《化工原理》课程设计指导书(精馏塔之预热器、冷凝器、再沸器) )资料
- 格式:doc
- 大小:234.00 KB
- 文档页数:10
化工原理课程设计任务书精馏塔本篇文档主要介绍化工原理课程设计任务书中关于精馏塔的要求和内容。
一、设计任务设计一座丙酮-甲醇精馏塔,要求:1. 产品:A级丙酮、B级丙酮、水、甲醇2. 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%3. 操作压力:常压4. 输出流量:1000kg/h,A级丙酮90%,B级丙酮10%5. 设计基准:精馏32个板层二、设计步骤1. 精馏塔的结构设计(1) 塔的类型:管式塔(2) 塔的高度:设定32个板层,按传质条件设计最小高度(3) 填料类型:采用网格填料(4) 塔的直径:根据输入流量、精馏塔高度和填料设计(5) 塔的材质:不锈钢(6) 填料厚度:1.5cm2. 精馏塔的操作参数及控制(1) 操作压力:常压(2) 丙酮的重心温度:58℃(3) 甲醇的重心温度:52℃(4) 塔顶压力:1atm(5) 塔底压力:1atm(6) 板间压力降:0.015atm(7) 蒸汽进口管直径:50mm(8) 汽液分离器直径:100mm(9) 泵的扬程:15m3. 精馏塔的热力学计算(1) 设定板层数:32(2) 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%(3) 设定塔顶压力:1atm(4) 设定塔底压力:1atm(5) 设定塔板温度,参考数值文献或软件计算(6) 根据塔板温度确定物质的蒸汽压(7) 根据物质的蒸汽压计算物质的分馏、回流比等参数4. 精馏塔的动力学模拟(1) 建立模型:使用MATLAB或其他模拟软件建立动力学模型(2) 确定控制方案:根据设定的输出要求,确定控制方案(3) 模拟仿真:进行塔的动态仿真,查找可能的故障及出现的问题(4) 评价:对模拟结果进行评价,并应对出现的问题进行处理三、设计成果1. 绘制精馏塔的结构图:包含填料、板层、进口出口等2. 绘制精馏塔的液相、气相平衡图3. 计算精馏塔流程图:包括输入和输出物质流量、温度、压力等参数4. 编写精馏塔的操作说明:包括操作控制、参数设定、操作步骤等5. 输出精馏塔的动态模拟成果:包括MATLAB或其他模拟软件的代码和仿真结果以上是化工原理课程设计的精馏塔任务书的要求和内容,本文档中介绍了设计步骤和要求,设计成果等部分,可以为读者提供一定帮助,同时也展示了精馏塔设计工作的一般流程和方法。
一、设计方案的确定1.塔型:选用重型浮阀塔F1型浮阀塔的结构简单,制造方便,节省材料,性能良好,广泛用于化工及炼油生产中,现已列入部颁标准(JB1118-68)内。
一般情况下采用重阀,只有在处理量大并且要求压强降得很低的系统(如减压塔)中,采用轻阀。
由于本设计采用常压操作即可完成任务故采用重阀。
重阀采用厚度未2mm的薄板冲制,每阀质量约为33g。
浮阀塔具有以下优点:生产能力大;操作弹性好;塔板效率高;气体压强及液面落差较小;使用周期长;结构简单,便于安装;塔的造价低等。
2.操作压力:常压精馏因为常压下乙醇—水湿液态混合物,其沸点较低(小于100℃),故采用常压精馏就可以分离。
3.进料状态:泡点进料泡点进料的操作容易控制,而且不受季节的影响;另外泡点进料时精馏段和提留段塔径相同,设计和制造比较方便。
4.加热方式:采用间接蒸汽加热5.冷却剂与出口温度:采用25℃常温水为冷却剂,出口温度是40℃6.回流方式:泡点回流泡点回流易于控制,设计和控制是比较方便,而且可以节约能源。
3.1工艺条件和物性参数的计算3.3.1将质量分数转换成摩尔分数质量分数:0.425F X = 0.8346=0.92580.8346+0.1718D X ⨯=⨯⨯B 0.146=0.22120.146+0.918X ⨯=⨯⨯摩尔分数:()F 0.425/46=0.22430.425/4610.425/18x =+- 0.8300D x = 0.1000B x =3.1.2物料衡算摩尔流量:原料处理量=20.0115 1.85/t h -⨯= 故摩尔流量()()185010.42518500.42576.19/4618F kmol h ⨯-⨯=+=由F D B Fx Dx Bx =+ B F D =+ ()0.22430.176.1912.97/0.830.1F B D B x x D Fkmol h x x --==⨯=--()76.1912.9763.22/B F D kmol h =-=-= 质量流量:1850/F kg h = F D B Fx Dx Bx =+ B F D =+471.84/D kg h = 1378.16/B kg h =3.1.3平均分子量()()0.22434610.22431824.28/F M kg kmol =⨯+-⨯= ()()0.834610.831841.24/D M kg kmol =⨯+-⨯= ()0.1460.91820.8/B M kg kmol =⨯+⨯=3.1.4理论塔板数T N 的求取(图解法)乙醇—水气液平衡数据做x-y 图 (1) 最小回流比从下图读得,精馏线的斜率为min min 83340.5904183R R -==+,故min 1.441R =(2) 精馏段方程()min =1.2~2R R ,故取min =1.8 1.8 1.441 2.5938R R =⨯= 则精馏段方程为:y=0.7220.23111D x Rx x R R +=+++ (3) 提留段方程RR D=, 2.593812.9733.64L RD ==⨯=()/kmol h ()()146.61/V L D D R kmol h =+=+=1q =,()'46.61/V V kmol h =='33.6476.19109.83L L qF =+=+=()/kmol h则提留段方程为:''' 2.360.058B L By x x x V V=-=-故得到下图:由图得到全塔共需理论塔板13块,扣除再沸器后理论塔板数12N ,其中精T馏段12块,提留段0块E3.1.5全塔效率T(1)作t-x-y图:(2)计算黏度从t-x-y 图查得78.3C D t =︒,86.5C B t =︒,83.0C F t =︒ 则78.386.582.4C 22D B m t t t ++===︒ 由《流体力学与传热》附录二和P257液体粘度共线图可得水和乙醇在不同温度下的粘度: ()L 82.4C =0.41mPa s μ︒⋅乙醇℃,()L 82.4C =0.3461mPa s μ︒⋅水℃()()()L L +1=0.22430.41+10.22430.34610.360Lm F F x x mPa s μμμ∴=⨯-⨯⨯-⨯=⋅乙醇水(3)相对挥发度:由t-x-y 图上查得,0.8300D x =, 0.84D y *= 0.1000B x =, 0.4385B y *=()()()()10.8410.83 1.07530.8310.841D D D D D y x x y α***-⨯-===⨯-- ()()()()10.438510.17.02850.110.43851B B B B B y x x y α***-⨯-===⨯--2.749m α∴=== 则计算全塔效率为:()0.2450.490.4913T m Lm E αμ-=⨯⋅=3.1.6实际塔板数1224.430.4913T P T N N E ===, 取整25P N = 其中,精馏段:12240.4913N ==精, 提留段:1N =精 3.1.7塔的工艺条件以及无聊数据计算(一)、操作压强因为常压下乙醇—水湿态混合物,其沸点较低(小于100C ︒),故采用常压精馏就可以分离。
