥的侧面,则这个圆锥底面圆的半径是12.18.如图,Rt △ABC 中,∠ACB=90°,AC=BC=22,若把Rt △ABC 绕边AB 所在直线旋转一周,则所得几何体的表面积为82π(结果保留π).19.如图,有一直径是1米的圆形铁皮,圆心为O ,要从中剪出一个圆心角是120°的扇形ABC ,求:(1)被剪掉阴影部分的面积;(2)若用所留的扇形ABC 铁皮围成一个圆锥,该圆锥底面圆的半径是多少?解:(1)连接OA ,OB.由∠BAC=120°,可知AB=12米,点O 在扇形ABC 的BC ︵上. ∴扇形ABC 的面积为120360π×(12)2=π12(平方米). ∴被剪掉阴影部分的面积为π×(12)2-π12=π6(平方米). (2)由2πr=120180π×12,得r=16. 即圆锥底面圆的半径是16米. 03 综合题20.如图1,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的邻边(即腰AB 或AC)与对边(即底边BC)的比值也就确定了,我们把这个比值记作T(A),即T(A)=∠A 的对边(底边)∠A 的邻边(腰)=BC AC,当∠A=60°时,如T(60°)=1. (1)理解巩固:T(90°)=2,T(120°)=3,T(A)的取值范围是0<T(A)<2;(2)学以致用:如图2,圆锥的母线长为18,底面直径PQ=14,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长.(精确到0.1,参考数据:T(140°)≈0.53,T(70°)≈0.87,T(35°)≈1.66)解:∵圆锥的底面直径PQ=14,∴圆锥的底面周长为14π,即侧面展开图扇形的弧长为14π.设扇形的圆心角为n°,则n×π×18180=14π,解得n=140.∵T(70°)≈0.87,∴蚂蚁爬行的最短路径长为0.87×18≈15.7.。
人教版九年级数学上册《24.4 弧长和扇形面积》练习题-附参考答案一、选择题1.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A.12πB.21πC.27πD.36π2.如图,⊙O的半径为3,AB为弦,若∠ABC=30°,则AC⌢的长为()A.πB.1 C.1.5 D.1.5π3.如图,将边长为3的正方形铁丝框ABCD,变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ADB的面积为()A.3 B.6 C.9 D.3π4.如图,分别以等边三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若等边三角形边长为3cm,则该莱洛三角形的周长为()A.2πB.9 C.3πD.6π5.如图,四边形OABC为菱形,∠AOC=120°,点B、C在以点O为圆心的EF⌢上,若OA=1,∠1=∠2,则扇形OEF的面积为()A.π6B.π4C.π3D.2π36.如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,BC为半径作圆弧BD,再分别以E,F为圆心,BE为半径作圆弧BO,OD,则图中阴影部分的面积为()A.π−1B.π−3C.π−2D.4−π7.如图,四边形ABCD是半径为2的⊙O的内接四边形,连接OA,OC.若∠AOC:∠ABC=4:3,则AC⌢的长为()A.35πB.45πC.65πD.85π8.如图,以矩形ABCD的顶点A为圆心,AD长为半径画弧交边BC于点E,E恰为边BC的中点,AD=4 √3则图中阴影部分的面积为()A.18√3−8πB.18√3−4πC.24√3−8πD.12√6−6π二、填空题9.一个扇形的半径是3cm,圆心角是60°,则此扇形的面积是cm2.10.如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于.11.如图,半径为2的⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2√3,则阴影部分的面积为.⌢围成的图13.已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点,则弦AC,AD和CD形(图中阴影部分)的面积S是.三、解答题14.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1,以B为圆心,BA为半径画弧交CB的延长线于点D,求弧AD的长15.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2 √3 ,BF=2,求阴影部分的面积(结果保留π).16.如图,内接于,交于点,交于点,交于点,连接,CF .(1)求证:;(2)若的半径为,求的长结果保留.17.如图,已知AB 是O 的直径,点C 在O 上,D 为O 外一点,且90ADC ∠=︒ 2180B DAB ∠+∠=︒.(1)试说明:直线CD 为O 的切线;(2)若30,2B AD ∠=︒=求阴影部分的面积.1.C2.A3.C4.C5.C6.C7.D8.Aπ9.3210.2π11.8512.2π313.6πcm214.解:∵在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1 ∴AB=2BC=2,∠ABC=90°-∠BAC=60°∴∠ABD=180°-∠ABC=120°∴弧AD=故答案为.15.(1)解:BC与⊙O相切.理由如下:连接OD.∵AD是∠BAC的平分线∴∠BAD=∠CAD.∴∠OAD=∠ODA∴∠CAD=∠ODA∴OD ∥AC∴∠ODB=∠C=90°即OD ⊥BC .又∵BC 过半径OD 的外端点D∴BC 与⊙O 相切;(2)解:设OF=OD=x ,则OB=OF+BF=x+2. 根据勾股定理得: OB 2=OD 2+BD 2 即 (x +2)2=x 2+12 ,解得:x=2 即OD=OF=2∴OB=2+2=4.在Rt △ODB 中,∵OD= 12 OB∴∠B=30°∴∠DOB=60°∴S 扇形DOF = 60π×4360 = 2π3 ,则阴影部分的面积为S △ODB ﹣S 扇形DOF = 12×2×2√3−2π3 = 2√3−2π3 . 故阴影部分的面积为 2√3−2π3 . 16.(1)证明:四边形是平行四边形.(2)解:连接由得∴的长. 17.(1)解:如图,连接OC OB OC =OCB B ∴∠=∠2AOC OCB B B ∴∠=∠+∠=∠2180B DAB ∠+∠=︒180AOC DAB ∴∠+∠=︒.OC AD ∴∥90ADC ∠=︒18090OCD ADC ∴∠=︒-∠=︒即CD OC ⊥,又OC 是O 的半径 ∴直线CD 为O 的切线.(2)如图,连接AC ,作OE BC ⊥,垂足为E ,则2BC BE = 30B ∠=︒260AOC B ∴∠=∠=︒OA OC =OAC ∴是等边三角形60OCA ∴∠=︒906030ACD ∴∠=︒-︒=︒ 12AD AC ∴= 2AD =4AC ∴=,即O 的半径为4 OE BC ⊥BE CE ∴=30,4B OB ∠=︒=2OE ∴=22224223BE OB OE ∴=-=-= 43BC ∴=1432BOC S BC OE ∴=⋅⋅=△ 30,B OB OC ∠=︒=120BOC ∴∠=︒2OBC 12041643433603OBC S S S ππ⨯⨯∴=-=-=-阴影扇△.。
《24.4 弧长和扇形面积》一、选择题1.如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()A.40° B.45° C.60° D.80°2.如图,已知?ABCD的对角线BD=4cm,将?ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()A.4π cm B.3π cm C.2π cm D.π cm3.如图,以等腰直角△ABC两锐角顶点A、B为圆心作等圆,⊙A与⊙B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为()A.B.C.D.4.钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是()A.π B.π C.π D.π5.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A.B.C.D.π6.如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为()A.B.C.π+1 D.7.如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A.B.C.D.8.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A.B.C.D.二、填空题9.如图是李大妈跳舞用的扇子,这个扇形AOB的圆心角∠O=120°,半径OA=3,则弧AB的长度为______(结果保留π).。
人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)基础巩固1.⊙的内接多边形周长为3 ,⊙的外切多边形周长为3.4, 则下列各数中与此圆的周长最接近的是( )AB. D2.如图已知扇形的半径为6cm ,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A .B .C .D .3.若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是A .40°B .80°C .120°D .150°4.艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8 米,所对的圆心角为100°,则弧长是 米.(π≈3) 【参考答案】 1. C 2. D 3. C 4. 3O O 10AOB 120°24πcm 26πcm 29πcm 212πcm 120 BOA6cm能力提高 一、选择题1.如图,已知的半径,,则所对的弧的长为( ) A .B .C .D .2.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( )A .10cmB .30cmC .40cmD .300cm3.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ) A .1.5B .2C .3D .64.有30%圆周的一个扇形彩纸片,该扇形的半径为40cm ,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( ).A.9°B.18°C.63°D.72°5.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图所示),则sin θ的值为( )A.B. C. D. O ⊙6OA =90AOB ∠=°AOB ∠AB 2π3π6π12π125135131013126.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径高则这个圆锥漏斗的侧面积是( ) A . B . C . D .二、填空题1.,圆心角等于450的扇形AOB 内部作一个正方形CDEF ,使点C 在OA上,点D .E 在OB 上,点F 在上,则阴影部分的面积为(结果保留) .2.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为 (结果保留).3.将一块含30°角的三角尺绕较长直角边旋转一周得一圆锥,这个圆锥的高是3,则圆锥的侧面积是____.4.如图,三角板中,,,.三角板绕直角顶点逆时针旋转,当点的对应点落在边的起始位置上时即停止转动,则点转过的路径长为 .6cm OB =,8cm OC =.230cm 230cm π260cm π2120cm AB ππABC ︒=∠90ACB ︒=∠30B 6=BC C A 'A AB B 第2题图5.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留).6.矩形ABCD的边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置时(如图所示),则顶点A 所经过的路线长是_________.7.已知在△ABC 中,AB=6,AC=8,∠A=90°,把Rt△ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为,把Rt△ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为,则:等于_________ 三、解答题1.如图,有一个圆O 和两个正六边形,.的6个顶点都在圆周上,的6条边都和圆O 相切(我们称,分别为圆O 的内接正六边形和外切正六边形).(1)设,的边长分别为,,圆O 的半径为,求及的值; (2)求正六边形,的面积比的值.π1111A B C D 1S 2S 1S 2S 1T 2T 1T 2T 1T 2T 1T 2T a b r a r :b r :1T 2T 21:S SB 'A CAB 第4题2.如图,圆心角都是90º的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD .(1)求证:AC=BD ; (2)若图中阴影部分的面积是,OA=2cm ,求OC 的长.3.如图,已知菱形的边长为,两点在扇形的上,求的长度及扇形的面积.2 43cm ABCD 1.5cm B C ,AEF ABCBCD AEF【参考答案】 选择题 1. B 2. A3. C4. B5. A6. C 填空题 1.2. 3. 18π 4. 5. 6. 7. 2∶3 解答题1.解:(1)连接圆心O 和T 的6个顶点可得6个全等的正三角形 .所以r∶a=1∶1;连接圆心O 和T 相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r∶b=∶2;(2) T ∶T 的连长比是∶2,所以S ∶S = . 2. (1)证明:2385-π∏83π22ππ24123123124:3):(2=b a(2)根据题意得:;∴ 解得:OC =1cm .3. 解:四边形是菱形且边长为1.5,.又两点在扇形的上,,是等边三角形..的长(cm )BDAC BOD AOC DO CO BO AB BOD AOC AODBOD AOD AOC COD AOB =⇒∆≅∆⇒⎪⎭⎪⎬⎫==∠=∠⇒∠+∠=∠+∠⇒∠∠ 900==360)(9036090360902222OC OA OC OA S -=-=πππ阴影360)2(904322OC -=ππABCD 1.5AB BC ∴==B C 、AEF 1.5AB BC AC ∴===ABC ∴△60BAC ∴∠=°21805.160ππ=∙=ππ835.122121=∙∙==lR S ABC 扇形)(2cm。
