Matlab中的网络分析与图论算法
- 格式:docx
- 大小:37.82 KB
- 文档页数:3
如何使用MATLAB进行网络分析与建模网络分析与建模是数据科学领域中的重要研究方法之一,它涉及到了计算机科学、数学、统计学等多个学科领域。
而在现代信息爆炸的时代,网络数据的规模和复杂性不断增加,对于分析和建模工具的要求也越来越高。
MATLAB作为一个强大的数学计算软件,提供了丰富的功能和工具,可以帮助我们进行网络分析与建模。
本文将介绍如何使用MATLAB进行网络分析与建模。
第一部分:网络分析基础网络分析是研究网络结构、功能和演化规律的一种方法。
在网络分析中,我们通常需要描述网络的拓扑结构、节点与边的关系、节点的属性等信息。
而MATLAB提供了一些常用的工具和函数,可以方便地进行网络分析。
首先,我们需要将网络数据导入到MATLAB中。
MATLAB支持导入各种格式的网络数据,如邻接矩阵、边列表、节点属性等。
使用MATLAB的数据导入和读取函数,我们可以将网络数据转换成MATLAB中的矩阵或表格,方便后续的分析和建模。
其次,我们可以使用MATLAB提供的函数和工具来计算网络的基本属性,如网络的度分布、聚类系数、平均路径长度等。
这些属性可以帮助我们了解网络的结构和功能,并进行比较和分类。
MATLAB还提供了可视化工具,可以直观地展示网络的拓扑结构和属性分布。
第二部分:网络建模与预测网络建模是研究网络演化和行为规律的关键内容。
借助MATLAB的数学建模和机器学习工具,我们可以构建各种网络模型,并使用这些模型来预测网络的演化和行为。
常用的网络建模方法包括随机网络模型、小世界网络模型、无标度网络模型等。
我们可以使用MATLAB的随机数生成函数和图论工具,生成各种类型的网络模型,并进行参数调节和性能评估。
此外,MATLAB还提供了机器学习和深度学习工具箱,可以用于网络模型的训练和预测。
网络预测是网络分析与建模的重要应用之一。
通过分析网络的演化规律和行为模式,我们可以预测网络的未来走向和趋势。
MATLAB提供了一些预测模型和函数,如时间序列分析、回归分析、神经网络等。
MATLAB中常见的图论算法介绍一、引言图是计算机科学中非常重要的一种数据结构,广泛应用于各个领域。
图论算法能够解决多种问题,如网络分析、社交网络分析、路径规划等。
在本篇文章中,我们将介绍一些在MATLAB中常见的图论算法,帮助读者了解和应用这些算法。
二、图的表示方法在MATLAB中,图可以用邻接矩阵或邻接表来表示。
邻接矩阵是一个二维矩阵,其中行和列分别代表图的节点,矩阵中的元素表示节点之间的关系。
邻接表是一个包含图中所有节点的列表,每个节点链接到其相邻节点的列表。
三、最短路径算法1. Dijkstra算法Dijkstra算法用于解决单源最短路径问题,即寻找一个节点到图中其他所有节点的最短路径。
算法的基本思想是通过不断选择最短路径的节点来逐步扩展最短路径树。
在MATLAB中,可以使用graph对象和shortestpath函数来实现Dijkstra算法。
首先,使用graph对象创建图,然后使用shortestpath函数计算从源节点到目标节点的最短路径。
2. Bellman-Ford算法Bellman-Ford算法也用于解决单源最短路径问题,但相比Dijkstra算法,Bellman-Ford算法可以处理带有负权边的图。
算法的基本思想是通过松弛操作来逐步减小节点的估计距离,直到找到最短路径。
在MATLAB中,可以使用graph对象和shortestpath函数来实现Bellman-Ford算法。
与Dijkstra算法类似,首先使用graph对象创建图,然后使用shortestpath函数计算最短路径。
四、最小生成树算法1. Prim算法Prim算法用于寻找一个无向图的最小生成树。
算法的基本思想是从一个初始节点开始,逐步添加边,直到所有节点都被连接成一棵生成树。
在MATLAB中,可以使用graph对象和minspantree函数来实现Prim算法。
首先,使用graph对象创建图,然后使用minspantree函数计算最小生成树。