化工原理课程设计精馏塔
化工原理课程设计:精馏塔
一、设计题目
设计一个年产10万吨的乙醇-水溶液精馏塔。
该精馏塔将采用连续多级蒸馏的方式,将乙醇与水进行分离。
乙醇的浓度要求为95%(质量分数),水含量要求低于5%。
二、设计要求
1. 设计参数:
操作压力:常压
进料流量:10万吨/年
进料组成:乙醇40%,水60%(质量分数)
产品要求:乙醇95%,水5%
2. 设计内容:
完成精馏塔的整体设计,包括塔高、塔径、填料类型、进料位置、塔板数、回流比等参数的计算和选择。
同时,还需完成塔内件(如进料口、液体分布器、再沸器等)的设计。
3. 绘图要求:
需要绘制精馏塔的工艺流程图和结构示意图,并标注主要设备参数。
4. 报告要求:
完成设计报告,包括设计计算过程、结果分析、经济性分析等内容。
三、设计步骤
1. 确定设计方案:根据题目要求,选择合适的精馏塔类型(如筛板塔、浮阀塔等),并确定进料位置、塔板数和回流比等参数。
2. 计算塔高和塔径:根据精馏原理和物料性质,计算所需塔高和塔径,以满足分离要求。
3. 选择填料类型:根据物料的特性和分离要求,选择合适的填料类型,以提高传质效率。
4. 设计塔内件:根据塔板数和填料类型,设计合适的进料口、液体分布器、再沸器等塔内件。
5. 进行工艺计算:根据进料组成、产品要求和操作条件,计算每块塔板的温度和组成,以及回流比等参数。
6. 进行经济性分析:根据设计方案和工艺计算结果,分析项目的投资成本和运行成本,评估项目的经济可行性。
化工原理课程设计指导书一、课程设计概述本化工原理课程设计旨在培养学生运用所学化工原理知识,分析和解决实际问题的能力。
通过独立完成一个化工工艺流程的设计,学生将对化工原理的理论知识和技术实践进行有机结合。
二、课程设计目标1.深入理解化工原理的基本概念,掌握化工原理的基本理论。
2.培养学生的实践能力,提高化工工艺流程设计的能力。
3.培养学生的团队合作和沟通能力,促进学生的综合素质发展。
三、课程设计内容本课程设计内容包括以下三个主要部分:1. 项目选择学生根据自己的兴趣和能力,选择一个化工领域相关的课题或实际问题作为设计项目。
课题可以是某种化工产品的生产工艺流程设计,也可以是某种化工废水的处理工艺流程设计等。
2. 设计方案学生根据所选课题,进行必要的文献调研和理论分析,提出相应的设计方案。
设计方案应包括工艺流程图、物料平衡、能量平衡、设备选型和设备布局等内容。
3. 设计报告学生根据设计方案,撰写设计报告。
设计报告应包括项目背景介绍、设计原理和方法、设计结果和分析等内容。
四、课程设计流程本课程设计将按照以下流程进行:1. 确定项目学生根据自身兴趣和能力,选择一个化工相关课题或实际问题作为设计项目。
2. 文献调研学生进行必要的文献调研,了解相关领域的最新研究进展,并分析现有设计方案。
3. 设计方案学生根据文献调研结果,提出自己的设计方案。
设计方案应包括详细的工艺流程图、物料平衡、能量平衡、设备选型和设备布局等内容。
4. 设计实施学生按照设计方案,进行设计实施。
实施过程中应加强沟通与合作,发挥团队的智慧和创造力。
5. 报告撰写学生根据设计实施的结果,撰写设计报告。
报告应包括项目背景介绍、设计原理和方法、设计结果和分析等内容。
6. 成果展示学生根据课程要求举行成果展示活动,展示设计成果和分享设计经验。
五、课程设计评分标准本课程设计将根据以下几个方面进行评分:1.设计方案的创新性和可行性。
2.设计实施的完整性和实际操作能力。
江西理工大学
化工原理课程设计
说明书
专业:生物工程
学生班级:二○○级班学生姓名:
指导教师:陈喜蓉
冶金与化学工程学院
20 年月日
目录
1.化工原理课程设计任务书 (1)
2.概述与设计方案简介 (2)
3.设计条件及主要物性参数表 (3)
4.工艺设计计算(分章节详细列出) (4)
5.辅助设备的计算和选型 (5)
6.设计结果汇总表: (6)
6.1系统物料衡算表; (6)
6.2设备操作条件及结构尺寸一览表 (7)
7.设计评述(对设计的评价和设计体会) (8)
8.工艺流程图和主要设备的工艺条件图 (9)
参考文献 (10)
主要符号说明 (11)
1.化工原理课程设计任务书工艺条件:
设计要求:
2.概述与设计方案简介(填写正文内容)
3.设计条件及主要物性参数表(填写正文内容)
4.工艺设计计算(分章节详细列出)(填写正文内容)
5.辅助设备的计算和选型(如果有就填,没有则删除该部分内容)
6.设计结果汇总表:6.1 系统物料衡算表;(填写正文内容)
6.2 设备操作条件及结构尺寸一览表(填写正文内容)
7.设计评述(对设计的评价和设计体会)(填写正文内容)
8.工艺流程图和主要设备的工艺条件图(填写正文内容)
参考文献
主要符号说明(如果设计中使用了自定义的符号,则有必要解释说明)。
化工原理课程设计说明书设计题目:设计者:专业:学号:指导老师:200 年月日化工原理课程设计任务书设计题目:设计条件:处理量:进料浓度:处理要求:塔顶浓度(质量)塔底浓度(质量)年工作小时: 7200小时专业:学号:姓名:指导老师:200 年月日目录一、 设计方案简介 1、 精馏塔的操作压力工业精馏过程,按操作压力分类,可分为加压、常压、和真空精馏。
常压下为气态或常压下泡点为室温的混合物,常采用加压蒸馏;常压下,泡点为室温至150℃左右的混合液,一般采用常压蒸馏。
对于分离甲苯-苯的混合液,进料泡点为90.5℃,而且,常压下两物质相对挥发度大,容易分离,所以选择常压精馏,塔顶压力设定为105.325kpa.由于精馏塔选择筛板塔,所以近似认为每层塔板压力降为0.7kpa. 2、进料热状况的确定精馏操作有五种进料方式,分别是冷液加料、泡点进料、汽液混合物进料、饱和蒸汽进料和过热蒸汽加料。
本次设计采用泡点进料即饱和液体进料,这是因为这样操作比较容易,而且在恒摩尔流假设下,精馏段与提馏段上升蒸汽的摩尔流量相等,因此塔径基本相等,在制造上比较方便。
3、精馏塔加热与冷却介质的确定精馏塔加热我们一般采用饱和水蒸气加热,不同的压力对应不同温度的饱和水蒸气。
采用水蒸气的主要原因是第一、物料加热后的温度不是很高;第二、水蒸气比较容易获取,环保清洁。
本设计主要用0.3Mpa 的饱和水蒸气作为加热介质。