ED6题CBAC 71()题B AC 72()题B ACE D 8题BAEC D10题BA《弧长及扇形面积》练习题1.如图是排水管的横截面,此管道的半径为54㎝,水面以上部分的弓形的弧长为30π㎝,则这段弓形弧所对的圆心角度数为 。
2.阴影部分是某广告标志,已知两弧所在圆的半径为20cm 和10cm,∠AOB=120°,则S 阴= .3.某种商标图案如图所示(阴影部分),已知菱形ABCD 的边长为4,∠A=60°,是以A 为圆心,AB 长为半径的弧,是以B 为圆心,BC 长为半径的弧,则该商标图案的面积为 。
4.如图,四边形OABC 为菱形,点B ,C 在以O 为圆心的上,若OA=3,∠1=∠2,则S 扇形OEF = 。
5.如图,⊙O 2与⊙O 3外切于点C,⊙O 1分别与⊙O 2、⊙O 3内切于A 、B,若⊙O 1的半径为6,⊙O 2、⊙O 3的半径为2,则图中阴影部分的周界长为 ,阴影部分的面积为 。
6.如图,△ABC 中,∠C=90°,AB=12㎝,∠ABC=60°,将△ABC 以点B 为中心顺时针旋转,使点C 旋转到AB 边上的点D 处,则AC 边扫过的图形(阴影部分) 的面积为 。
7.如图,Rt △ABC 中,∠C=90°,AC=3,BC=4,①若⊙C 与AB 相切,则图中阴影部分的面积为 。
②若⊙O 与三角形的三边都相切,则图中阴影部分的面积为 。
8.如图,Rt △ABC 中,∠C=90°,∠A=30°,BC=4,分别以A 、B 为圆心,AC 、BC 长为半径画弧交AB 于D 、E ,则阴影部分的面积为 。
9.如图,矩形ABCD 中,AB=2,BC=2 3 ,以BC 中点E 为圆心,作 切AD 于点H ,与AB 、CD交于M 、N ,则阴影部分的面积为 。
10.如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE ,则五个扇形的面积之和为 。
苏科新版九年级上册《2.7弧长及扇形的面积》2024年同步练习卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若扇形的圆心角为,半径为6,则该扇形的弧长为()A.B.C.D.2.一个圆中有三个扇形甲、乙、丙,其中甲、乙所占总面积的百分比如图所示,那么扇形丙的圆心角是() A. B.C.D.3.如图,在中,,,以BC 为直径作半圆,交AB 于点D ,则阴影部分的面积是()A. B.C.D.24.如图,半圆O 的直径,将半圆O 绕点B 顺针旋转得到半圆,与AB 交于点P ,则图中阴影部分的面积为() A. B. C. D.5.如图,半径为10的扇形AOB 中,,C 为弧AB 上一点,,,垂足分别为D ,若图中阴影部分的面积为,则()A. B. C.D.6.如图,将半径为2cm的圆形纸片翻折,使得、恰好都经过圆心O,折痕为AB、BC,则阴影部分的面积为()A.B.C.D.二、填空题:本题共6小题,每小题3分,共18分。
7.在圆心角为的扇形AOB中,半径,则扇形OAB的面积为______.8.如图,的半径为2,点A,C在上,线段BD经过圆心O,,,,则图中阴影部分的面积为_______.9.如图,图1是由若干个相同的图形图组成的美丽图案的一部分,图2中,图形的相关数据:半径,则图2的周长为______结果保留10.如图,矩形ABCD的四个顶点分别在扇形OEF的半径和弧上,若,,,则AB的长为______.11.如图,半圆O中,直径,弦,长为,则由与AC,AD围成的阴影部分面积为______.12.如图,的半径为5,A、B是圆上任意两点,且,以AB为边作正方形点D、P在直线AB两侧若AB边绕点P旋转一周,则对角线BD边扫过的面积为______.三、解答题:本题共4小题,共32分。
解答应写出文字说明,证明过程或演算步骤。
13.本小题8分如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为,AB长为30cm,贴纸部分的宽BD为20cm,求贴纸部分的面积纸扇有两面,结果精确到14.本小题8分如图,已知在中,,,,半径为2的分别与AC、BC相切于点E、求证:AB是的切线;求的度数,写出图中阴影部分的面积.15.本小题8分如图,D是等边内的一点,将线段AD绕点A顺时针旋转得到线段AE和扇形EAD,连接CD、BE、若,求阴影部分的面积;结果保留根号和若,求的度数.16.本小题8分如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,,AD、BC的延长线相交于点求证:AD是半圆O的切线;连结CD,求证:答案和解析1.【答案】C【解析】解:该扇形的弧长故选:根据弧长公式计算.本题考查了弧长的计算:弧长公式:弧长为l,圆心角度数为n,圆的半径为2.【答案】B【解析】解:,故选:根据扇形统计图的意义可得,扇形丙的圆心角占的,计算即可得答案.本题考查认识平面图形,掌握扇形统计图的意义是正确解答的前提.3.【答案】D【解析】解:连接CD,是半圆的直径,,在中,,,是等腰直角三角形,,阴影部分的面积,故选:连接CD,根据圆周角定理得到,推出是等腰直角三角形,得到,根据三角形的面积公式即可得到结论.本题考查了扇形的面积的计算,等腰直角三角形的性质,正确的作出辅助线是解题的关键.4.【答案】A【解析】解:由已知可得,,,弓形PB的面积是:,阴影部分的面积是:,故选:根据题意和扇形面积计算公式、三角形的面积公式,可以计算出图中阴影部分的面积,本题得以解决.本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.5.【答案】B【解析】解:连接OC,,,,四边形CDOE是矩形,,在与中,,≌,图中阴影部分的面积=扇形OBC的面积,,,,≌,,,,故选:连接OC,易证得四边形CDOE是矩形,则≌,得到图中阴影部分的面积=扇形OBC的面积,利用扇形的面积公式即可求得,然后根据求得三角形的性质以及平行线的性质即可求得本题考查了扇形的面积,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC的面积等于阴影的面积是解题的关键.6.【答案】C【解析】解:作于点D,连接AO,BO,CO,如图所示:,,同理,,阴影部分的面积面积;故选:作于点D,连接AO,BO,CO,求出,得到,进而求得,再利用阴影部分的面积得出阴影部分的面积是面积的,即可得出结果.本题主要考查了翻折变换的性质、扇形面积以及圆的面积公式等知识;解题的关键是确定7.【答案】【解析】解:圆心角为的扇形AOB中,半径,扇形OAB的面积,故答案为:根据扇形的面积公式即可得到结论.别人看出来扇形的面积的计算,熟练掌握扇形的面积公式是解题的关键.8.【答案】【解析】【分析】本题考查了全等三角形的判定、解直角三角以及扇形的面积公式,解题的关键是找出本题属于基础题,难度不大,解决该题型题目时,根据拆补法将不规则的图形变成规则的图形,再套用规则图形的面积公式进行计算即可.通过解直角三角形可求出,,从而可求出,再通过证三角形全等找出,套入扇形的面积公式即可得出结论.【解答】解:在中,,,,,,同理,可得出:,在和中,有,≌故答案为9.【答案】【解析】解:由图1得:的长的长的长半径,则图2的周长为:,故答案为:先根据图1确定:图2的周长个的长,根据弧长公式可得结论.本题考查了弧长公式的计算,根据图形特点确定各弧之间的关系是本题的关键.10.【答案】2【解析】解:如图,连接OD,,,,,四边形ABCD是矩形,,,在中,,,,,在中,根据勾股定理,得,,解得,故答案为:连接OD,可得,根据已知可得,根据四边形ABCD是矩形,可得,,再根据含30度角的直角三角形可得,根据勾股定理即可求出OB的长,进而可得AB的长.本题考查了矩形的性质,含30度角的直角三角形,勾股定理,解决本题的关键是连接OD得到11.【答案】【解析】解:连接OC,OD,直径,,,,长为,阴影部分的面积为,故答案为:连接OC,OD,根据同底等高可知,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式来求解.本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.12.【答案】【解析】解:连接PD,过点P作与点E,PE交AB于点F,则BD边扫过的面积为以PD为外圆半径、PB为内圆半径的圆环面积,如图所示,,又为的弦,,,在中,易知,,,,,在中,,边扫过的面积为故答案为:连接PD,过点P作与点E,PE交AB于点F,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,利用垂径定理即可得出,进而可得出,再根据圆环的面积公式结合勾股定理即可得出BD边扫过的面积.本题考查了垂径定理、勾股定理、平行线的性质以及圆环的面积公式,结合AB边的旋转,找出BD边旋转过程中扫过区域的形状是关键.13.【答案】解:答:贴纸部分的面积为【解析】扇形面积公式可计算出两个扇形的面积,然后相减即可得.主要考查了扇环的面积求法.一般情况下是让大扇形的面积减去小扇形的面积求扇环面积.14.【答案】证明:连接OE、OD,过点O作,垂足为M,与AC,BC相切于点E、D,,,,,,,,,,,又,是的切线;,,,,、OB分别是、的角平分线,,,,,,,,图中阴影部分的面积为:【解析】根据已知分别与AC、BC相切于点E、D,想到连接OD,OE,可得,要证明AB是的切线,想到过点O作,垂足为M,只要求出即可,然后通过面积法进行计算即可解答;由得,,,,从而可得OA、OB分别是、的角平分线,即可求出的度数,最后利用的面积减去扇形的面积进行计算即可解答.本题考查了切线的判定与性质,勾股定理,扇形面积的计算,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.15.【答案】解:,,是等边三角形,,;是等边三角形,,,线段AD绕点A顺时针旋转,得到线段AE,,,,,在和中,,≌,,,,为等边三角形,,【解析】利用扇形面积公式和三角形面积公式求得即可;由SAS证≌可得,证为等边三角形,则,继而得出答案.本题主要考查扇形面积的计算,旋转的性质,等边三角形的性质和全等三角形的判定与性质等知识;熟练掌握旋转的性质,证得三角形的全等是解题的关键.16.【答案】解:连结OD,BD,是的切线,,即,,,,,,,是半圆O的切线.由知,,,是半圆O的切线,,,是的直径,,,,,,【解析】连接OD,BD,根据圆周角定理得到,根据等腰三角形的性质得到,,根据等式的性质得到,根据切线的判定定理即可得到即可;由AD是半圆O的切线得到,于是得到,根据圆周角定理得到,等量代换得到,即可得到结论.本题考查了切线是性质,弧长的计算,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.。