图论算法m a t l a b实现求最小费用最大流算法的 MATLAB 程序代码如下:n=5;C=[0 15 16 0 00 0 0 13 140 11 0 17 00 0 0 0 80 0 0 0 0]; %弧容量b=[0 4 1 0 00 0 0 6 10 2 0 3 00 0 0 0 20 0 0 0 0]; %弧上单位流量的费用wf=0;wf0=Inf; %wf 表示最大流量, wf0 表示预定的流量值for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流while(1)for(i=1:n)for(j=1:n)if(j~=i)a(i,j)=Inf;end;end;end%构造有向赋权图for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j);elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j);elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;endfor(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end;end;e ndif(pd)break;end;end %求最短路的Ford 算法结束if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有向赋权图中不会含负权回路, 所以不会出现k=ndvt=Inf;t=n; %进入调整过程, dvt 表示调整量while(1) %计算调整量if(a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量elseif(a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量if(dvt>dvtt)dvt=dvtt;endif(s(t)==1)break;end %当t 的标号为vs 时, 终止计算调整量t=s(t);end %继续调整前一段弧上的流fpd=0;if(wf+dvt>=wf0)dvt=wf0-wf;pd=1;end%如果最大流量大于或等于预定的流量值t=n;while(1) %调整过程if(a(s(t),t)>0)f(s(t),t)=f(s(t),t)+dvt; %前向弧调整elseif(a(s(t),t)<0)f(t,s(t))=f(t,s(t))-dvt;end %后向弧调整if(s(t)==1)break;end %当t 的标号为vs 时, 终止调整过程t=s(t);endif(pd)break;end%如果最大流量达到预定的流量值wf=0; for(j=1:n)wf=wf+f(1,j);end;end %计算最大流量zwf=0;for(i=1:n)for(j=1:n)zwf=zwf+b(i,j)*f(i,j);end;end%计算最小费用f %显示最小费用最大流图 6-22wf %显示最小费用最大流量zwf %显示最小费用, 程序结束__Kruskal 避圈法:Kruskal 避圈法的MATLAB 程序代码如下:n=8;A=[0 2 8 1 0 0 0 02 0 6 0 1 0 0 08 6 0 7 5 1 2 01 0 7 0 0 0 9 00 1 5 0 0 3 0 80 0 1 0 3 0 4 60 0 2 9 0 4 0 30 0 0 0 8 6 3 0];k=1; %记录A中不同正数的个数for(i=1:n-1)for(j=i+1:n) %此循环是查找A中所有不同的正数if(A(i,j)>0)x(k)=A(i,j); %数组x 记录A中不同的正数kk=1; %临时变量for(s=1:k-1)if(x(k)==x(s))kk=0;break;end;end %排除相同的正数k=k+kk;end;end;endk=k-1 %显示A中所有不同正数的个数for(i=1:k-1)for(j=i+1:k) %将x 中不同的正数从小到大排序if(x(j)<x(i))xx=x(j);x(j)=x(i);x(i)=xx;end;end;endT(n,n)=0; %将矩阵T 中所有的元素赋值为0q=0; %记录加入到树T 中的边数for(s=1:k)if(q==n)break;end %获得最小生成树T, 算法终止for(i=1:n-1)for(j=i+1:n)if (A(i,j)==x(s))T(i,j)=x(s);T(j,i)=x(s); %加入边到树T 中TT=T; %临时记录Twhile(1)pd=1; %砍掉TT 中所有的树枝for(y=1:n)kk=0;for(z=1:n)if(TT(y,z)>0)kk=kk+1;zz=z;end;end %寻找TT 中的树枝if(kk==1)TT(y,zz)=0;TT(zz,y)=0;pd=0;end;end %砍掉TT 中的树枝if(pd)break;end;end %已砍掉了TT 中所有的树枝pd=0; %判断TT 中是否有圈for(y=1:n-1)for(z=y+1:n)if(TT(y,z)>0)pd=1;break;end;end;endif(pd)T(i,j)=0;T(j,i)=0; %假如TT 中有圈else