通常用的冷却介质主要是冷却水和空气,在选择冷却介质的时候,因地制宜,兰州市地处温带,夏天室外平均温度23℃,因此计算选用20℃冷却水,选择升温15℃,即冷却氺的出口温度为35℃. 4、回流比的确定塔顶回流是保证精馏塔连续稳态操作的必要条件之一,并且回流比是影响精馏分离设备投资费用和操作费用的重要因素,也影响混合液的分离效果。
适宜的回流比是操作费用和设备费用之和为最低时候的回流比。
通常适宜回流比的数值范围为:min )0.2~1.1(R R =由于厂址选择是在兰州市,甲苯和苯也容易分离。
化工原理课程设计任务书(一)设计题目在抗生素类药物生产过程中,需要用甲醇溶液洗涤晶体,洗涤过滤后产生废甲醇溶液,其组成为含甲醇46%、水54%(质量分数),另含有少量的药物固体微粒。
为使废甲醇溶液重复利用,拟建立一套填料精馏塔,以对废甲醇溶液进行精馏,得到含水量≤0.3%(质量分数)的甲醇溶液。
设计要求废甲醇溶液的处理量为 3.6万吨/年,塔底废水中甲醇含量≤0.5%(质量分数)。
(二)操作条件1)操作压力常压2)进料热状态自选3)回流比自选4)塔底加热蒸汽压力 0.3Mpa(表压)(三)填料类型因废甲醇溶液中含有少量的药物固体微粒,应选用金属散装填料,以便于定期拆卸和清洗。
填料类型和规格自选。
(四)工作日每年工作日为300天,每天24小时连续运行。
(五)设计内容1、设计说明书的内容1)精馏塔的物料衡算;2)塔板数的确定;3)精馏塔的工艺条件及有关物性数据的计算;4)精馏塔的塔体工艺尺寸计算;5)填料层压降的计算;6)液体分布器简要设计;7)精馏塔接管尺寸计算;8)对设计过程的评述和有关问题的讨论。
摘要甲醇最早由木材和木质素干馏制的,故俗称木醇,这是最简单的饱和脂肪组醇类的代表物。
无色、透明、高度挥发、易燃液体。
略有酒精气味。
近年来,世界甲醇的生产能力发展速度较快。
甲醇工业的迅速发展,是由于甲醇是多种有机产品的基本原料和重要的溶剂,广泛用于有机合成、染料、医药、涂料和国防等工业。
由甲醇转化为汽油方法的研究成果,从而开辟了由煤转换为汽车燃料的途径。
近年来碳化学工业的发展,甲醇制乙醇、乙烯、乙二醇、甲苯、二甲苯、醋酸乙烯、醋酐、甲酸甲酯和氧分解性能好的甲醇树脂等产品,正在研究开发和工业化中。
甲醇化工已成为化学工业中一个重要的领域。
目前,我国的甲醇市场随着国际市场的原油价格在变化,总体的趋势是走高。
随着原油价格的进一步提升,作为有机化工基础原料——甲醇的价格还会稳步提高。
国内又有一批甲醇项目在筹建。
这样,选择最好的工艺利设备,同时选用最合适的操作方法就成为投资者关注的重点。
第一章列管换热器设计概述1.1.换热器系统方案的确定进行换热器的设计,首先应根据工艺要求确定换热系统的流程方案并选用适当类型的换热器,确定所选换热器中流体的流动空间及流速等参数,同时计算完成给定生产任务所在地需的传热面积,并确定换热器的工艺尺寸且根据实际流体的腐蚀性确定换热器的材料,根据换热器内的压力来确定其壁厚。1.1.1全塔流程的确定从塔底出来的釜液一部分进入再沸器再沸后回到精馏塔内,一部分进入到冷却器中。为了节约能源,提高热量的利用率,采用原料液冷却塔底釜液,这样不仅冷却了釜液又加热了原料液,既可以减少预热原料所需要的热量,又可减少冷却水的消耗。从冷却器出来的釜液直接储存,从冷却器出来的原料液再通往原料预热器预热到所需的温度。塔顶蒸出的乙醇蒸汽通入塔顶全凝器进行冷凝,冷凝完的液体进入液体再分派器,其中的2/3回流到精馏塔内,另1/3进入冷却器中进行冷却,流出冷却器的液体直接储存作为产品卖掉。1.1.2加热介质冷却介质的选择在换热过程中加热介质和冷却介质的选用应根据实际情况而定。除应满足加热和冷却温度外,还应考虑来源方面,价格低廉,使用安全。在化工生产中常用的加热剂有饱和水蒸气、导热油,冷却剂一般有水和盐水。综合考虑,在本次设计中的换热器加热介质选择饱和水蒸气,冷却介质选择水。1.1.3换热器类型的选择列管式换热器的结构简单、牢固,操作弹性大,应用材料广,历史悠久,设计资料完善,并已有系列化标准,特别是在高温、高压和大型换热设备中占绝对优势。所以本次设计过程中的换热器都选用列管式换热器。由于本次设计过程中所涉及的换热器的中冷热流体温差不大(小于70℃),各个换热器的工作压力在 1.6MP以下,都属于低压容器,因固定管板式换热器两端管板与壳体连在一起,这类换热器结构简单、价格低廉、管子里面易清洗,所以可选择列管式换热器中的固定管板式换热器。1.1.4流体流动空间的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)。(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。(3) 压强高的流体宜走管内,以免壳体受压。(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。1.1.5流体流速的确定流体的流速对传热来说非常的重要,因为在滞留层的传热是一热传导为主,热传导的传热速率小于对流传热。所以如果流速太小它形成的滞留层会很厚,会大大减小传热速率,又因如果流速太小杂质会在壁面沉积也会导致传热速率的下降,提高流体在换热器中的流速,可以增大对流体传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增加,所需要传热面积减少,设备费用降低。但是流速增加,流体阻力将相应加大,使操作费用增加。所选择流速时应该综合考虑。下表列出工业一般采用的流体流速范围。1.1.6换热器材质选择在进行换热器设计时,换热器各种零、部件的材料,应根据设备的操作压力、操作温度。流体的腐蚀性能以及对材料的制造工艺性能等的要求来选取。当然,最后还要考虑材料的经济合理性。一般为了满足设备的操作压力和操作温度,即从设备的强度或刚度的角度来考虑,是比较容易达到的,但材料的耐腐蚀性能,有时往往成为一个复杂的问题。在这方面考虑不周,选材不妥,不仅会影响换热器的使用寿命,而且也大大提高设备的成本。至于材料的制造工艺性能,是与换热器的具体结构有着密切关系。一般换热器常用的材料,有碳钢和不锈钢。碳钢价格低,强度较高,对碱性介质的化学腐蚀比较稳定,很容易被酸腐蚀,在无耐腐蚀性要求的环境中应用是合理的。如一般换热器用的普通无缝钢管,其常用的材料为10号和20号碳钢。在本次设计中所涉及的换热器中的流体都是乙醇或水,不存在腐蚀性。所以本次设计中的换热器的管材和壳材都选用碳钢。1.1.7换热器壁厚的确定一般内压容器厚度由应满足刚度和压力的要求,本次设计中所用到的换热器内部压降都不太大,都属于常压容器,所以换热器的壁厚只要满足刚度要求即可。1.2固定管板式换热器的结构1.2.1管程结构1.2.1.1换热器布置和排列间距常用换热管规格有ф19×2 mm,ф25×2.5 mm(碳钢10)。小直径的管子可以承受更大的压力,而且管壁较薄;同时,对于相同的壳径,可排列较多的管子,因此单位体积的传热面积更大,单位传热面积的金属耗量更少。所以,在管程结垢不很严重以及允许压力降较高的情况下,采用ф19mm×2mm直径的管子更为合理。