苏科版九年级数学上册 《弧长及扇形的面积》课时练习一、选择题1.若扇形的半径为6,圆心角为120°,则此扇形的弧长是( )A.3πB.4πC.5πD.6π2.如图,PA 、PB 是⊙O 切线,切点分别为A 、B,若OA=2,∠P=60°,则长为( )A.πB.πC.D.3.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于90°,则R 与r 之间的关系是( ).A.R=2rB.r R 3=C.R=3rD.R=4r4.钟表的轴心到分针针端的长为5cm ,那么经过40分钟,分针针端转过的弧长是( ) A.103πcm B.203πcm C.253πcm D.503πcm 5.如图,AB 为⊙O 的直径,AB=6,AB ⊥弦CD,垂足为G,EF 切⊙O 于点B,∠A=30°,连接AD 、OC 、BC,下列结论不正确的是( )A.EFA.EF ∥CDB.△COB 是等边三角形C.CG=DGD.的长为π6.一个扇形的弧长是10π cm ,面积是60π cm 2,则此扇形的圆心角的度数是( )A.300°B.150°C.120°D.75°7.如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中∠AOB 为120°,OC 长为8cm ,CA 长为12cm ,则贴纸部分的面积为( )A.64πcm 2B.112πcm 2C.144πcm 2D.152πcm 28.如图,AB 为半圆的直径,且AB=4,半圆绕点B 顺时针旋转45°,点A 旋转到点A ′的位置,则图中阴影部分的面积为( ) A.π B.2π C.π2D.4π 9.如图,将△ABC 绕点C 按顺时针旋转60°得到△A ′B ′C,已知AC=6,BC=4,则线段AB 扫过图形面积为( )A.πB.πC.6πD.π10.如图,△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上一点,且∠EPF=40°,则圆中阴影部分的面积是( ).A.π49-B.8π49-C.4π89-D.8π89-二、填空题11.已知弧所对的圆心角为90°,半径是4,则弧长为 .12.已知一条弧的半径为9,弧长为8π,那么这条弧所对的圆心角为 .13.如图,点A、B、C在半径为9的⊙O上,弧AB的长为2π,则∠ACB的大小是.14.已知扇形的圆心角为120°,半径为2,则这个扇形的面积S扇形= .15.如图,⊙O的半径为2,点A,B在⊙O上,∠AOB=90°,则阴影部分面积为_______.16.如图,在Rt△OAB中,∠AOB=45°,AB=2,将Rt△OAB绕点O顺时针旋转90°得到Rt △OCD,则AB扫过的面积(图中阴影部分面积)为________.三、解答题17.如图,在△ABC中,∠ACB=90°,∠B=15°,以点C为圆心,CA长为半径的圆交AB于点D.若AC=6,求弧AD的长.18.如图,已知以线段AB为直径作半圆O1,以线段AO1为直径作半圆O2,半径O1C交半圆O2于D点.试比较与的长.19.如图,一扇形纸扇完全打开后,AB和AC的夹角为120°,AB长为25 cm,贴纸部分的宽BD为15 cm,求纸扇上贴纸部分的面积.20.如图,正方形ABCD的边长为2 cm,以边BC为直径作半圆O,点E在AB上,且AE=1.5 cm,连接DE.(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由.(2)求阴影部分的面积.答案1.B2.C3.D4.B5.D6.B7.B8.B.9.D10.B11.2π12.160°13.20°. 14.4315.π-216.π17.解:连接CD.∵AC=CD ,∴∠CAD=∠CDA.∵∠ACB=90°,∠B=15°,∴∠CAD=75°,∴∠ACD=30°. ∵AC=6,∴错误!的长度为错误!=π.18.解:的长等于的长. 19.解:∵AB=25 cm ,BD=15 cm ,∴AD=25-15=10(cm).∵S 扇形ABC =120π×252360=625π3(cm 2), S 扇形ADE =120π×102360=100π3(cm 2),∴贴纸部分的面积=625π3-100π3=175π(cm 2). 20.解:(1)DE 与半圆O 相切.证明:过点O 作OF ⊥DE ,垂足为F.在Rt △ADE 中,AD=2 cm ,AE=1.5 cm ,∴DE=2.5 cm.连接OE ,OD.由题意,知OB=OC=1 cm ,BE=AB -AE=0.5 cm.∵S 四边形BCDE =S △DOE +S △BOE +S △CDO ,∴12×(0.5+2)×2=12×2.5·OF +12×1×0.5+12×1×2, ∴OF=1 cm ,即OF 的长等于半圆O 的半径.又∵OF ⊥DE ,∴DE 与半圆O 相切.(2)阴影部分的面积=正方形ABCD 的面积-△ADE 的面积-半圆的面积=2×2-12×32×2-12×π×12=5-π2(cm 2). 即阴影部分的面积为5-π2cm 2.。
24.4 弧长和扇形面积内容提要1.在半径为r 的圆中,n ︒的圆心角所对的弧长为l ,扇形面积为S ,则有(1)2360180n n rl r ππ=⋅=; (2)2213603602n n r S r lr ππ=⋅==.2.圆锥的侧面展开图是扇形,这个扇形的半径是圆锥的母线长,弧长是圆锥底面圆的周长.3.圆锥的全面积是侧面扇形面积与底面圆的面积之和. 24.4.1 弧长和扇形面积基础训练1.在半径为9cm 的圆中,60︒的圆心角所对的弧长为cm. 2.若一个扇形的弧长为43π,半径为6,则此扇形的面积为.3.已知扇形的圆心角为150︒,它所对的弧长为20πcm ,则扇形的半径为cm ,扇形的面积是2cm .4.已知扇形的弧长是2πcm ,半径为12cm ,则这个扇形的圆心角( ) A .60︒B .45︒C .30︒D .20︒5.如图,一块边长为10cm 的正方形木板ABCD 在水平桌面上绕点D 按顺时针方向旋转到'''A B C D 的位置时,顶点B 从开始到结束所经过的路径长为( )A .20cmB .202cmC .10πcmD .52πcm6.如图所示,扇形AOB 的圆心角为120︒,半径为2,则图中阴影部分的面积为( ) A .433πB .4233π-C .433π D .43π7.如图,正方形ABCD中,分别以B,D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,求树叶图案的周长与面积.8.如图,在O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,BC=cm.∠=︒,弦6OC,30ADB(1)求BC的长度;(2)求图中阴影部分的面积.24.4.2圆锥的侧面积和全面积基础训练1.已知圆锥的底面直径为4,母线长为6,则它的侧面积为,全面积是.2.已知圆锥的母线长是10cm,侧面展开图的面积是2π,则这个圆锥的底面半径是60cmcm.3.小明要用圆心角为120︒,半径是27cm的扇形纸片卷成一个圆锥形纸帽,做成后这个纸帽的底面直径为cm(不计接缝部分,材料不剩余).4.若一个圆锥的底面积为4πcm ,高为42cm ,则该圆锥的侧面展开图的圆心角的度数是( ) A .40︒B .80︒C .120︒D .150︒5.如果一个圆锥的主观图是正三角形,则其侧面展开图的圆心角为( ) A .120︒B .156︒C .180︒D .208︒6.在ABC ∆中,90C ∠=︒,12AC =,5BC =,现在以AC 为轴旋转一周得到一个圆锥,则该圆锥的表面积为( ) A .130πB .90πC .25πD .65π7.如果圆锥的底面圆的半径是8,母线的长是15,求这个圆锥侧面展开图的扇形的圆心角的度数.8.如图,从直径为4cm 的圆形纸片中,剪出一个圆心角为90︒的扇形OAB ,且点O ,A ,B 在圆周上,把它围成一个圆锥,求圆锥的底面圆的半径.能力提高1.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,由凸轮的周长等于.2.如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动),那么小羊A 在草地上的最大活动区域面积( ) A .21712m π B .2176m π C .2254m π D .27712m π3.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm.母线()OE OF 长为10cm ,在母线OF 上的点A 处有一块爆米花残渣,且2FA =cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点,则此蚂蚁爬行的最短距离为cm.4.如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60︒的扇形ABC .那么剪下的扇形ABC (阴影部分)的面积为;用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r =.5.如图,四边形ABCD 是菱形,60A ∠=︒,2AB =,扇形BEF 的半径为2,圆心角为60︒,则图中阴影部分的面积是( ) A .233π B .233πC .3πD .3π6.若圆锥的侧面展开图为半圆,则该圆锥的母线l 与底面半径r 的关系是( ) A .2l r =B .3l r =C .l r =D .32l r =7.如图,矩形ABCD 中,4AB =,3BC =,边CD 在直线l 上,将矩形ABCD 沿直线l 作无滑动翻滚,当点A第一次翻滚到点1A的位置时,(1)画出点A经过的路线;(2)求出点A经过的路线长为多少?8.如图,P,C是以AB为直径的半圆O上的两点,10AB=,CP的长为52π,连接PB交AC于点M,线段MC与弦BC的长度相等吗?为什么?9.如图,在Rt ABC∆中,90C∠=︒,4AC=,2BC=,分别以AC,BC为直径画半圆,求图中阴影部分的面积(结果保留π).10.如图,已知O 的半径为4,CD 是O 的直径,AC 为O 的弦,B 为CD 的延长线上的一点,30ABC ∠=︒,且AB AC =. (1)求证:AB 为O 的切线; (2)求弦AC 的长; (3)求图中阴影部分的面积.内容提要1.如图,正三角形ABC 的边长为1cm ,将线段AC 绕点A 顺时针旋转120︒至1AP ,形成扇形1D ;将线段1BP 绕点B 顺时针旋转120︒至2BP ,形成扇形2D ;将线段2CP 绕点C 顺时针旋转120︒至3CP ,形成扇形3D ;将线段3AP 绕点A 顺时针旋转120︒至4AP ,形成扇形1D ……设n l 为扇形n D 的弧长()1,2,3,n =,回答下列问题: (1)按照要求填表:n1 2 3 4 n l(2n n D (设地球赤道半径为6400km )?2.在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面,他们首先设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切.)(1)请说明方案一不可行的理由;(2)判断方案二是否可行?若要行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.数学应用应用1当四边形ABCD的四个内角满足时,则过A,B,C,D四点能作一个圆.应用2如图,点M,N,C在O上,点A在O外,点B在O内,则A∠∠,B∠,MCN 三个角的大小关系是.应用3已知四边形ABCD,过顶点A,B,C三点作O.①若180∠+∠=︒,则点D在O.B D②若180∠+∠>︒,则点D在O.B D③若180B D∠+∠<︒,则点D在O.整理归纳1.在学习本章内容时,注意结合课本知识和生活周围的一些实例,以加深相关概念的认识,如:圆、圆周角、三角形的内心和外心、圆锥侧面展开图等.2.圆的轴对称性和旋转对称性是理解圆中各类性质与定理的基础,要学会用对称性来分析和解决问题.3.在解决与本章内容有关的问题时,转化思想有着广泛的应用.如:可以将判定点和圆、直线和圆的位置关系等转化为实数大小的比较问题;利用圆心角、弦、弧的关系将角、线段、弧线之间的等量关系进行转化;将不规则图形的计算转化成规则图形的计算等.4.学习中注意前后知识之间的联系,及与其他章节知识的联系,形成综合运用知识的能力.如:利用圆周角和圆心角的关系,寻找(或构造)直角三角形,利用直角三角形的相关知识解决问题;根据圆锥的侧面展开图是扇形的特点,利用扇形的相关计算公式解决问题.5.注意分类讨论,避免答案不全.如:探索圆周角和圆心角的关系时分三种情况;两圆相切时,有内切和外切两种情形等.数学实践圆在凸多边形上无滑动滚动时圆心运动轨迹的研究广州一中实验学校初三实验2班梁家瑜指导老师罗小颖在一次测验中,有下面一道题:半径为R的圆在边长为a的正三角形的边上无滑动滚动一周,求圆心所经过的路程长为多少?当时,我忽略了圆在三角形的角上运动时圆心运动轨迹的特点,所以没有做对,该题答案是圆心运动所经过的路程的长等于等边三角形的周长与圆的周长的和.于是我猜想,圆在一般的三角形中无滑动滚动有没有特殊规律呢?为此我对圆在三角形上无滑动滚动时圆心的运动轨迹作了探讨.1.圆在三角形的边上无滑动滚动时,圆心轨迹如图1.圆心所经过的路程的长为IH ID DE EF FG GH +++++,其中四边形IACH ,DEBA ,FBCG 为矩形,所以IH CA =,DE AB =,GF BC =,3609090180IAD CAB CAB ∠=︒-︒-︒-∠=︒-∠, 3609090180HCG ACB ACB ∠=︒-︒-︒-∠=︒-∠,3609090180FBE ABC ABC ∠=︒-︒-︒-∠=︒-∠.设圆的半径为R ,根据弧长定理得1802360BAC ID R π︒-∠=⋅︒,1802360ABC EF R π︒-∠=⋅︒,1802360ACBHG R π︒-∠=⋅︒.所以()2180180180360RID EF HG BAC ACB ABC π++=⋅︒-∠+︒-∠+︒-∠︒. 因为180BAC ABC ACB ∠+∠+∠=︒, 所以()21801801801802360RID EF HG R ππ++=⋅︒+︒+︒-︒=︒. 由此可以发现,三段弧的长度之和恰好等于圆的周长.所以圆在三角形ABC 边上无滑动滚动时,圆心的运动轨迹的长度为AB AC BC C +++圆.因为AB BC CA C ++=三角形,设圆心轨迹长度为S ,则有S C C =+圆 三角形. 因此圆在一般三角形上的无滑动滚动时,圆心所经过的路程的长也符合圆在等边三角形边上无滑动滚动的规律,既然如此,那么圆在一般四边形中无滑动滚动又有什么规律呢?2.圆在四边形的边上无滑动滚动时,圆心轨迹如图2.