q=q+1;end;end;end;end;endT %显示近似最小生成树T, 程序结束用Warshall-Floyd 算法求任意两点间的最短路.n=8;A=[0 2 8 1 Inf Inf Inf Inf2 0 6 Inf 1 Inf Inf Inf8 6 0 7 5 1 2 Inf1 Inf 7 0 Inf Inf 9 InfInf 1 5 Inf 0 3 Inf 8Inf Inf 1 Inf 3 0 4 6Inf Inf 2 9 Inf 4 0 3Inf Inf Inf Inf 8 6 3 0]; % MATLAB 中, Inf 表示∞D=A; %赋初值for(i=1:n)for(j=1:n)R(i,j)=j;end;end %赋路径初值for(k=1:n)for(i=1:n)for(j=1:n)if(D(i,k)+D(k,j)<D(i,j))D(i,j)=D(i,k)+D(k,j); %更新dijR(i,j)=k;end;end;end %更新rijk %显示迭代步数D %显示每步迭代后的路长R %显示每步迭代后的路径pd=0;for i=1:n %含有负权时if(D(i,i)<0)pd=1;break;end;end %存在一条含有顶点vi 的负回路if(pd)break;end %存在一条负回路, 终止程序end %程序结束利用 Ford--Fulkerson 标号法求最大流算法的MATLAB 程序代码如下:n=8;C=[0 5 4 3 0 0 0 00 0 0 0 5 3 0 00 0 0 0 0 3 2 00 0 0 0 0 0 2 00 0 0 0 0 0 0 40 0 0 0 0 0 0 30 0 0 0 0 0 0 50 0 0 0 0 0 0 0]; %弧容量for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流for(i=1:n)No(i)=0;d(i)=0;end %No,d 记录标号图 6-19while(1)No(1)=n+1;d(1)=Inf; %给发点vs 标号while(1)pd=1; %标号过程for(i=1:n)if(No(i)) %选择一个已标号的点vifor(j=1:n)if(No(j)==0&f(i,j)<C(i,j)) %对于未给标号的点vj, 当vivj 为非饱和弧时No(j)=i;d(j)=C(i,j)-f(i,j);pd=0;if(d(j)>d(i))d(j)=d(i);endelseif(No(j)==0&f(j,i)>0) %对于未给标号的点vj, 当vjvi 为非零流弧时No(j)=-i;d(j)=f(j,i);pd=0;if(d(j)>d(i))d(j)=d(i);end;end;end;end;endif(No(n)|pd)break;end;end%若收点vt 得到标号或者无法标号, 终止标号过程if(pd)break;end %vt 未得到标号, f 已是最大流, 算法终止dvt=d(n);t=n; %进入调整过程, dvt 表示调整量while(1)if(No(t)>0)f(No(t),t)=f(No(t),t)+dvt; %前向弧调整elseif(No(t)<0)f(No(t),t)=f(No(t),t)-dvt;end %后向弧调整if(No(t)==1)for(i=1:n)No(i)=0;d(i)=0; end;break;end %当t 的标号为vs 时, 终止调整过程t=No(t);end;end; %继续调整前一段弧上的流fwf=0;for(j=1:n)wf=wf+f(1,j);end %计算最大流量f %显示最大流wf %显示最大流量No %显示标号, 由此可得最小割, 程序结束图论程序大全程序一:关联矩阵和邻接矩阵互换算法function W=incandadf(F,f)if f==0m=sum(sum(F))/2;n=size(F,1);W=zeros(n,m);k=1;for i=1:nfor j=i:nif F(i,j)~=0W(i,k)=1; W(j,k)=1; k=k+1;endendendelseif f==1m=size(F,2);n=size(F,1);W=zeros(n,n);for i=1:ma=find(F(:,i)~=0);W(a(1),a(2))=1;W(a(2),a(1))=1;endelsefprint('Please imput the right value of f'); endW;程序二:可达矩阵算法function P=dgraf(A)n=size(A,1);P=A;for i=2:nP=P+A^i;endP(P~=0)=1;P;程序三:有向图关联矩阵和邻接矩阵互换算法function W=mattransf(F,f)if