如果管程走的是易结垢的流体,则应常用较大直径的管子,有时采用ф38mm×2.5mm 或更大直径的管子。这次用到的换热器的压力不大,换热器中流体没有腐蚀性,所以选择ф25×2.5 mm和ф19mm×2mm碳钢管。换热管管板上的排列方式有正方形直列、正方形错列、三角形直列、三角形错列和同心圆排列,正三角形排列结构紧凑,传热效果好;正方形排列便于机械清洗;同心圆排列用于小壳径换热器,外圆管布管均匀,结构更为紧凑。综合各种因素选择正三角形的排列方式。1.2.1.2管子与管板连接方式的选择管板的作用是将受热管束连接在一起,并将管程和壳程的流体分隔开来。管板与管子的连接可胀接,焊接和胀焊并用。胀接法是利用胀管器将管子扩胀,产生显著的塑性变形,靠管子与管板间的挤压力达到密封紧固的目的。胀接法一般用在管子为碳素钢,管板为碳素钢或低合金钢,设计压力不超过 4 MPa,设计温度不超过350℃的场合。焊接法在高温高压条件下更能保证接头的严密性。这次用到的换热器内流体温度不高,压力不大,所以选择胀接的方式连接管子和管板。1.2.1.3壳程结构壳程内的结构,主要由折流板、支承板、纵向隔板、旁路挡板及缓冲板等元件组成。由于各种换热器的工艺性能、使用的场合不同,壳程内对各种元件的设置形式亦不同,以此来满足设计的要求。如当壳程走的是蒸汽时不安装折流板。这次设计中的原料预热器和塔顶全凝器的壳程走的是蒸汽所以不安装折流板。介质在壳程的流动方式有多种型式,单壳程型式应用最为普遍。如壳侧传热膜系数远小于管侧,则可用纵向挡板分隔成双壳程型式。1.3列管换热器的设计计算1.3.1换热器设计步骤1.了解换热流体的物理化学性质和腐蚀性能。2.由热平衡计算传热量的大小,并确定第二种换热流体的用量。3.决定流体通入的空间。4.计算流体的定性温度,以确定流体的物性数据。5.初算有效平均温差,一般先按逆流计算,然后再校核,并根据温度差校正系数不应小于0.8的原则,决定壳程数。6.选取经验的传热系数K值, 计算传热面积。7.由系列标准选取换热器的基本参数。所选换热器面积应为计算出的面积的1.1-1.25倍。8. 核算压强降,校核传热系数,包括管程、壳程对流传热系数的计算。假如核算的K值与原选的经验值比值在1.10~1.30之间,就不再进行校核;如果相不在这个范围,则需重新假设K值并重复上述6以下步骤。1.3.2计算设计主要公式Q=KSΔtm式中 Q——传热速率(即热负荷),W;K——总传热系数,W/(m2.℃);S——与K值对应的换热器传热面积,m2;Δtm——平均温度差,℃。1.3.2.1 热负荷(传热速率)Q无相变传热Q=WhCph(T 1-T 2)=WcCpc(t 2-t 1)相变传热(蒸汽冷凝且冷凝液在饱和温度下离开换热器) Q=Whr=WcCpc(t 2一t 1) 式中W ——流体的质量流量,kg/h;Cp ——流体的平均定压比热容,J/(kg·℃); T ——热流体的温度,℃; T ——冷流体的温度,℃;r ——饱和蒸气的冷凝潜热,kJ/kg 。下标h 和c 分别表示热流体和冷流体,下标1和2分别表示换热器的进口和出口。 1.3.2.2平均温度差Δtm一侧恒温,逆流与并流的平均温差相等:两侧变温,错流和折流的平均温差用逆流平均温差校正: Φ△t ——温差校正系数,Φ△t=f (P,R),其中:1.3.2.3 总传热系数K初选换热器时,应根据所要设计的换热器的具体操作物流选取K 的经验数值,选定的K 的经验值为K 选。确定了选用的换热器后,需要对换热器的总传热系数K 进行核算,总传热系数K 的计算按下列公式:oso m o i o si i i o o h R kd bd d d R d h d K 11++++⨯=式中 K 。——基于换热器外表面积的总传热系数,w/((m 2.℃);h o 、h i ——分别为管外及管内的对流传热系数,w/(m 2·℃); R so 、R si —一分别为管外侧及管内侧表面上的污垢热阻,(m 2.℃)/w; d o 、d i 、d m ——分别为换热器列管的外径、内径及平均直径,m; b ——列管管壁厚度, m;1212ln t t t t t m ∆∆∆-∆=∆冷流体出进口温度差热流体进出口温度差度的差热流体与冷流体进口温冷流体进出口温度差=--==--=12211112t t T T R t T t t P 逆,m t m t t ∆=∆∆ϕk 一列管管壁的导热系数,w /(m ·℃)。 1.3.2.4对流传热系数(1)对于低粘度流体(μ小于或等于2倍常温水的粘度)nii ii nd k h Nu Pr Re 023.0Pr Re 023.08.08.0⨯⨯⨯==当流体被加热时,n=0.4 当流体被冷却时,n=0.3 式中:ρ、μ——分别为流体的密度和粘度,kg/m 3、Pa ·s;k 、Cp ——分别为流体的导热系数和比热容,w/(m ·℃)、J/kg •℃; u ——管内流速.m/s; d i ——列管内径,m 。应用范围:Re>l0000,Pr=0.7-160,管长与管径之比L/d>60,若L/d<60可将1-10式算出的α乘以(1+ (d/L)0.7)特征尺寸:管内径d定性温度:取流体进、出口温度的算术平均值。 (2)蒸汽在水平管束上冷凝时的冷凝传热系数若蒸汽在水平管束上冷凝,用下式计算冷凝传热系数:413232)(725.0td n gk r h o c o ∆⨯=μρ式中:k ——冷凝液的导热系数,w/(m ·℃); ρ——冷凝液的密度,kg/m3。; μ——冷凝液的粘度,Pa ·s;γ——饱和蒸汽的冷凝潜热,kJ/kg;Δt ——蒸汽的饱和温度与壁温之差,Δt=t s -t w n c ——水平管束在垂直列上的管数;75.01775.0375.0275.0117321n n n n n n n n n c ++++++++=1.3.2.5流体压力降的计算式 (1)管程压力降()p s t i N N F P P P 21∆+∆=∆∑⎪⎪⎭⎫ ⎝⎛=∆222u P ρξ--∆1P 直管中因摩擦阻力引起的压力降Pa ; --∆2P 回弯管中因摩擦阻力引起的压力降,Pa;--t F 结垢校正系数,无因次,φ25×2.5mm 的换热管取1.4;φ19×2mm 的换热管取1.5;--S N 串联的壳程数;--p N 管程数。ξ—— 阻力系数,列管换热器管内ξ=3 (2)壳程压力降()S s i N F P P P '2'1∆+∆=∆()225.3212'22'1o B o S c o u D z N P u N n Ff P ρρ ⎝⎛⎪⎭⎫-=∆+=∆ ()Nn R R f c e e o 1.123000.5228.0=>⨯=---∆'1P 流体横过管束的压力降Pa ;--∆'2P 流体流过折流挡板缺口的压力降Pa ;--s F 结垢校正系数,无因次,对液体,取1.15;对气体,取1.0; F —管子排列方式对压力降的校正系数:三角形排列F=0.5;正方形排列F=0.3;正方形错列F=0.4;--o f 壳程流体的摩擦系数; --c n 横过管束中心线的管数 z- -折流挡板间距,m; D- -壳体直径,m;--B N 折流挡板数目;--o u 按壳程流通面积S o 计算的流速,m/s 。