圆心所经过的路程的长为EF FG GH HI IJ JK KL LE +++++++.3609090180KDJ CDA CDA ∠=︒-︒-︒-∠=︒-∠, 3609090180LAE DAB DAB ∠=︒-︒-︒-∠=︒-∠, 3609090180FBG ABC ABC ∠=︒-︒-︒-∠=︒-∠, 3609090180ICH BCD BCD ∠=︒-︒-︒-∠=︒-∠.设圆的半径为R ,根据弧长定理得1802360ABC FG R π︒-∠=⋅︒,1802360BCDHI R π︒-∠=⋅︒,1802360CDA JK R π︒-∠=⋅︒,1802360DABLE R π︒-∠=⋅︒,所以FG HI JK LE +++()2180180180180360RABC BCD CDA DAB π=⋅︒-∠+︒-∠+︒-∠+︒-∠︒. 而360ABC BCD CDA DAB ∠+∠+∠+∠=︒, 所以()27203602360RFG HI JK LE R ππ+++=⋅︒-︒=︒. 由此可发现,四段弧的长度之和恰好也等于圆的周长,而AB BC CD DA +++为四边形ABCD 的周长.设圆心运动的距离为S ,则有S C C =+圆 四边形. 3.圆在凸多边形上无滑动滚动的研究既然三角形、四边形圆心运动路程分别为S C C =+圆三角形,S C C =+圆四边形,那么n 边形有什么规律呢?观察前面,不难发现,圆心作直线运动时圆心所走的线段与多边形的边长是平行且相等的,是矩形的对边,由此我们可以得到圆心轨迹中的直的线段之和等于多边形的周长,而圆心所走的总长为线段总长的弧长总长之和.设现有一个n 边形,且这个n 边形的内角为1∠,2∠,…,n ∠.那么n 段弧分别为18012360R π︒-∠⋅︒,18022360R π︒-∠⋅︒,…,1802360n R π︒-∠⋅︒. 设圆弧总长为L ,相加得()218018018012360R L n π=⋅︒+︒++︒-∠-∠--∠︒因为n 边形内角和为()()18023n n ︒⋅-≥, 所以代入得()21801802360R L n n π=⋅︒⋅-︒⋅-⎡⎤⎣⎦︒ ()21802360R n n π=⋅︒⋅-+⎡⎤⎣⎦︒ ()218022360R R ππ=⋅︒⋅=︒. 因此弧长之和为2R π,即圆的周长.设圆心运动距离为S ,则有S =弧长之和+多边形周长,即S C C =+圆多边形.因此,当圆在凸多边形边上无滑动滚动时,圆心运动所经过的路程的长度等于圆的周长与凸多边形的周长之和.学业评价24.4 参考答案:24.4.1 弧长和扇形面积基础训练1.3π 2.4π 3.24 240π 4.C 5.D 6.A 7.周长:a π,面积:2212a a π- 8.(1)43cm π (2)2(433)cm π- 24.4.2 圆锥的侧面积和全面积基础训练1.12π 16π 2.6 3.18 4.C 5.C 6.B 7.192︒ 8.2 能力提高1.π 2.D 3.241 4.2π 3 5.B 6.A 7.(1)如图 (2)6π8.MC BC =(提示:90C ∠=︒,45PBC ∠=︒) 9.542π- 10.(1)图 (2)43 (3)8433π+拓展探究 1.(1)123l π=,243l π=,363l π=,483l π=. (2)6400640000000km cm =,由226400000003n ππ=⨯,91.9210n =⨯. 2.(1)因为扇形的弧长902168360ππ︒=⨯⨯=︒,圆锥底面周长2r π=,所以圆的半径为4cm .由于所给正方形纸片的对角线长为2cm ,而制作这样的圆锥实际需要正方形纸片的对角线长为1642(202)cm ++=+,2042162+>(2)方案二可行.设圆锥底面圆的半径为r cm ,圆锥的母线长为R cm ,则(12)162r R ++=①,224R r ππ=②.由②得4R r =,代入①得(5r +=,所以r ==,所以R = 数学应用应用1 180A C ∠+∠=︒或180B D ∠+∠=︒ 应用2 A MCN B ∠<∠<∠ 应用3 ①上②内 ③外。
A .24.4 弧长和扇形面积单元检测试卷校名: 班级: 姓名: 学号: 分数第Ⅰ卷(选择题)一.选择题(共 20 小题)1. 如图,在 5×5 的正方形网格中,每个小正方形的边长都为 1,点 A ,B ,C 均为格点,则扇形 ABC 中的长等于( )A .2πB .3πC .4πD .π2. 如图,在 4×4 的正方形网格中,每个小正方形的边长都为 1,△AOB 的三个顶点都在格点上,现将△AOB 绕点 O 逆时针旋转 90°后得到对应的△COD ,则点 A 经过的路径弧 AC 的长为( )B.π C .2π D .3π3. 如图,⊙O 的半径为 6,四边形内接于⊙O ,连结 OA 、OC ,若∠AOC=∠ABC ,则劣弧AC 的长为()A.B.2πC.4πD.6π4.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.B.C.4 D.2+5.半径为6cm 的圆上有一段长度为2.5πcm的弧,则此弧所对的圆心角为()A.35°B.45°C.60°D.75°6.如图,线段AB=2,分别以A、B 为圆心,以AB 的长为半径作弧,两弧交于C 、D 两点,则阴影部分的面积为()A.B.C.D.7.如图,AD 是半圆O 的直径,AD=12,B,C 是半圆O 上两点.若==,则图中阴影部分的面积是()A.6πB.12πC.18πD.24π8.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π9.如图,在△ABC 中,AB=5,AC=3,BC=4,将△ABC 绕A 逆时针方向旋转40°得到△ADE,点B 经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π10.如图,点C 在以AB 为直径的半圆O 的弧上,∠ABC=30°,且AC=2,则图中阴影部分的面积是()A.﹣B.﹣2 C.﹣D.﹣11.已知圆锥的底面半径为3cm,母线长为6cm,则圆锥的侧面积是()A.18πcm2 B.27πcm2 C.36πcm2 D.54πcm212.圆锥母线长为10,其侧面展开图是圆心角为216°的扇形,则圆锥的底面圆的半径为()A.6 B.3 C.6πD.3π13.已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为()A.30πcm2 B.50πcm2 C.60πcm2 D.3 πcm2 14.如图,一个圆锥形漏斗的底面半径OB=6cm,高OC=8cm.则这个圆锥漏斗的侧面积是()A.30cm2 B.30πcm2 C.60πcm2 D.120cm215.已知圆锥的底面周长为6πcm,高为4cm,则它的侧面展开图的圆心角是()A.108°B.144°C.216°D.72°16.圆柱底面半径为3cm,高为2cm,则它的体积为()A.97πcm3 B.18πcm3 C.3πcm3 D.18π2cm317.矩形ABCD 中,AB=3,BC=4,以AB 为轴旋转一周得到圆柱,则它的表面积是()A.60πB.56πC.32πD.24π18.已知圆柱的底面半径为3cm,母线长为6cm,则圆柱的侧面积是()A.36cm2 B.36π cm2 C.18cm2 D.18π cm219.如图,有一内部装有水的直圆柱形水桶,桶高20 公分;另有一直圆柱形的实心铁柱,柱高30 公分,直立放置于水桶底面上,水桶内的水面高度为12 公分,且水桶与铁柱的底面半径比为2:1.今小贤将铁柱移至水桶外部,过程中水桶内的水量未改变,若不计水桶厚度,则水桶内的水面高度变为多少公分?()A.4.5 B.6 C.8 D.920.《九章算术》商功章有题:一圆柱形谷仓,高1 丈3 尺3寸,容纳米2000斛(1 丈=10 尺,1 尺=10 寸,斛为容积单位,1 斛≈1.62 立方尺,π=3),则圆柱底周长约为(注:圆柱体的体积=底面积×高)()20.1丈3 尺B.5 丈4 尺C.9 丈2 尺D.48 丈6 尺第Ⅱ卷(非选择题)二.填空题(共10 小题)21.一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为cm.22.如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)23.如图,正方形ABCD 的边长为1,分别以顶点A、B、C、D 为圆心,1 为半径画弧,四条弧交于点E、F、G、H,则图中阴影部分的外围周长为.24.扇形弧长为5πcm,面积为60πcm2,则扇形半径为.25.如图所示,AB 是⊙O 的直径,弦CD 交AB 于点E,若∠DCA=30°,AB=3,则阴影部分的面积为.26.如图,在扇形AOB 中,∠AOB=150°,以点A 为圆心,OA 的长为半径作交B于点C,若OA=2,则图中阴影部分的面积为.27.如图,用一个半径为20cm,面积为150πcm2 的扇形铁皮,制作一个无底的圆锥(不计接头损耗),则圆锥的底面半径r 为cm.28.如图,已知圆锥的高为4,底面圆的直径为6,则此圆锥的侧面积是.29.已知圆锥的底面半径为5cm,侧面积为65πcm2,圆锥的母线是cm.30.已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是cm2.三.解答题(共10 小题)31.如图,AB 是⊙O 的直径,点C 是圆上一点,连接CA、CB,过点O 作弦BC的垂线,交于点D,连接AD.(1)求证:∠CAD=∠BAD;(2)若⊙O 的半径为1,∠B=50°,求的长.32.如图,半圆O 的直径AB=6,弦CD 的长为3,点C,D 在半圆上运动,D点在上且不与A 点重合,但C 点可与B 点重合.(1)若的长=π时,求的长;(2)取CD 的中点M,在CD 运动的过程中,求点M 到AB 的距离的最小值.33.如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O,延长AD,BC 交于点E,且CE=CD.(1)求证:AB=AE;(2)若∠BAE=40°,AB=4,求的长.34.如图,点C,D 是半圆O 上的三等分点,直径AB=4,连接AD,AC,作DE⊥AB,垂足为E,DE 交AC 于点F.(1)求证:AF=DF.(2)求阴影部分的面积(结果保留π和根号)35.如图,O 为半圆的圆心,直径AB=12,C 是半圆上一点,OD⊥AC 于点D,OD=3.(1)求AC 的长;(2)求图中阴影部分的面积.36.如图,已知⊙O 半径为10cm,弦AB 垂直平分半径OC,并交OC 于点D.(1)求弦AB 的长;(2)求弧AB 的长,并求出图中阴影部分面积.37.如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA,C 为垂足,弦DF 与半径OB 相交于点P,连接EO、FO,若DE=4,∠DPA=45°(1)求⊙O 的半径.(2)若图中扇形OEF 围成一个圆锥侧面,试求这个圆锥的底面圆的半径.38.有一个直径为1m 的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形ABC,如图所示.(1)求被剪掉阴影部分的面积:(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?39.如图,圆锥的底面半径为6cm,高为8cm,求这个圆锥的侧面积和表面积.40.求圆柱的表面积.参考答案与试题解析一.选择题(共20 小题)1.【考点】KQ:勾股定理;MN:弧长的计算.【分析】根据全等三角形的判定和性质得出∠CAB=90°,进而利用弧长公式计算即可.【解答】解:在△ACE 与△ABD 中,∴△ACE≌△ABD(SAS),∴∠CAE=∠ABD,∠ECA=∠BAD,∵∠ECA+∠CAE=90°,∴∠CAE+∠BAD=90°,∴∠CAB=90°,∵AC=AB= ,∴扇形ABC 中的长=,故选:D.【点评】此题考查弧长的计算,关键是根据全等三角形的判定和性质得出∠CAB=90°.2.【考点】KQ:勾股定理;MN:弧长的计算;R2:旋转的性质.【分析】根据旋转的性质和弧长公式解答即可.【解答】解:∵将△AOB 绕点O 逆时针旋转90°后得到对应的△COD,∴∠AOC=90°,∵OC=3,∴点A 经过的路径弧AC 的长=,故选:A.【点评】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.3.【考点】M5:圆周角定理;MN:弧长的计算.【分析】利用圆周角定理和圆内接四边形的性质求得∠AOC=∠ABC=120°,结合弧长公式进行解答即可.【解答】解:∵四边形内接于⊙O,∠AOC=2∠ADC,∴∠ADC+∠ABC= ∠AOC+∠ABC=180°.又∠AOC=∠ABC,∴∠AOC=120°.∵⊙O 的半径为6,∴劣弧AC 的长为:=4π.故选:C.【点评】本题考查了圆周角定理、弧长的计算,本题中利用圆周角定理中圆周角与圆心角的关系得出角的度数,从而得到∠AOC=∠ABC=120°,从而得出劣弧AC 的长.4.【考点】MN:弧长的计算.【分析】根据题目的条件和图形可以判断点B 分别以C 和A 为圆心CB 和AB 为半径旋转120°,并且所走过的两路径相等,求出一个乘以2 即可得到.【解答】解:如图:BC=AB=AC=1,∠BCB′=120°,∴B 点从开始至结束所走过的路径长度为2×弧BB′=2×=,故选:B.【点评】本题考查了弧长的计算方法,求弧长时首先要确定弧所对的圆心角和半径,利用公式求得即可.5.【考点】MN:弧长的计算.【分析】根据弧长的计算公式:l= (弧长为l,圆心角度数为n,圆的半径为R),代入即可求出圆心角的度数.【解答】解:由题意得,2.5π=,解得:n=75°.故选:D.