f==0m=sum(sum(F));n=size(F,1);W=zeros(n,m);k=1;for i=1:nfor j=i:nif F(i,j)~=0W(i,k)=1;W(j,k)=-1;k=k+1;endendendelseif f==1m=size(F,2);n=size(F,1);W=zeros(n,n);for i=1:ma=find(F(:,i)~=0);if F(a(1),i)==1W(a(1),a(2))=1;elseW(a(2),a(1))=1;endendelsefprint('Please imput the right value of f');endW;第二讲:最短路问题程序一:Dijkstra算法(计算两点间的最短路)function [l,z]=Dijkstra(W)n = size (W,1);for i = 1 :nl(i)=W(1,i);z(i)=0;endi=1;while i<=nfor j =1 :nif l(i)>l(j)+W(j,i)l(i)=l(j)+W(j,i);z(i)=j-1;i=j-1;endendendi=i+1;end程序二:floyd算法(计算任意两点间的最短距离)function [d,r]=floyd(a)n=size(a,1);d=a;for i=1:nfor j=1:nr(i,j)=j;endendfor k=1:nfor i=1:nfor j=1:nif d(i,k)+d(k,j)<d(i,j) d(i,j)=d(i,k)+d(k,j); r(i,j)=r(i,k);endendendend程序三:n2short.m 计算指定两点间的最短距离function [P u]=n2short(W,k1,k2)n=length(W);U=W;m=1;for i=1:nfor j=1:nif U(i,j)>U(i,m)+U(m,j) U(i,j)=U(i,m)+U(m,j);endendendm=m+1;endu=U(k1,k2);P1=zeros(1,n);k=1;P1(k)=k2;V=ones(1,n)*inf;kk=k2;for i=1:nV(1,i)=U(k1,kk)-W(i,kk);if V(1,i)==U(k1,i)P1(k+1)=i;kk=i;k=k+1;endendendk=1;wrow=find(P1~=0);for j=length(wrow):-1:1P(k)=P1(wrow(j));k=k+1;endP;程序四、n1short.m(计算某点到其它所有点的最短距离) function[Pm D]=n1short(W,k)n=size(W,1);D=zeros(1,n);for i=1:n[P d]=n2short(W,k,i);Pm{i}=P;D(i)=d;end程序五:pass2short.m(计算经过某两点的最短距离) function [P d]=pass2short(W,k1,k2,t1,t2)[p1 d1]=n2short(W,k1,t1);[p2 d2]=n2short(W,t1,t2);[p3 d3]=n2short(W,t2,k2);dt1=d1+d2+d3;[p4 d4]=n2short(W,k1,t2);[p5 d5]=n2short(W,t2,t1);[p6 d6]=n2short(W,t1,k2);dt2=d4+d5+d6;if dt1<dt2d=dt1;P=[p1 p2(2:length(p2)) p3(2:length(p3))]; elsed=dt1;p=[p4 p5(2:length(p5)) p6(2:length(p6))]; endP;d;第三讲:最小生成树程序一:最小生成树的Kruskal算法function [T c]=krusf(d,flag)if nargin==1n=size(d,2);m=sum(sum(d~=0))/2;b=zeros(3,m);k=1;for i=1:nfor j=(i+1):nif d(i,j)~=0b(1,k)=i;b(2,k)=j; b(3,k)=d(i,j);k=k+1;endendendelseb=d;endn=max(max(b(1:2,:)));m=size(b,2);[B,i]=sortrows(b',3);B=B';c=0;T=[];k=1;t=1:n;for i=1:mif t(B(1,i))~=t(B(2,i))T(1:2,k)=B(1:2,i);c=c+B(3,i);k=k+1;tmin=min(t(B(1,i)),t(B(2,i))); tmax=max(t(B(1,i)),t(B(2,i)));for j=1:nif t(j)==tmaxt(j)=tmin;endendendif