一般说来,流经列管式换热器允许的压强降,液体为10—100 kPa,气体为1—10 kPa 左右。第二章换热器工艺计算2.1全塔物料恒算2.1.1全塔组成计算生产任务为年产2.7万吨,组成不低于92%的乙醇。原料液为50%的乙醇溶液,釜残液为0.5%的乙醇溶液。以摩尔流量为基准进行物料衡算(生产期为一年300天,一天24小时连续运行)。已知乙醇的摩尔质量为46g/mol,水的摩尔质量为18g/mol。则全塔组成为:原料液:M塔顶馏岀液:釜残液:塔顶产量:则根据:可得: W=48.95215mol/sF=74.41515mol/s精馏系统的回流比为:R=3塔顶蒸汽泡点回流:q=1=125.341mol/s=125.341mol/s综上所述,转化为质量流量为F=1.92550kg/sD=1.04167kg/sV=3.12500kg/sW=0.88384kg/sL=2.08333kg/s2.1.2塔底冷却器计算原料液首先通过塔底冷却器进行预热,进行原料液的回收利用。设0.5%乙醇由99.3冷却到35,则可查得各个温度下元液定性温度的比热,利用试差法求出原料液可预热的温度。查得:原料液的定性温度为:其比热为:4.18kJ/kg即 0.88384查得 5320℃时即原料液通过塔釜可预热到53即2.2预热器工艺设计2.2.1.设计任务和条件2.2.1.1设计任务处理能力:将1.9255kg/s的50%的乙醇溶液由53℃预热到81.9℃。设备形式:列管式换热器。热流体的进出口温度都是120℃,原料液的进口温度是53℃,出口温度为81.9℃。由于换热器中两流体温度差不大,壳程压力较小,故可选择固定管板式换热器。2.2.1.2操作条件预热器是把经过塔底冷却器已被加热到53℃的原料液预热到泡点81.9℃,采用120℃的饱和蒸汽进行加热。2.2.1.3设计要求选择适宜的列管换热器并进行核算。2.2.2设计计算2.2.2.1确定流体流动空间设计任务的热流体为水蒸汽,冷流体为原料液乙醇,为使原料液出口温度达到泡点,令蒸汽走壳程,原料液走管程。由于蒸汽比较干净不易结垢,所以蒸汽走壳程以便于及时排除冷凝液,原料液中可能含有杂质、易结垢,所以原料液走管程便于清洗管子。因碳钢管价格低强度好,预热器中的流体没有腐蚀性,所以选用碳钢管。2.2.2.2确定流体物性数据50%乙醇溶液定性温度:67.45℃水蒸气定性温度:120℃查得的物性参数为:名称密度ρ定压比热Cp 导热系k 粘度μ汽化热rKg/KJ/(Kg·℃) W/(m·℃) Pa·s KJ/Kg加热蒸汽 1.121 2.10 0.0275 2.42205.2冷凝水943.10 4.24 0.6862 —原料液853.24 4.170.3280—预热器的工艺计算备注(1)热负荷计算水蒸气流量:(2)计算有效平均温度差加热蒸汽T: 120 ℃120℃原料液t: 81.9 ℃53℃Δt 38.1 ℃67℃(3)选取经验传热系数K值根据管程走乙醇溶液,壳程走水蒸气,总传热系数K=580~2910 W/(m2·℃),暂取K=720 W/(m2·℃)。(4)估算换热面积(5)初选换热器规格由于两流体温差大于50℃,可选用带有热膨胀节的固定管板式换热器,初选换热器型号为:JB/T4715—92主要参数如下:外壳直径273mm 公称压力 2.50MPa公称面积 6.4 m2管子尺寸φ19×2管子数56 管长2000mm管中心距25 mm 管程数Np 2管子排列方式正三角形管程流通面积0.0049 m2实际换热面积:S0=nπd0(L-0.06)=56×3.14×0.019×(2-0.1)=6.35 m2采用此换热面积的换热器,则要求过程的总传热系数为: Wc=F=1.9255kg/s Q=232048 W采取逆流流动, 提高传热效果122211tTttTt-=∆-=∆根据所需换热面积,选择适宜的换热器。一般说来,流经列(6)核算压降①管程压强降∑ΔP i=(ΔP1+ΔP2)Ft·Ns·Np 其中Ft=1.5,Ns=1,Np=2管程流速对于碳钢管,取相对粗糙度ε=0.1,0.10.006715idε==由λ-Re关系图查得,λ=0.039=(471.46+271.99)×1.5×1×2=2230.35Pa(<50 KPa)②壳程压强降管式换热器允许的压强降,液体为10-100kpa,气体为1-10kpa左右。列管换热器内阻力系数为3。其中Fs=1.0,Ns=1管子为正三角形排列 F=0.5壳程流通面积 222220.273560.0190.04264444o o A D n d m ππππ=⋅-⋅⋅=⋅-⋅⋅=壳程流速而=0.51=9.92Pa(<10 KPa)计算结果表明,管程和壳程的压降均能满足条件 (7) 核算总传热系数①管程对流传热系数13672()由于水蒸气汽化热比较大,原料液已经过塔釜残液预热。因此流量较小,从而使压降较小。雷诺数越大,流体湍动程度越大,导热效果越好。壳程气体冷凝为液膜,大大影响了流体间的换热效果。因此,计算壳程传热系数需用冷凝液的物性参数进行计算。0.023=2020.09②壳程对流传热系数=0.725=11717.61③污垢热阻查书附录有Rsi=1.7197⨯410-(m2·℃)/W Rso=1.7197⨯410-(m2·℃)/W④总传热系数K=则故所选的换热器是合适的,安全系数为(8)核算面积一般在1.10-1.25之间,否则需另选K值。管程出口接管也可选用此标准管径。则 故所选换热器合适,面积裕量为:选择结果:选用带有热膨胀节的固定管板式换热器,型号:JB/T4715—92。(9)预热器的接管选择 ①管程进口接管选择换热器的接管选择时,对于液体来说速度一般在1-3m/s 。由于管程流体为原料液,则进出口接管相同,取进口速度为u=2.0m/s则由24i V d u π=⋅⋅,可得:根据规格选取标准管径则可知,所选管径适合。②壳程进口接管的选择换热器的接管选择时,对于气体来说速度一般为10-30m/s 。由于壳程为水蒸气,则取进口速度为u=25 m/s 。则由24i V d u π=⋅⋅,可得:根据规格选取标准管径则可知,所选的管径合适。③壳程出口接管的选择壳程出口为冷凝液则取进口速度为u=1.5 m/s 可得:根据规格选取标准管径则可知,所选管径适合2.3全凝器工艺设计2.3.1设计任务和条件2.3.1.1设计任务处理能力:冷凝3.125Kg/s的92%的乙醇溶液。设备形式:列管式换热器。由于热流体进出口温度都为78.3,冷流体进口温度15,出口温度为35。冷热流体温度差异不大,壳程压降较小,因此可以采用固定管板式换热器。2.3.1.2操作条件92%乙醇:冷凝温度78.3冷凝液于饱和温度下离开冷凝器。冷却介质:水。入口温度15,设定出口温度35。允许压降:液体10-100kPa,气体1-10kPa。2.3.1.3设计要求选择适宜的列管换热器并进行核算。2.3.2.设计计算此为一侧流体恒温的列管式换热器设计。2.3.2.1确定流体流动空间冷却水走管程,乙醇蒸汽走壳程。