【点评】本题考查了弧长的计算,解答本题关键是熟练掌握弧长的计算公式,及公式字母表示的含义.6.【考点】MO:扇形面积的计算.【分析】根据题意和图形可以求得阴影部分的面积,本题得以解决.【解答】解:由题意可得,AD=BD=AB=AC=BC,∴△ABD 和△ABC 时等边三角形,∴阴影部分的面积为:()×2=,故选:A.【点评】本题考查扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答.7.【考点】MO:扇形面积的计算.【分析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.【解答】解:∵==,∴∠AOB=∠BOC=∠COD=60°,∴阴影部分的面积==6π,故选:A.【点评】本题考查的是扇形面积计算、圆心角定理,掌握扇形面积公式S=是解题的关键.8.【考点】MO:扇形面积的计算.【分析】计算阴影部分圆心角的度数,运用扇形面积公式求解.【解答】解:根据扇形面积公式,阴影部分面积==27π.故选B.【点评】考查了扇形面积公式的运用,扇形的旋转.9.【考点】KS:勾股定理的逆定理;MO:扇形面积的计算;R2:旋转的性质.【分析】根据AB=5,AC=3,BC=4 和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED 的面积=△ABC 的面积,得到阴影部分的面积=扇形ADB 的面积,根据扇形面积公式计算即可.【解答】解:∵AB=5,AC=3,BC=4,∴△ABC 为直角三角形,由题意得,△AED 的面积=△ABC 的面积,由图形可知,阴影部分的面积=△AED 的面积+扇形ADB 的面积﹣△ABC 的面积,∴阴影部分的面积=扇形ADB 的面积==π,故选:B.【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB 的面积是解题的关键.10.【考点】M5:圆周角定理;MO:扇形面积的计算.【分析】根据已知条件得到∠ACB=90°,∠AOC=30°,∠COB=120°,解直角三角形得到AB=2AO=4,BC=2,根据扇形和三角形的面积公式即可得到结论【解答】解:连接 OC ,∵∠ABC=30°,∴∠ACB=90°,∠AOC=60°,∠COB=120°,∵AC=2,∴AB=2AO=4,BC=2,∴OC=OB=2,∴阴影部分的面积=S 扇形﹣S △OBC =﹣×2 ×1=π﹣ , 故选:A .【点评】此题主要考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形 OCD 的面积是解题关键.11.【考点】MP :圆锥的计算.【分析】已知底面半径即可求得底面周长,即展开图中,扇形的弧长,然后根据扇形的面积公式即可求解.【解答】解:底面周长是 2×3π=6π,则圆锥的侧面积是:×6π×6=18π(cm2).故选:A .【点评】本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.12.【考点】MP :圆锥的计算.【分析】设圆锥的底面圆的半径为 r ,根据圆锥的侧面展开图为一扇形,这个扇 形的弧长等于圆锥底面的周长和弧长公式得到 2πr=,然后解关于 r 的方程即可.【解答】解:设圆锥的底面圆的半径为 r ,根据题意得 2πr=,解得 r=6,即圆锥的底面圆的半径为6.故选:A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13.【考点】MP:圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×3×10÷2=30π.故选:A.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.14.【考点】MP:圆锥的计算.【分析】先利用勾股定理计算出圆锥的母线长,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算这个圆锥漏斗的侧面积.【解答】解:圆锥的母线长==10,所以圆锥的侧面积=•2π•6•10=60π(cm2).故选:C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.【考点】MP:圆锥的计算.【分析】根据题意求出圆锥的底面半径,根据勾股定理求出母线长,根据扇形弧长公式计算即可.【解答】解:设它的侧面展开图的圆心角为n,∵圆锥的底面周长为6πcm,∴圆锥的底面半径==3cm,∴圆锥的母线长==5,则=6π,解得,n=216°,故选:C.【点评】本题考查的是圆锥的计算,掌握圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16.【考点】MQ:圆柱的计算.【分析】根据圆柱的体积=底面积×高进行计算.【解答】解:圆柱的体积=9π×2=18π(cm3).故选:B.【点评】熟悉圆柱的体积公式,即圆柱的体积=底面积×高.17.【考点】I2:点、线、面、体;MQ:圆柱的计算.【分析】表面积=侧面积+两个底面积=底面周长×高+2πr2.【解答】解:∵以直线AB 为轴旋转一周得到的圆柱体,得出底面半径为4cm,母线长为3cm,∴圆柱侧面积=2π•A B•BC=2π•3×4=24π(cm2),∴底面积=π•BC2=π•42=16π(cm2),∴圆柱的表面积=24π+2×16π=56π(cm2).故选:B.【点评】此题主要考查了圆柱的表面积的计算公式,根据旋转得到圆柱体,利用圆柱体的侧面积等于底面圆的周长乘以母线长是解决问题的关键.18.【考点】MQ:圆柱的计算.【分析】圆柱侧面积=底面周长×高.【解答】解:根据侧面积公式可得π×2×3×6=36πcm2,故选:B.【点评】考查了圆柱的计算,掌握特殊立体图形的侧面展开图的特点,是解决此类问题的关键.19.【考点】MQ:圆柱的计算.【分析】由水桶底面半径:铁柱底面半径=2:1,得到水桶底面积:铁柱底面积=22:12=4:1,设铁柱底面积为a,水桶底面积为4a,于是得到水桶底面扣除铁柱部分的环形区域面积为4a﹣a=3a,根据原有的水量为3a×12=36a,即可得到结论.【解答】解:∵水桶底面半径:铁柱底面半径=2:1,∴水桶底面积:铁柱底面积=22:12=4:1,设铁柱底面积为a,水桶底面积为4a,则水桶底面扣除铁柱部分的环形区域面积为4a﹣a=3a,∵原有的水量为3a×12=36a,∴水桶内的水面高度变为=9(公分).故选:D.【点评】本题考查了圆柱的计算,正确的理解题意是解题的关键.20.【考点】MQ:圆柱的计算.【分析】首先根据圆柱的体积公式:v=sh,求得圆柱的底面积s,然后根据面积s=πr,求得半径,进而即可求得周长.【解答】解:由题意得:2000×1.62=s(10+3+×),解得s= =243,因为s=πr2,所以,r=9,所以,周长=2πr=2×3×9=54(尺),54 尺=5 丈4 尺,故选:B.【点评】本题考查了圆柱的体积公式在实际中的应用,关键是熟记公式.二.填空题(共10 小题)21.【考点】MN:弧长的计算.【分析】根据弧长公式L=求解即可.【解答】解:∵L=,∴R= =9.故答案为:9.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L=.22.【考点】I6:几何体的展开图;MN:弧长的计算.【分析】根据圆锥的展开图为扇形,结合圆周长公式的求解.【解答】解:设底面圆的半径为rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,故答案为:12π.【点评】此题考查了圆锥的计算,解答本题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.23.【考点】LE:正方形的性质;MN:弧长的计算.【分析】连接AF、DF,根据圆的定义判断出△ADF 是等边三角形,根据正方形和等边三角形的性质求出∠BAF=30°,同理可得弧DE 的圆心角是30°,然后求出弧EF 的圆心角是30°,再根据弧长公式求出弧EF 的长,然后根据对称性,图中阴影部分的外围四条弧都相等列式计算即可得解.【解答】解:如图,连接AF、DF,由圆的定义,AD=AF=DF,所以,△ADF 是等边三角形,∵∠BAD=90°,∠FAD=60°,∴∠BAF=90°﹣60°=30°,同理,弧DE 的圆心角是30°,∴弧EF 的圆心角是90°﹣30°×2=30°,∴=,由对称性知,图中阴影部分的外围四条弧都相等,所以,图中阴影部分的外围周长=×4=π.故答案为:π.【点评】本题考查了正方形的性质,等边三角形的判定,弧长的计算,作辅助线构造成等边三角形是解题的关键,难点在于熟练掌握图形的对称性.24.【考点】MN:弧长的计算;MO:扇形面积的计算.lr,把对应的【分析】根据扇形面积公式和扇形的弧长公式之间的关系:S扇形=数值代入即可求得半径r 的长.lr【解答】解:∵S扇形=∴240π=•20π•r∴r=24 (cm)故答案为24cm.【点评】此题主要考查了扇形的面积公式,弧长公式,解此类题目的关键是掌握住扇形面积公式和扇形的弧长公式之间的等量关系:Slr.扇形=25.【考点】MO:扇形面积的计算.【分析】作DN⊥AB,垂足为N,求出∠BOD 的度数,进而求出扇形BOD 的面积,再求出△BOD 的面积,即可求出阴影部分的面积.【解答】解:作DN⊥AB,垂足为N,∵∠DCA=30°,∴∠AOD=2∠ACD=60°,∴∠BOD=120°,∵AB=2,∴OB= ,== π,∴S扇形BOD在Rt△DON 中,sin60°==,∴DN=,∴S= ××=,△BOD∴S 阴影=π﹣,故答案为π﹣.【点评】本题主要考查了扇形面积的计算,解题的关键是根据题意得到阴影面积=扇形BOD 的面积﹣三角形BOD 的面积.26.【考点】MO:扇形面积的计算.【分析】连接OC、AC,根据题意得到△AOC 为等边三角形,∠BOC=90°,分别求出扇形COB 的面积、△AOC 的面积、扇形AOC 的面积,计算即可.【解答】解:连接OC、AC,由题意得OA=OC=AC=2,∴△AOC 为等边三角形,∠BOC=90°,∴扇形COB 的面积为:=π,△AOC 的面积为:×2×= ,扇形AOC 的面积为:=π,则阴影部分的面积为:π+ ﹣π=+π.故答案为:+π.【点评】本题考查的是扇形面积计算,掌握等边三角形的性质、扇形的面积公式S=是解题的关键.27.【考点】MP:圆锥的计算.【分析】由圆锥的几何特征,我们可得用半径为20cm,面积为150πcm2 的扇形铁皮制作一个无底的圆锥形容器,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径.【解答】解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,则由题意得R=20,由Rl=150π得l=15π;由2πr=15π得r=7.5cm.故答案是:7.5cm.【点评】本题考查的知识点是圆锥的表面积,其中根据已知制作一个无底的圆锥形容器的扇形铁皮的相关几何量,计算出圆锥的底面半径和高,是解答本题的关键.28.【考点】MP:圆锥的计算.【分析】易得圆锥的底面半径,那么利用勾股定理即可求得圆锥的母线长,进而根据圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:∵圆锥的底面直径为6,∴圆锥的底面半径为3,∵圆锥的高为4,∴圆锥的母线长为5,∴圆锥的侧面积为π×3×5=15π.【点评】本题考查圆锥侧面积公式的运用,注意运用圆锥的高,母线长,底面半径组成直角三角形这个知识点.29.【考点】MP:圆锥的计算.【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:设母线长为R,则:65π=π×5R,解得R=13cm.【点评】本题考查圆锥侧面积公式的灵活运用,掌握公式是关键.30.【考点】MQ:圆柱的计算.【分析】圆柱侧面积=底面周长×高.【解答】解:π×2×3×5=30πcm2,故答案为30π.【点评】本题考查了圆柱的计算,掌握圆柱侧面积的计算方法是解题的关键.三.解答题(共10 小题)31.【考点】M5:圆周角定理;MN:弧长的计算.【分析】(1)根据圆周角定理证明即可;(2)连接CO,利用弧长公式解答即可.【解答】(1)证明:∵点O 是圆心,OD⊥BC,∴,∴∠CAD=∠BAD;(2)连接CO,∵∠B=50°,∴∠AOC=100°,∴的长为:L=.【点评】此题考查弧长的计算,关键是利用弧长公式解答.32.【考点】MN:弧长的计算.【分析】(1)由题意可知:△OCD 是等边三角形,从而可求出弧CD 的长度,再求出半圆弧的长度后,即可求出弧BC 的长度.(2)过点M 做ME⊥AB 于点E,连接OM,由垂径定理可求出DM 的长度,再有勾股定理即可求出OM 的长度,最后根据ME2=OM2﹣OE2 可知ME 取最小值,则只需要OE 最小即可,从而可求出ME 的长度.【解答】解:(1)连接OD、OC,∵CD=OC=OD=3,∴△CDO 是等边三角形,∴∠COD=60°,∴==π,又∵半圆弧的长度为:×6π=3π,∴=3π﹣π﹣=(2)过点M 做ME⊥AB 于点E,连接OM,再CD 运动的过程中,CD=3,由垂径定理可知:DM=,∴由勾股定理可知:OM= =∴由勾股定理可知:ME2=OM2﹣OE2若ME 取最小值,则只需要OE 最小即可,令OE=0,此时ME=OM=,即点M 到AB 的距离的最小值为【点评】本题考查圆的综合问题,涉及垂径定理,勾股定理,等边三角形的性质等知识,综合程度较高,属于中等题型.33.【考点】M5:圆周角定理;M6:圆内接四边形的性质;MN:弧长的计算.【分析】(1)根据圆内接四边形的性质和等腰三角形的性质得出结论;(2)连接OC,OD,根据等腰三角形得出∠B=∠E=70°,再在等腰三角形OAD 中,得出∠AOD=100°,从而得出∠COD=40°,再由弧长公式得出答案即可.【解答】解:(1)∵CE=CD,∴∠E=∠CDE,∵∠CDE=∠B,∴∠B=∠E,∴AB=AE;(2)连接OC,OD,∵∠BAE=40°,AB=AE,∴∠B=∠E=70°,在等腰三角形OBC 中,得出∠BOC=40°,在等腰三角形OAD 中,∠AOD=100°,∴∠COD=40°,∴的长为:=π.【点评】本题考查了弧长公式,掌握弧长公式是解题的关键.34.【考点】M2:垂径定理;MO:扇形面积的计算.【分析】(1)连接OD,OC,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAD=∠ADE=30°,于是得到结论;(2)由(1)知,∠AOD=60°,推出△AOD 是等边三角形,OA=2,得到DE=,根据扇形和三角形的面积公式即可得到结论【解答】(1)证明:连接OD,OC,∵C 、D 是半圆 O 上的三等分点,∴==,度数都是 60°,∴∠AOD=∠DOC=∠COB=60°,∴∠DAC=30°,∠CAB=30°,∵DE ⊥AB ,∴∠AEF=90°,∴∠ADE=180°﹣90°﹣30°﹣30°=30°,∴∠DAC ∠ADE=30°,∴AF=DF ;(2)解:由(1)知,∠AOD=60°,∵OA=OD ,AB=4,∴△AOD 是等边三角形,OA=2,∵DE ⊥AO ,∴DE= ,∴S 阴影=S 扇形AOD ﹣S △AOD =﹣×2× =π﹣ . 【点评】本题考查了扇形的面积,等边三角形的判定和性质,正确的作出辅助线是解题的关键.35.【考点】MO :扇形面积的计算.【分析】(1)根据垂径定理可知 AD=DC ,由 OA=OB ,推出 BC=2OD=6,Z 在 Rt △ ACB 中,利用勾股定理求出 AC .(2)首先证明△OBC 设等边三角形,推出∠AOC=120°,根据 S 阴=S 扇形 OAC ﹣S △AOC 计算即可.【解答】解:(1)∵OD ⊥AC ,∴AD=DC ,∵AO=OB ,∴BC=2OD=6,∵AB 是直径,∴∠ACB=90°,∴AC= = =6.(2)连接OC,∵OC=OB=BC=6,∴∠BOC=60°,∴∠AOC=120°,∴S阴=S扇形OAC﹣S△AOC=﹣•6•3=12π﹣9 .【点评】本题考查扇形的面积公式、垂径定理、勾股定理.三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,学会用方法求阴影部分面积,属于中考常考题型.36.【考点】KG:线段垂直平分线的性质;M2:垂径定理;MN:弧长的计算;MO:扇形面积的计算.【分析】(1)先利用垂径定理得出AB=2BD,∠ODB=90°,OD=OC=5,进而根据勾股定理求出BD,即可得出结论;(2)先利用锐角三角函数求出∠BOD=60°,最后利用扇形的弧长公式和扇形的面积公式即可得出结论.【解答】解:(1)如图,⊙O 半径为10cm,∴OB=OC=10,∵弦AB 垂直平分半径OC,∴AB=2BD,∠ODB=90°,OD= OC=5,在Rt△BOD 中,根据勾股定理得,BD==5,∴AB=2BD=10 cm;(2)由(1)知,OD=5,在Rt△BOD 中,cos∠BOD= = ,∴∠BOD=60°,∵OC⊥AB,∴∠AOB=2∠BOD=120°,∴== = cm,S 阴影=S 扇形AOB﹣S△AOB= ﹣AB×OD= ﹣×=﹣25(cm).【点评】此题主要考查了垂径定理,锐角三角函数,勾股定理,弧长公式,扇形的面积公式,求出AB 是解本题的关键.37.【考点】KG:线段垂直平分线的性质;M2:垂径定理;M5:圆周角定理;MP:圆锥的计算.【分析】(1)利用垂径定理得到CE=DC=DE=2 ,OC= OE,则∠OEC=30°,然后利用含30 度的直角三角形三边的关系求出OE 即可;(2)利用圆周角定理得到∠EOF=2∠D=90°,设这个圆锥的底面圆的半径为r,利用弧长公式得到2πr=,然后解关于r 的方程即可.【解答】解:(1)∵弦DE 垂直平分半径OA,∴CE=DC= DE=2 ,OC=OE,∴∠OEC=30°,∴OC= =2,∴OE=2OC=4,∴ .∴(2)设底面圆的半径为 r ,则,∴ . 圆锥的底面圆的半径长为 米.即⊙O 的半径为 4;(2)∵∠DPA=45°,∴∠D=45°,∴∠EOF=2∠D=90°,设这个圆锥的底面圆的半径为 r ,∴2πr= ,解得 r=1,即这个圆锥的底面圆的半径为 1.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了垂径定理和圆周角定理.38.【考点】MO :扇形面积的计算;MP :圆锥的计算.【分析】(1)由∠BAC=90°,得 BC 为⊙O 的直径,即 BC=1m ;又由 AB=AC ,得到 AB= BC= ,而 S 阴影部分=S ⊙O ﹣S 扇形 ABC ,然后根据扇形和圆的面积公式进行计算即可;(2)扇形的半径是 AB= ,扇形 BAC 的弧长 l== π,圆锥的底面周长等于侧面展开图的扇形弧长,然后利用弧长公式计算.【解答】解:(1)如图,连接 BC ,∵∠BAC=90°,∴BC 为⊙O 的直径,即 BC=1m ,又∵AB=AC ,(平方米)【点评】本题考查了扇形的面积公式:S= ,其中n 为扇形的圆心角的度数,R 为圆的半径),或S=lR,l 为扇形的弧长,R 为半径.也考查了90 度的圆周角所对的弦为直径以及等腰直角三角形三边关系.39.【考点】MP:圆锥的计算.【分析】应先利用勾股定理求得圆锥的母线长,圆锥的侧面积=π×底面半径×母线长,把相关数值代入即可求解;圆锥的表面积=圆锥的侧面积+圆锥的底面积=圆锥的侧面积+π×底面半径2,把相关数值代入即可求解.【解答】解:∵圆锥的底面半径为6cm,高为8cm,∴圆锥的母线长为10cm,=π×6×10=60πcm2;∴S侧∵圆锥的底面积=π×62=36π,∴S=60π+36π=96πcm2.表【点评】此题考查圆锥的侧面积和全面积的计算公式;圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.40.【考点】MQ:圆柱的计算.【分析】根据圆柱的表面积=2πr2+πdh,计算即可.【解答】解:圆柱的表面积=2πr2+πdh=2π×32+π×6×10=78π;圆柱的表面积=2πr2+πdh=2π×72+π×14×5=168π.【点评】此题考查了圆柱的表面积的公式的计算应用.考点盘点1.点、线、面、体(1)体与体相交成面,面与面相交成线,线与线相交成点.(2)从运动的观点来看点动成线,线动成面,面动成体.点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.(3)从几何的观点来看点是组成图形的基本元素,线、面、体都是点的集合.(4)长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体简称体.(5)面有平面和曲面之分,如长方体由6 个平面组成,球由一个曲面组成.2.几何体的展开图(1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面图形.(2)常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形.(3)立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.3.线段垂直平分线的性质(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.。
人教版 九年级数学 24.4 弧长和扇形面积 课后训练一、选择题 1. 120°的圆心角所对的弧长是6π,则此弧所在圆的半径是( ) A . 3 B . 4 C . 9 D . 182. 如图,▱ABCD 中,∠B=70°,BC=6.以AD 为直径的☉O 交CD 于点E ,则的长为 ( )A .πB .πC .πD .π3. 如图AB 为半圆O 的直径,AB =4,C ,D 为AB ︵上两点,且AC ︵=15BD ︵.若∠CED =52∠COD ,则BD ︵的长为( )图A.59πB.78πC.89πD.109π4. (2019•遵义)圆锥的底面半径是5 cm ,侧面展开图的圆心角是180°,圆锥的高是A .53cmB .10 cmC .6 cmD .5 cm5. (2019•温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为A .3π2B .2πC .3πD .6π6. 如图,C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在AB ︵上的点D 处,且BD ︵l ∶AD ︵l =1∶3(BD ︵l 表示BD ︵的长).若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1∶3B .1∶πC .1∶4D .2∶97. (2019•南充)如图,在半径为6的⊙O 中,点A ,B ,C 都在⊙O 上,四边形OABC 是平行四边形,则图中阴影部分的面积为A .6πB .33C .3D .2π8. 如图在扇形OAB 中,∠AOB =150°,AC =AO =6,D 为AC 的中点,当弦AC沿AB ︵运动时,点D 所经过的路径长为( )图A .3πB.3πC.32 3πD .4π二、填空题9. 如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为120°,AB 长为30厘米,则BC ︵的长为________厘米(结果保留π).10. 如图,现有一张圆心角为108°,半径为40 cm的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面圆半径为10 cm的圆锥形纸帽(接缝处忽略不计),则剪去的扇形纸片的圆心角θ为________.11. 已知一个圆心角为270°,半径为3 m的扇形工件未搬动前如图示,A,B两点触地放置,搬动时,先将扇形以点B为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A,B两点再次触地时停止,则圆心O所经过的路线长为________m.(结果用含π的式子表示)12. 一个圆锥的侧面积为8π,母线长为4,则这个圆锥的全面积为________.13. (2019•贵港)如图,在扇形OAB中,半径OA与OB的夹角为120 ,点A与点B 的距离为23,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为__________.14. 如图所示,在Rt△ABC中,∠ACB=90°,AC=BC=2 2.若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为________.(结果保留π)15. 如图,已知A ,B ,C 为⊙O 上的三个点,且AC =BC =2,∠ACB =120°,点P 从点A 出发,沿AMB ︵向点B 运动,连接CP 与弦AB 相交于点D ,当△ACD 为直角三角形时,AMP ︵的长为________.三、解答题16. 如图,AB 为⊙O 的直径,C ,D 是半圆O 的三等分点,过点C 作AD 延长线的垂线CE ,垂足为E .(1)求证:CE 是⊙O 的切线;(2)若⊙O 的半径为2,求图中阴影部分的面积.17. (2019•襄阳)如图,点E 是ABC △的内心,AE 的延长线和ABC △的外接圆圆O相交于点D ,过D 作直线DG BC ∥. (1)求证:DG 是圆O 的切线;(2)若6DE =,BC =,求优弧BAC 的长.18. (2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使EAC EDA∠=∠.(1)求证:AC是⊙O的切线;(2)若23CE AE==,求阴影部分的面积.人教版九年级数学24.4 弧长和扇形面积课后训练-答案一、选择题1. 【答案】C【解析】由扇形的弧长公式l=nπr180可得:6π=120π·r180,解得r=9.2. 【答案】B[解析]如图,连接OE.∵四边形ABCD是平行四边形,∴AD=BC=6,∠D=∠B=70°,∴OD=3.∵OD=OE,∴∠OED=∠D=70°,∴∠DOE=40°.∴的长==π.3. 【答案】D4. 【答案】A【解析】设圆锥的母线长为R,根据题意得2π·5180π180R=,解得R=10.即圆锥的母线长为10 cm,∴圆锥的高为:22105-=53cm.故选A.5. 【答案】C【解析】该扇形的弧长=90π63π180⨯=.故选C.6. 【答案】D7. 【答案】A【解析】如图,连接OB,∵四边形OABC是平行四边形,∴AB=OC,∴AB=OA=OB,∴△AOB是等边三角形,∴∠AOB=60°,∵OC∥AB,∴S△AOB=S△ABC,∴图中阴影部分的面积=S扇形AOB=60π366π360⋅⨯=,故选A.8. 【答案】C[解析] 如图∵D为AC的中点,AC=AO=6,∴OD ⊥AC ,∴AD =12AC =12AO , ∴∠AOD =30°,OD =3 3. 作BF =AC ,E 为BF 的中点.同理可得∠BOE =30°, ∴∠DOE =150°-60°=90°,∴点D 所经过的路径长为n πR 180=90π×3 3180=3 32π.二、填空题9. 