由于蒸汽比较干净不易结垢,乙醇蒸汽通过壳壁面向空气中散热,提高冷凝效果的同时可以及时排除冷凝液。原料液中可能含有杂质、易结垢,所以原料液走管程便于清洗管子。因碳钢管价格低强度好,预热器中的流体没有腐蚀性,所以选用碳钢管。2.3.2.2确定流体物性数据水的定性温度: 25℃92%乙醇定性温度:78.3℃根据定性温度查得的物性参数为:名称密度ρKg/定压比热CpKJ/(Kg·℃)导热系kW/(m·℃)粘度μPa·s汽化热rKJ/Kg乙醇蒸汽 1.4040 —— 1.052—饱和乙醇750 4.24 0.1780 992液体水996.95 4.17850.6072—冷凝器的工艺计算备注(1)热负荷计算Q h = V ·r = 3.125 3.100×106 W冷却水耗量 Wc=hp Q C t⋅∆=(2)计算有效平均温度差92%乙醇蒸汽 T:78.3 ℃ 78.3℃ 水 t: 35 ℃ 15℃ Δt 43.3 ℃ 63.3℃(3)选取经验传热系数K 值根据管程走水溶液,壳程走乙醇蒸气,总传热系数K=470~815 W/(m 2·℃),暂取K=750W/(m 2·℃) (4)估算换热面积(5)初选换热器规格由于两流体温差大于50℃,可选用带有热膨胀节的固定管板式换热器,初选换热器型号为:JB/T4715—92主要参数如下: 外壳直径 600mm 公称压力 2.50MPa公称面积 80.1m 2 管子尺寸 φ25×2.5 管子数 232 管长 4500mm 管中心距 32 mm 管程数Np 2 管子排列方式正三角形管程流通面积0.0364 m 2实际换热面积:S 0=n πd 0(L-0.06)=232×3.14×0.025×(4.5-0.1)=80.13 m 2 采用此换热面积的换热器,则要求过程的总传热系数为:Q=3100000 W采取逆流流动,提高传热效果122211t T t t T t -=∆-=∆根据所需换热面积,选择适宜的换热器。(6)核算压降①管程压强降∑ΔP i=(ΔP1+ΔP2)Ft·Ns·Np其中Ft=1.4,Ns=1,Np=2管程流速对于碳钢管,取相对粗糙度ε=0.1,由λ-Re关系图查得,λ=0.035=(4100.00+1561.95×1.4×1×2=15852.00Pa(<50 KPa)②壳程压强降其中Fs=1.0,Ns=1,管子为正三角形排列F=0.5取折流挡板间距z=0.4 ,0.150.6,1=10.25 一般说来,流经列管式换热器允许的压强降,液体为10-100kpa,气体为1-10kpa 左右。列管换热器内阻力系数为3。增加折流挡板可以加大流体流速并提高湍动程度,致使壳程对流传热系数提高。壳程流通面积壳程流速=0.5=10.25(3.5 2)= 1549.68Pa=4606.84Pa(<10 KPa)计算结果表明,管程和壳程的压降均能满足条件。(7)核算总传热系数①管程对流传热系数228940.023雷诺数越大,流体湍动程度越大,导热效果越好。壳程气体冷凝为液膜,大大影响了流体间的换热效果。因此,计算壳程传热系数需用冷凝液的物性参数进行计算。=4467.59②壳程对流传热系数=0.725=2167.48③污垢热阻查书附录有:Rsi=1.7197⨯410-(m2·℃)/W Rso=1.7197⨯410-(m2·℃)/W④总传热系数K=则故所选的换热器是合适的,安全系数为(8)核算面积则一般在1.10-1.25之间,否则需另选K值。故所选换热器合适,面积裕量为:选择结果:选用带有热膨胀节的固定管板式换热器,型号:JB/T4715—92 (8)全凝器的接管选择①管程进口接管选择换热器的接管选择时,对于液体来说速度一般在1-3m/s 。由于管程流体为原料液,则进出口接管相同,取进口速度为u=2.0m/s则由24i V d u π=⋅⋅,可得:根据规格选取标准管径:则可知,所选管径适合。②壳程进口接管的选择换热器的接管选择时,对于气体来说速度一般为10-30m/s 。由于壳程为水蒸气,则取进口速度为u=30 m/s 。则由24i V d u π=⋅⋅,可得:根据规格选取标准管径则可知,所选的管径合适。③壳程出口接管的选择壳程出口为冷凝液则取进口速度为u=2.0 m/s, 可得:根据规格选取标准管径:则可知,所选管径适合。2.4.1离心泵的体积流量计算查得原料液的物性参数为:4.306Pa s2.4.1根据伯努利方程式,计算泵的压头已知原料液的输送高度为20m,管路总长100m。根据工艺流程图可知其中有7个弯头,3个阀门,根据预热器接管计算,可知输送管为的不锈钢管。原料液储罐内液面恒定,上方表压为101.3kpa,精馏塔进料口处塔内表压为121.0kpa。以储罐液面为水平基准面:式中:,m/s,。而 2.09m/s①直管阻力损失:雷诺数:对于碳钢管,取相对粗糙度ε=0.1,由λ-Re关系图查得,λ=0.027。∑=0.027=16.25m②局部阻力损失:7个弯头:Le=7 1.5=10.5m2个截止阀:Le=215=30m1个标准阀:由工艺流程图确定弯头与阀门数目。)=7.92m③冷却器阻力损失:④预热器阻力损失:则==16.25+7.92+4.06+0.27=28.5m=20+=51.076m由于原料液密度小于水的密度,所以不需要核算轴功率。因此,所需泵的流量为,扬程为51.076m。由于离心泵输送的是50%乙醇溶液,应该选用油泵。则根据Y型离心油泵性能表可知:型号:50Y-60离心泵的主要参数转速n/(r/min)流量Q/( m3/h)扬程H/m效率η/%轴功率kw(NPSH)rm2950 12.5 60 35 5.95 3.03.1换热器设计结果3.1.1原料预热器主要结构尺寸和计算结果3.1.2塔顶全凝器主要结构尺寸和计算结果设计心得课程设计是我们专业课程知识的综合训练,是课本知识的一个升华。通过课程设计,我们综合运用自己所学的专业知识与生产实际。同时锻炼了自己独立工作的能力。对我们是一个很大的锻炼与提高。在课设过程中,我深刻感受到了书本知识在现实面前是那么地暗淡无光。自己在设计过程中不仅需要遵守化工原理的思路与方法,而且设计需要与实际相结合,根据现实情况选择泵、换热器、是否需要热膨胀节等等问题。同时,我还明白了做学问必须严格谨慎,不怕吃苦。我们在换热器计算过程中需要不断校核换热系数,这不仅锻炼了我们的耐心,而且帮助我们思考问题,怎么样才能快速选出自己需要的换热器。还有本次课程设计的过程中,我们积极查阅各种各种资料,这对我们设计与学习帮助很大。作为一名化工专业大三的学生,我觉得能够做这样的课设设计师十分有意义的。在已度过的三年大学生活里我们大多数接触的是专业基础课,我们在课堂上掌握的仅仅是专业基础课的理论面,如何去面对现实中的各种化工设备的机械设计?如何把我们所学到的专业基础理论知识用到实践中去呢?我想做类似的课程设计就为我们提供了良好的实践平台。短短的两周课程设计,使我发现了自己所掌握的知识是真正如此的缺乏,综合应用所学的专业知识能力的不足。做学问过程中非常浮躁,这都是我今后需要克服与改正的问题。相信此次设计训练对自己的今后工作都会有一定的帮助。最后,在此感谢老师给予我们的帮助,给予我们这次锻炼的宝贵机会。参考文献[1]柴诚敬,张国亮主编.化工流体流动与传热.化学工业出版社.2007年.。