【答案】20π【解析】由弧长公式得,l BC ︵的长=120π×30180=20π.10. 【答案】18°11. 【答案】6π[解析] 由题意易知∠AOB =90°,OA =OB ,∴∠ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).12. 【答案】12π13. 【答案】43【解析】如图,连接AB ,过O 作OM AB ⊥于M ,∵120AOB ∠=︒,OA OB =,∴30BAO ∠=︒,3AM =2OA =, ∵240π22π180r ⨯=,∴43r =,故答案为:43.14. 【答案】82π [解析] 过点C 作CD ⊥AB 于点D .在Rt △ABC 中,∠ACB =90°,AC =BC =2 2, ∴AB =2AC =4,∴CD =2. 以CD 为半径的圆的周长是4π.故Rt △ABC 绕直线AB 旋转一周所得几何体的表面积是2×12×4π×2 2=8 2π.15. 【答案】43π或2π [解析] 易得⊙O 的半径为2,∠A =30°.要使△ACD 为直角三角形,分两种情况:①当点P 位于AMB ︵的中点时,∠ADC =90°,△ACD 为直角三角形,此时∠ACP =60°,可得∠AOP =120°,所以AMP ︵的长为120π×2180=43π;②当∠ACP =90°时,△ACD 为直角三角形,此时∠AOP =180°,所以AMP ︵的长为180π×2180=2π.综上可得,AMP ︵的长为43π或2π.三、解答题16. 【答案】解:(1)证明:连接OC . ∵C ,D 为半圆O 的三等分点, ∴AD ︵=CD ︵=BC ︵, ∴∠DAC =∠BAC . ∵OA =OC , ∴∠BAC =∠ACO , ∴∠DAC =∠ACO , ∴OC ∥AD . ∵CE ⊥AD ,∴CE ⊥OC ,∴CE 为⊙O 的切线. (2)连接OD . ∵AD ︵=CD ︵=BC ︵,∴∠AOD =∠COD =∠BOC =13×180°=60°. 又∵OC =OD ,∴△COD 为等边三角形, ∴∠CDO =60°=∠AOD , ∴CD ∥AB , ∴S △ACD =S △COD ,∴图中阴影部分的面积=S 扇形COD =60×π×22360=2π3.17. 【答案】(1)连接OD 交BC 于H ,如图,∵点E 是ABC △的内心,∴AD 平分BAC ∠,即BAD CAD ∠=∠, ∴BD CD =,∴OD BC ,BH CH =,∵DG BC ∥, ∴OD DG ⊥, ∴DG 是圆O 的切线. (2)连接BD 、OB ,如图, ∵点E 是ABC △的内心, ∴ABE CBE ∠=∠, ∵DBC BAD ∠=∠,∴DEB BAD ABE DBC CBE DBE ∠=∠+∠=∠+∠=∠, ∴6DB DE ==, ∵1332BH BC ==在Rt BDH △中,333sin 62BH BDH BD ∠===, ∴60BDH ∠=︒, 而OB OD =,∴OBD △为等边三角形,∴60BOD ∠=︒,6OB BD ==, ∴120BOC ∠=︒, ∴优弧BAC 的长=(360120)π68π180-⋅⋅=.18. 【答案】(1)如图,连接OA ,过O 作OF AE ⊥于F ,∴90AFO ∠=︒, ∴90EAO AOF ∠+∠=︒, ∵OA OE =,∴12EOF AOF AOE ∠=∠=∠,∵12EDA AOE ∠=∠,∴EDA AOF ∠=∠, ∵EAC EDA ∠=∠, ∴EAC AOF ∠=∠, ∴90EAO EAC ∠+∠=︒, ∵EAC EAO CAO ∠+∠=∠, ∴90CAO ∠=︒, ∴OA AC ⊥, ∴AC 是⊙O 的切线.11 / 11 (2)∵CE AE == ∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠, ∴2AEO EAC ∠=∠, ∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠, ∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒, ∴OAE △是等边三角形, ∴OA AE =,60EOA ∠=︒,∴OA =∴2πAOE S =扇形, 在Rt OAE △中,sin 32OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π-。
2.7 弧长及扇形的面积1,正方形ABCD 内接于⊙O ,AB =2 2,则AB ︵的长是 ( ) A .π B.32π C .2π D.12π图1 图22.如图2,从一块直径为2 m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为 ( )A .π2 m 2B .32π m 2 C .πm 2 D .2π m 23如图3,在△ABC 中,AB =2,BC =4,∠ABC =30°,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是( )A .2-π3B .2-π6C .4-π3D .4-π6图3 图44.如图4,分别以等边三角形ABC 的三个顶点为圆心,以其边长为半径画弧,得到的封闭图形是莱洛三角形,若AB =2,则莱洛三角形的面积(即阴影部分面积)为( )A .π+3B .π- 3C .2π-3D .2π-2 35.如图5,在边长为1的小正方形组成的网格中.若将△ABC (点A ,B ,C 均在格点处)绕着点A 逆时针旋转得到△AB ′C ′,则点B 经过的路线长为( )图5A .A.π B.π2C .7πD .6π 二、填空题6.一个扇形的弧长是65π cm ,半径是6 cm ,则此扇形的圆心角是________度.7.若扇形的半径为3 cm ,弧长为2π cm ,则该扇形的面积为________. 8.如图6,图①是由若干个相同的图形(图②)组成的美丽图案的一部分,图②中,半径OA =2 cm ,∠AOB =120°,则图②的周长为_______ cm(结果保留π).图6 图79.如图7,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 长为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是________(结果保留π).10.如图8,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC =60°,∠BCO =90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′的位置,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为________ cm 2.(结果保留π)图8三、解答题11.如图9,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连接BC .(1)求证:AE =ED ;(2)若AB =10,∠CBD =36°,求AC ︵的长.图912. 如图10,点B ,C ,D 在⊙O 上,四边形OCBD 是平行四边形.(1)求证:BC ︵=BD ︵;(2)若⊙O 的半径为2,求BD ︵的长.图1013.如图11,已知AB 是⊙O 的直径,点C ,D 在⊙O 上, ∠D =60°且AB =6,过点O 作OE ⊥AC ,垂足为E .(1)求OE 的长;(2)若OE 的延长线交⊙O 于点F ,求弦AF ,AC 和CF ︵围成的图形(阴影部分)的面积.图1114.如图12,在△ABC 中,AB =AC ,点E 在AC 上,经过A ,B ,E 三点的⊙O 交BC 于点D ,且BD ︵=DE ︵.(1)求证:AB 为⊙O 的直径;(2)若AB =8,∠BAC =45°,求阴影部分的面积.15 方程思想如图13所示,在△ABC中,∠C=90°,AC+BC=9,O是斜边AB上一点,以点O为圆心,2为半径的圆分别与AC,BC相切于点D,E.(1)求AC,BC的长;(2)若AC=3,连接BD,求图中阴影部分的面积(π取3.14).图13答案1.[解析]A 连接OA ,OB. ∵正方形ABCD 内接于⊙O , ∴AB =BC =DC =AD , ∴AB ︵=BC ︵=DC ︵=AD ︵, ∴∠AOB =14×360°=90°.在Rt △AOB 中,由勾股定理,得2AO 2=(2 2)2, 解得AO =2,∴AB ︵的长为90×π×2180=π.故选A .2.[解析]A 连接AC.∵从一块直径为2 m 的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC =90°.∴AC 为⊙O 的直径,即AC =2 m .∵AB =BC ,AB2+BC 2=22,∴AB =BC =2m ,∴阴影部分的面积是90×π×(2)2360=12π(m 2).故选A .3.[解析]A 如图,过点A 作AE ⊥BC 于点E. ∵AB =2,∠ABC =30°,∴AE =12AB =1.又∵BC =4,∴阴影部分的面积是12×4×1-30×π×22360=2-13π.故选A .4.[解析]D 过点A 作AD ⊥BC 于点D.∵△ABC 是等边三角形,∴AB =AC =BC =2,∠BAC =∠ABC =∠ACB =60°.∵AD ⊥BC ,∴BD =CD =1,由勾股定理,得AD =3,∴△ABC 的面积为12BC ·AD =12×2×3=3,S 扇形BAC =60×π×22360=23π,∴莱洛三角形的面积S =3×23×π-2×3=2π-2 3.故选D .5.[解析]A 根据图示知∠BAB ′=45°,∴点B 经过的路线长为45×π×4180=π.故选A .6.[答案] 36[解析] 设扇形的圆心角为n.由题意,得65π=n ×π×6180,解得n =36°.7.[答案] 3πcm 2[解析] 根据扇形面积公式,知S =12lR =12×2π×3=3π(cm 2).8.[答案]8π3[解析] 由图得AO ︵的长+OB ︵的长=AB ︵的长.∵半径OA =2 cm ,∠AOB =120°,则图②的周长为120×π×2180×2=8π3cm .9.[答案] 8-2π[解析] S 阴=S △ABD -S 扇形BAE =12×4×4-45×π×42360=8-2π.10.[答案]14π[解析]∵∠BOC =60°,△B ′OC ′是△BOC 绕圆心O 逆时针旋转得到的, ∴∠B ′OC ′=60°,△BCO ≌△B ′C ′O ,∴∠B ′OC =60°,∠C ′B ′O =30°,∴∠B ′OB =120°. ∵AB =2 cm ,∴OB =OB ′=1 cm ,OC ′=OC =12cm ,∴B ′C ′=32, ∴S 扇形B ′OB =120×π×12360=13π,S 扇形C ′OC =120×π×14360=π12, S 阴影=S 扇形B ′OB +S △B ′C ′O -S △BCO -S 扇形C ′OC =S 扇形B ′OB -S 扇形C ′OC =13π-π12=14π.11.解:(1)证明:∵AB 是⊙O 的直径, ∴∠ADB =90°. ∵OC ∥BD ,∴∠AEO =∠ADB =90°, 即OC ⊥AD ,∴AE =ED. (2)∵AB =10,∴AO =5. ∵OC ⊥AD ,∴AC ︵=DC ︵,∴∠ABC =∠CBD =36°,∴∠AOC =2∠ABC =2×36°=72°, ∴AC ︵的长为72π×5180=2π.12.解:(1)证明:如图,连接OB.∵四边形OCBD 是平行四边形, ∴OC =BD ,OD =BC , 而OC =OD , ∴BD =BC , ∴BC ︵=BD ︵.(2)由(1)知OD =OB =OC =BD =BC , ∴△OBD 和△OBC 均为等边三角形, ∴∠BOC =∠BOD =60°, ∴BD ︵的长为60π×2180=23π.13.解:(1)∵∠D =60°,∴∠B =60°.∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BAC =30°. 又∵AB =6,∴BC =3.∵OE ⊥AC ,∴OE ∥BC.又∵O 是AB 的中点,∴OE 是△ABC 的中位线,∴OE =12BC =32.(2)连接OC ,则易得△COE ≌△AFE ,故阴影部分的面积=扇形FOC 的面积.∵易知∠EOC =60°,∴S 扇形FOC =60π×32360=32π,∴可得阴影部分的面积为32π.14.解:(1)证明:连接AD. ∵BD ︵=DE ︵,∴∠BAD =∠CAD. 又∵AB =AC , ∴AD ⊥BC ,∴∠ADB =90°, ∴AB 为⊙O 的直径. (2)∵AB 为⊙O 的直径, ∴点O 在AB 上,连接OE ,由圆周角定理,得∠BOE =2∠BAC =90°, ∴∠AOE =90°,∴阴影部分的面积为12×4×4+90π×42360=8+4π.15 解:(1)如图,连接OD ,OC ,OE.∵D ,E 为⊙O 的切点,∴OD ⊥AC ,OE ⊥BC ,OD =OE =2. ∵S △ABC =S △AOC +S △BOC ,AC +BC =9, ∴12AC ·BC =12AC ·OD +12BC ·OE , ∴12AC ×2+12BC ×2=AC +BC =9, 即AC ·BC =18. 又∵AC +BC =9,∴AC ,BC 的长是方程x 2-9x +18=0的两个根, 解得x =3或x =6.∴AC =3,BC =6或AC =6,BC =3.(2)如图,连接DE ,则S 阴影=S △BDE +S 扇形ODE -S △ODE .∵AC=3,∴BC=6.∵OD⊥AC,OE⊥BC,∠ACB=90°,OD=OE,∴四边形OECD是正方形,∴EC=OE=2,∴BE=BC-EC=6-2=4,∴S△BDE =12BE·DC=12×4×2=4,S扇形ODE=14π×22=π,S△ODE=12OD·OE=2,∴S阴影=4+π-2=2+π≈5.14.。