前言化工生产中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质。
生产中为了满足储存,运输,加工和使用的需求,时常需要将这些混合物分离为较纯净或几乎纯态的物质。
精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。
精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。
实现原料混合物中各组成分离该过程是同时进行传质传热的过程。
本次设计任务为设计一定处理量的分离四氯化碳和二硫化碳混合物精馏塔。
板式精馏塔也是很早出现的一种板式塔,20世纪50年代起对板式精馏塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。
与泡罩塔相比,板式精馏塔具有下列优点:生产能力(2 0%——40%)塔板效率(10%——50%)而且结构简单,塔盘造价减少40%左右,安装,维修都较容易。
化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。
在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。
在设计过程中应考虑到设计的业精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。
节省能源,综合利用余热。
经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。
另一方面影响到所需传热面积的大小。
即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。
本课程设计的主要内容是过程的物料衡算,工艺计算,结构设计和校核。
【精馏塔设计任务书】一设计题目精馏塔及其主要附属设备设计二工艺条件生产能力:10吨每小时(料液)年工作日:自定原料组成:34%的二硫化碳和66%的四氯化碳(摩尔分率,下同)产品组成:馏出液 97%的二硫化碳,釜液5%的二硫化碳操作压力:塔顶压强为常压进料温度:58℃进料状况:自定加热方式:直接蒸汽加热回流比:自选三设计内容1 确定精馏装置流程;2 工艺参数的确定基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。
前言乙醇—水是工业上最常见的溶剂,也是非常重要的化工原料之一,是无色、无毒、无致癌性、污染性和腐蚀性小的液体混合物。
因其良好的理化性能,而被广泛地应用于化工、日化、医药等行业。
乙醇多以蒸馏法生产,但是由于乙醇—水体系有共沸现象,普通的精馏对于得到高纯度的乙醇来说产量不好。
但是由于常用的多为其水溶液,因此,研究和改进乙醇—水体系的精馏设备是非常重要的。
塔设备是最常采用的精馏装置,精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
有板式塔与填料塔两种主要类型。
根据操作方式又可分为连续精馏塔与间歇精馏塔。
一般有板式塔和填料塔,板式塔可分为泡罩塔、浮阀塔和筛板塔。
泡罩塔是最早使用的板式塔,其优点是操作弹性大,液气比范围宽,使用多种介质,操作稳定可靠,但是其结构复杂,造价高,安装维修不方便,气相压降大,故限制了它的使用。
浮阀塔可根据气体流量的大小而上下浮动,可自行调节开度,而且结构简单,造价低;塔板开孔率大,生产能力大;气液接触时间长,塔板效率高,操作弹性大。
缺点是处理易结焦、高黏性的物料时,阀片易与塔板黏结,有时阀片会脱落或卡死,使塔板效率及操作弹性降低。
筛板塔是在塔板上钻有均布的筛孔,气体经筛孔与液体密切接触。
优点是结构简单,制造维修方便,造价低,生产能力高于浮阀塔,塔板效率与之相当。
缺点是操作范围窄,孔径易堵塞。
综合考虑生产能力、塔板效率、成本及操作弹性等因素,本设计选用筛板塔更有优势。
影响精馏操作的主要因素有:操作压力和物料特性、生产能力和产品质量、塔顶回流比和回流液的温度、进料热状况参数和进料口位置、全塔效率、再沸器和冷凝器的传热性能、加热介质和冷却介质的温位。
精馏过程是能量消耗较大的单元操作,降低精馏过程的能量消耗具有重要的经济意义,减少有效能损失是精馏过程节能的基本途径。
一般的方法有提高分离因子、降低向再沸器的供热量、热泵精馏、多效精馏、热能的综合利用。
因此在操作过程中要主要节能,提高节能意识。
化工原理课程设计指导书—精馏塔的预热器、冷凝器、再沸器工艺设计适应专业:化学工程与工艺编写作者:胡建明编写日期:2007.7邵阳学院生物与化学工程系预热器、冷凝器、再沸器的工艺设计概述蒸馏是化工生产中分离均相液体混合物的典型单元操,其历史悠久,应用广泛。
蒸馏的基本原理是将液体混合物部分汽化、部分冷凝,利用其中个组分挥发度不同而将其分离。
其本质是液、汽相间的质量传递和热量传递。
为使分离彻底,以获得较纯的产品,工业生产中常采用多次部分汽化、多次部分冷凝的方法——精馏。
精馏过程通常是在塔设备内完成的。
预热器、冷凝器、再沸器是精馏过程必不可少的设备。
它们承担着将物料预热、气化、冷凝等重要任务。
而固定管板式换热器更是因其具有工艺简单、造价低廉、工艺设计成熟、热效率较高等优点而得到广泛的应用,尤其在很多大工业生产中。
换热器的工艺设计主要内容和步骤 1 物料衡算1.1 设计依据1.1.1 《×××××设计任务书》1.1.2 产量 年产99.5%(均为质量分数,下同)环己烷(丙酮)20000吨,根据工业生产中连续生产的特点,取年平均生产时间为8000小时,即小时产量为:20000×103/8000=2500kg /h ,本设计以小时产量为计算基准。
1.1.3 进料组成F x 、产品组成D x 1,1.4 分离要求 1.2 精馏塔物料衡算1.2.1 物料衡算示意图1.2.2 用质量分率计算进料量及塔釜采出量G D ,X D F D W G G G =+ F F D D W W G x G x G x =+ 解得: G F (kg/h ) G W (kg/h )1.2.3 计算摩尔量、摩尔分率 G W由物质A 、B 组成的混合物,其分子量分别为M A ,M B 则其平均分子量:A A B B M M x M x =+,用摩尔量表示为:;;W D F G G GD W F M M M===; 同理可求得X D 、X W 、 X F 1.2.4 精馏塔物料衡算表表1.1 精馏塔的物料衡算表※必须达成Σ进=Σ出。
1.3 冷凝器物料衡算 1.3.1 操作回流比选取1) 查阅相关资料,找出物系的气液平衡数据 2) 由计算得到物系的气液平衡数据 3) 作出平衡线(x —y 图)4) 利用平衡线(x —y 图)求取最小回流比R min (泡点进料) 5) 确定实际回流比: R=(1.1~2.0) R min 。
1.3.2 进料量及组成确定 1) 采出量及组成 2) 回流量及组成计算 3) 进料量及组成计算2 热量衡算2.1 冷凝器的热量衡算2.1.1 确定塔顶、塔底控制温度精馏塔塔顶、塔底温度是精馏塔主要操作控制参数,它直接影响到塔顶产品、塔底产品质量。
方法一:通过查阅资料得到物系的泡点线和露点线数据,作图后根据塔顶与塔底的浓度直接查出塔顶、塔底及进料的温度。
方法二:利用试差法求取已知浓度时的泡点、露点(C)2.1.2 已知条件1)变化过程:冷却水从20℃升温到45℃,物料由饱和蒸汽变为饱和液体。
冷凝器的物料组成表(表)2.1.4 计算1) 物料冷凝所放出的热量 Q 放=m γ⨯假定热损失 Q 损=(5~10%) Q 放;由热平衡:( 0.9~0.95)Q 放=Q 吸 1.2.2 冷却水量的计算 假设冷却水量为mkg/h , 则:0.9~0.95Q =m (0.9~0.95p p Q c t Q m c t∆=⇒=∆放吸放())其他设备热量衡算依次进行。
3 冷凝器的工艺设计3.1 流体流径的选择在选择流体的流径时,首先考虑流体的压强、防腐蚀和清洗等要求,然后再校核α及ΔP ,作出较恰当的选择。
3.2 热负荷q3600Q q =;Q ——管程流体吸收或放出的热量。
3.3 流体两端温度的确定3.3.1 若换热器中冷、热流体的温度都由工艺条件规定,无选择。
3.3.2 若一个流体仅已知进口温度,出口温度由设计者定,例冷却水,若出口温度升高,可节省水量,操作费降低;反之,则设备费增加。
一般,设计时两端流体温度差可取5~10℃。
传热温度差(先按逆流方式计算): 12211221()()lnT t T t t T t T t ---∆=--(T 1 、T 2、t 1、t 2—分别代表热流体、冷流体的进出口温度)3.4 总传热系数K按照资料先选择一传热系数K ,初步设计好换热器后进行校核,确认是否合适。
3.5 换热面积S 的计算 qS K t=∆,求取计算换热面积。
3.6 初步选择管程数 3.6.1 确定管程流速u :列管式换热器常用的流速范围列管换热器中不同粘度液体的常用流速3.6.2 流通截面积A :SA u= 3.6.3 单程换热管数:选定换热管规格,通常换热管规格有192φ⨯、25 2.5(2φ⨯,不锈钢)二种。
流体流通截面积:24i A d n n π=⇒3.7 单根换热管长度L00SS n d L L nd ππ=⇒=;根据管长选择管程数N (管长一般为1.5、2、3、6m )。
如果选择为多管程,则需要校正传热温差(参照化工原理上册P225~226),重新计算换热面积。
重复以上过程,直至面积基本不变。
3.8 筒体直径的计算3.8.1 管中心距t=1.25d o (焊接),t=1.4d o (胀接),最外列管中心距筒壁b’=1.5~2d o 。
3.8.2 中心线上布管数:n c n c =≥的整数(正方形排列) n c n c =≥3.8.3 筒体直径的计算:'(1)2c DN t n b =-+,圆整至规格尺寸D 。
3.8.4 实际换热面积S’ 3.9 折流挡板加大壳程流体的速度,使湍动程度加剧,以提高壳方的α,Re>100即可达湍流。
3.9.1 挡板的形式圆缺形(弓形)特点:切去的弓形高度约为外壳内径D 的10%~40%,一般取20~25%(即缺口面积为25%的壳体内截面积)。
(a )盘环形 (b )分流形 (c )圆缺形3.9.2 板间距h :两相邻挡板的距离。
一般h=0.2~1D 。
系列标准中常采用的h 值有: 固定管板式:150、200、300、600mm 三种; 浮头式:150、200、300、480、600mm 五种。
※注:h 过小,不便制造和检修,ΔP 也较大;h 过大,流体就难于垂直地流过管束,对流传热系数减小。
3.10 核算总传热系数K 值计算管、壳程对流传热系数α,确定污垢热阻R f1、R f2,再计算K',比较K ,若K'/K=1.15~1.25或者K≈K’,而'15%30%S SS-≤≤,初选换热器合格,否则,需另设K 值,重复以上计算步骤。
3.11 流体流动阻力(压强降)的计算 3.11.1 管程流体阻力:摩擦阻力公式计算。
()12iispP P P FN N∆=∆+∆∑式中:ΔP 1——每程直管的压降,212l u P d ρλ∆=⋅ 。
ΔP 2——局部阻力(包括回弯;进、出口等),222322u u P ρρξ∆≈⋅≈∑ N S ——壳程数;N P ——为一壳程的管程数;F i ——结垢校正因数,无因次。
φ25×2.5mm 的管子,取F i =1.4;φ19×2mm 的管子,取F i =1.5。
3.11.2 壳程阻力损失:方法一: ()2012B S e D N u P d ρλ+∆=⋅⋅式中:0.191.72S e R λ-= 0e e d u R ρμ=u 0——按壳程流通截面1o o d S hD t ⎛⎫=- ⎪⎝⎭计算所得的壳程流速;N B ——折流挡板数目; de ——壳程的当量直径。
方法二:应用埃索法公式计算。
()''12oSP P P F N∆=∆+∆∑式中:F0——壳程压降结垢校正因数,无因次,对液体:F 0=1.15;对气体:F 0=1.0。
'1P ∆——流体横向流过管束的压降,()2'01012c B u P Ff n N ρ∆=+( 其中: F ——管子排列方式对压强降的校正因数,对正三角形排列:F=0.5;对正方形排列:F=0.3;对正方形斜转45℃,F=0.4。
f 0——壳程流体的摩擦系数,当Re>500时,0.228005.0e f R -=)'2P ∆——流体通过折流挡板缺口的压降,2'223.52o B u h P N D ρ⎛⎫∆=- ⎪⎝⎭。
一般,液体流径换热器的压降为10~100kPa ,气体为1~10kPa 。
4 结构尺寸设计4.1 筒体厚度壳体标准尺寸与壁厚4.2 椭圆形封头椭圆形封头与圆筒厚度相等,即mm ,JB/T4737-95 4.3 压力容器法兰(甲型) 4.4 膨胀节当50,m m T t C -≥设置设置膨胀节。
4.5 管板固定管板式换热器的管板的主要尺寸:4.6 分程隔板4.7 分程隔板两侧相邻管中心距25t mm=,019d mm =,0 1.2523.7525d mm mm ⨯=<换热管中心距宜不小于1.25倍的换热管外径,所设计的换热器不用机械方式清洗. 4.8拉杆的直径、数量和尺寸4.9 拉杆孔12n d mm =, 2 1.5 1.51218n l d m m ==⨯= 4.10 换热管与管板的连接4.11 接管的计算 4.12 管法兰 4.13 支座选取 4.14 其他装配尺寸 注意:1、封头:椭圆形、圆形2、缓冲挡板:为防止壳程流体进入换热器时对管束的冲击,可在进料管口装设缓冲挡板。
3、放气孔、排液孔目的:排除不凝性气体和冷凝液。
4、接管:流体进、出口接管直径d :d =u 的经验值:液体:1~2m/s 蒸汽:10~30m/s 5、材料选用根据压强、温度及流体的腐蚀性等选取。
常用材料有金属(碳钢、不锈钢、低合金钢、铜和铝等)和非金属(石墨、聚四氟乙烯、玻璃等)等。