随堂测试2.7弧长及扇形的面积一.选择题(共10小题,满分50分)1.如图扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=4,则的长为()A.B.C.D.2π2.如图,已知⊙O的半径为3,弦AB⊥直径CD,∠A=30°,则的长为()A.πB.2πC.3πD.6π3.一个扇形的圆心角为120°,半径为3,则这个扇形的面积是()A.πB.2πC.3πD.4π4.如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=2,过点D作DC⊥BE于点C,则阴部分的面积是()A.B.C.D.5.边长为2的两种正方形卡片如下图①所示,卡片中的扇形半径均为2.图②是交替摆放A、B两种卡片得到的图案.若摆放这个图案共用两种卡片2021张,则这个图案中阴影部分图形的面积和为()A.4040B.4044–πC.4044D.4044+π6.如图,在矩形ABCD中,AB=2,AD=4,将D边绕点A顺时针旋转,使点D正好落在BC边上的点D′处,则阴影部分的扇形面积为()A.πB.C.D.7.如图AB和CD是⊙O的两条互相垂直的弦,若AD=4,BC=2,则阴影部分的面积是()A.2π﹣1B.π﹣4C.5π﹣4D.5π﹣88.如图,AB是⊙O的直径,点P是⊙O上一个动点(点P不与点A,B重合),在点P运动的过程中,有如下四个结论:①至少存在一点P,使得P A>AB;②若,则PB=2P A;③∠P AB不是直角;④∠POB=2∠OP A.上述结论中,所有正确结论的序号是()A.①③B.③④C.②③④D.①②④9.如图,点A,B,C在⊙O上,∠O=70°,AO∥BC,AO=3,的长为()A.B.C.D.10.如图,⊙O的半径为3,AB为弦,若∠ABC=30°,则的长为()A.πB.1C.1.5D.1.5π二.填空题(共5小题,满分20分)11.如图在平面直角坐标系中,若干个半径为2个单位长度、圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒2个单位,在弧线上的速度为每秒个单位长度,则5秒时,点P的坐标是;2019秒时,点P的坐标是.12.如图,半圆的直径AB长为6cm,O是圆心,C是半圆上的点,D是上的点,若∠ADC =108°,则扇形OAC的面积为.(结果保留π.)13.如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥AO,若OA =6,则阴影部分的面积为.14.如图,直径为3cm的圆O1平移4cm到圆O2,则图中阴影部分的面积为cm2.15.已知扇形的圆心角为120°,弧长为12πcm,则扇形的半径为cm.三.解答题(共5小题,满分50分)16.如图,在扇形AOB中,∠AOB=140°,∠CAO=60°,OA=4,求弧BC的长.17.如图,在Rt△ABC中,∠ACB=90°,O在斜边AB上,且AO=AC,连接CO,并延长至D,使∠D=∠OCB,以O为圆心,OD为半径画圆,交DB延长线于E点.(1)求证:BD=BE;(2)已知AC=1cm,BC=cm.①连接CE,过B作BF⊥EC于F点,求线段BF的长;②求图中阴影部分面积.18.如图,四边形ABCD是正方形,以边AB为直径作⊙O,点E在BC边上,连接AE交⊙O于点F,连接BF并延长交CD于点G,OA=3.(1)求证:△ABE≌△BCG;(2)若∠AEB=55°,求劣弧的长.(结果保留π)19.如图,∠EAD是⊙O内接四边形ABCD的一个外角,且∠EAD=75°,DB=DC.(1)求∠BDC的度数.(2)若⊙O的半径为2,求的长.20.学校花园边墙上有一宽(BC)为2m的矩形门ABCD,量得门框对角线AC长为4m,为美化校园,现准备打掉地面BC上方的部分墙体,使其变为以AC为直径的圆弧形门,问要打掉墙体(阴影部分)的面积是多少?(结果中保留π,)参考答案一.选择题(共10小题,满分50分)1.C.2.B.3.C.4.C.5.B.6.D.7.B.8.B.9.A.10.A.二.填空题(共5小题,满分20分)11.(5,);(2019,﹣).12.π.13.3+3π.14.12.15.18.三.解答题(共5小题,满分50分)16.解:连接OC,∵OA=OC,∠CAO=60°,∴△AOC为等边三角形,∴∠AOC=60°,∴∠BOC=∠AOB﹣∠AOC=140°﹣60°=80°,则的长==π.17.(1)证明:∵AO=AC,∴∠ACO=∠AOC,∵∠D=∠OCB,∠BOD=∠AOC,∴∠ACO+∠OCB=∠BOD+∠D,∵∠ACB=90°,∴∠BOD+∠D=90°,∴OB⊥DE,∴BD=BE;(2)解:①在Rt△ABC中,∠ACB=90°,AC=1cm,BC=cm.∴∠ABC=30°,∴AB=2AC=2,∠A=60°,∵OA=AC,∴△AOC为等边三角形,∴OC=AC=1cm,∠AOC=60°,∴∠D=∠OCB=30°,OB=AB﹣OA=1,∴OD=2OB=2,∴CD=OD+OC=3,∵∠D=∠OCB,∴BD=BC,∵BD=BE,∴BC=BE,∴∠BCE=∠BEC,∴∠D+∠BEC=∠DCE=90°,∵BF⊥CE,∴BF∥CD,∵BD=BE,∴BF=CD=;②解:连接OE,∵OD=2、OB=1,∴BD=,则DE=2BD=2,∵OD=OE,∴∠D=∠OED=30°,∴∠DOE=120°,S阴影=S扇形ODE﹣S△ODE=﹣×2×1=π﹣.18.(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCG=90°,∵AB是直径,∴∠AFB=90°,∴∠BAE+∠ABF=90°,∠ABF+∠CBG=90°,∴∠BAE=∠CBG,在△ABE和△BCG中,,∴△ABE≌△BCG(ASA).(2)解:连接OF,∵∠ABE=90°,∠AEB=55°,∴∠BAE=90°﹣55°=35°,∴∠BOF=2∠BAE=70°,∵OA=3,∴的长==.19.解:(1)∵四边形ABCD是⊙O的内接四边形,∴∠DAB+∠C=180°,∵∠EAD+∠DAB=180°,∴∠C=∠EAD,∵∠EAD=75°,∴∠C=75°,∵DB=DC,∴∠DBC=∠C=75°,∴∠BDC=180°﹣∠C﹣∠DBC=30°;(2)连接OB、OC,∵∠BDC=30°,∴∠BOC=2∠BDC=60°(圆周角定理),∵⊙O的半径为2,∴的长是=.20.解:在Rt△ABC中,∵AC=4m,BC=2m.∴∠BAC=60°,AB=2(m).∴∠BCO=30°,∴∠BOC=120°,﹣S矩形ABCD﹣S扇形OBC+S△OBC ∴要打掉的墙体的面积=S圆O﹣S矩形=S圆O=•π•22﹣×2×2=(﹣3)(m2).。
初中数学苏科版九年级上册2.7弧长及扇形的面积同步测试一、单选题1.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. B. C. D.2.若扇形的弧长是,半径是18,则该扇形的圆心角是()A. B. C. D.3.圆心角为,弧长为的扇形半径为()A. B. C. D.4.如图,AB为⊙O的直径,AB=30,点C在⊙O上,⊙A=24°,则的长为()A.9πB.10πC.11πD.12π5.如图1,一只蚂蚁从点O出发,以1厘米/秒速度沿着扇形AOB的边缘爬行一周。
设爬行时间为x秒,蚂蚁到点O的距离为y厘米,y关于x的函数图像如图2所示,则扇形的面积为()A.3B.6C.πD.π6.如图,OO是⊙ABC的外接圆,BC=3,⊙BAC=30°,则劣弧的长等于()A. B.π C. D.7.如图,在扇形中,为弦,,,,则的长为()A. B. C. D.8.如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊙AB于点M,PN⊙CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()A. B. C. D.9.如图,半径为2的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于()A.4B.6C.2πD.π+ 410.如图,若弧AB半径PA为18,圆心角为120°,半径为2的⊙,从弧AB的一个端点A (切点)开始先在外侧滚动到另一个端点B(切点),再旋转到内侧继续滚动,最后转回到初始位置,⊙自转的周数是()。
九年级数学上册《弧长和扇形面积》测试题
复习巩固
1.如图,已知O 的半径OA =6,∠AOB =90°,则∠AOB 所对的弧AB 的长为( )
A .2π
B .3π
C .6π
D .12π
2.如果某钟表的轴心到分针外端点的长为5cm ,那么经过40 min ,分针外端点转过的弧长是( )
A .10π3cm
B .20π3
cm C .
25π3cm D .50π3cm 3.已知圆上一段弧长为5π,它所对的圆心角为100°,则该圆的半径为( )
A .6
B .9
C .12
D .18 4.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.则半径为2的“等边扇形”的面积为( )
A .π
B .1
C .2
D .2π3
5.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为120°,AB 的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( )
A .100πcm 2
B .
4003πcm 2 C .800πcm 2 D .8003
πcm 2
6.在半径为4π
的圆中,45°的圆心角所对的弧长等于__________. 7.若一扇形的面积为12π,半径等于6,则它的圆心角等于______.
8.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于__________.
9.如图,AB 是半圆O 的直径,AB =2R ,C ,D 为该半圆的三等分点,求阴影部分的面积.
能力提升
10.如图,有一长为4cm ,宽为3cm 的长方形木板在桌面上做无滑动的翻滚(顺时针方向),木板上的顶点A 的位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板边沿A 2C 与桌面成30°角,则点A 翻滚到A 2位置时,共走过的路径长为( )
A .10cm
B .3.5πcm
C .4.5πcm
D .2.5πcm
11.如图所示,扇形AOB 的圆心角为120°,半径为2,则图中阴影部分的面积为( )
A .4π33
B .4π233
-C .
4π33 D .4π3 12.如图,分别以Rt △ABC 的三边AB ,BC ,CA 为直径向外作半圆,AB 左边阴影部
分的面积为S1,右边阴影部分的面积和为S2,则()
A.S1=S2
B.S1<S2
C.S1>S2
D.无法确定
13.如图,已知菱形ABCD的边长为1.5cm,B,C两点在扇形AEF的EF上,求BC 的长度及扇形ABC的面积.
参考答案
复习巩固
1.B
2.B 轴心到分针外端点的长为5cm ,即半径R =5cm ,经过40min ,分针转过的圆心角的度数为240°,可求得弧长是20π3cm. 3.B 4.C
5.D
6.1
7.120°
8.π ∵△ABC 为正三角形,∴∠A =∠B =∠C =60°,AB =AC =BC =1.∴60π1π1803
AB BC AC ⨯====. 根据题意可知“凸轮”的周长为三个弧长的和,即凸轮的周长π3π3
AB BC AC =++=⨯=. 9.解:∵AC BD =,
∴∠CDA =∠DAB ,
即CD ∥AB .
∴S △ACD =S △OCD .
∴S 阴影=S 扇形OCD =2
π360
n R 2260ππ3606
R R ==. 能力提升
10.B 由勾股定理,得AB =2234+=5(cm).
第一次翻滚,点A 绕点B 转到点A 1的位置,转过的圆心角为90°,半径是线段AB 的长度;第二次翻滚,点A 1绕点C 转到点A 2的位置,转过的圆心角为90°-30°=60°,半径是3cm ,两次翻滚点A 共走过的路径长是两次转过的弧长之和:
90π560π33.5π180180⋅⋅+(cm).故选B.
11.A 过点O 作OD ⊥AB ,
∵∠AOB =120°,OA =2,
∴∠OAD =90°-
2AOB ∠=180°-1202︒=30°. ∴OD =12OA =12
×2=1, 2222213AD OA OD =-=-=. ∴AB =2AD =23.
∴S 阴影=S 扇形OAB -S △AOB =2120π214π231336023
⨯-⨯⨯=-.故选A. 12.A S 1=π·22π24AB AB ⎛⎫= ⎪⎝⎭
,S 2=π·22
22πππ2244BC AC BC AC ⎛⎫⎛⎫=⋅=+ ⎪ ⎪⎝⎭⎝⎭, ∵△ABC 为直角三角形,
∴AC 2+BC 2=AB 2. ∴2ππ44
AB =(BC 2+AC 2), 即S 1=S 2.
13.解:∵点B ,C 在EF 上,∴AB =AC . ∵四边形ABCD 是菱形,
∴AB =BC ,即△ABC 为等边三角形.∴∠BAC =60°. ∴BC 的长为l =
60π 1.5π1802⨯=(cm), S 扇形ABC =
12lR =12×π2
×1.5=3π8(cm 2).。