k==nbreak;endendT;c;程序二:最小生成树的Prim算法function [T c]=Primf(a)l=length(a);a(a==0)=inf;k=1:l;listV(k)=0;listV(1)=1;e=1;while (e<l)min=inf;for i=1:lif listV(i)==1for j=1:lif listV(j)==0 & min>a(i,j) min=a(i,j);b=a(i,j);s=i;d=j;endendendendlistV(d)=1;distance(e)=b;source(e)=s;destination(e)=d;e=e+1;endT=[source;destination];for g=1:e-1c(g)=a(T(1,g),T(2,g));endc;另外两种程序最小生成树程序1(prim 算法构造最小生成树)a=[inf 50 60 inf inf inf inf;50 inf inf 65 40 inf inf;60 inf inf 52 inf inf 45;... inf 65 52 inf 50 30 42;inf 40 inf 50 inf 70 inf;inf inf inf 30 70 inf inf;... inf inf 45 42 inf inf inf];result=[];p=1;tb=2:length(a);while length(result)~=length(a)-1temp=a(p,tb);temp=temp(:);d=min(temp);[jb,kb]=find(a(p,tb)==d);j=p(jb(1));k=tb(kb(1));result=[result,[j;k;d]];p=[p,k];tb(find(tb==k))=[];endresult最小生成树程序2(Kruskal 算法构造最小生成树)clc;clear;a(1,2)=50; a(1,3)=60; a(2,4)=65; a(2,5)=40;a(3,4)=52;a(3,7)=45; a(4,5)=50; a(4,6)=30;a(4,7)=42; a(5,6)=70;[i,j,b]=find(a);data=[i';j';b'];index=data(1:2,:);loop=max(size(a))-1;result=[];while length(result)<looptemp=min(data(3,:));flag=find(data(3,:)==temp);flag=flag(1);v1=data(1,flag);v2=data(2,flag);if index(1,flag)~=index(2,flag)result=[result,data(:,flag)];endindex(find(index==v2))=v1;data(:,flag)=[];index(:,flag)=[];endresult第四讲:Euler图和Hamilton图程序一:Fleury算法(在一个Euler图中找出Euler环游)注:包括三个文件;fleuf1.m, edf.m, flecvexf.mfunction [T c]=fleuf1(d)%注:必须保证是Euler环游,否则输出T=0,c=0 n=length(d);b=d;b(b==inf)=0;b(b~=0)=1;m=0;a=sum(b);eds=sum(a)/2;ed=zeros(2,eds);vexs=zeros(1,eds+1);matr=b;for i=1:nif mod(a(i),2)==1m=m+1;endendif m~=0fprintf('there is not exit Euler path.\n')T=0;c=0;endif m==0vet=1;flag=0;t1=find(matr(vet,:)==1);for ii=1:length(t1)ed(:,1)=[vet,t1(ii)];vexs(1,1)=vet;vexs(1,2)=t1(ii);matr(vexs(1,2),vexs(1,1))=0;flagg=1;tem=1;while flagg[flagg ed]=edf(matr,eds,vexs,ed,tem);tem=tem+1;if ed(1,eds)~=0 & ed(2,eds)~=0 T=ed;T(2,eds)=1;c=0;for g=1:edsc=c+d(T(1,g),T(2,g));endflagg=0;break;endendendendfunction[flag ed]=edf(matr,eds,vexs,ed,tem) flag=1;for i=2:eds[dvex f]=flecvexf(matr,i,vexs,eds,ed,tem);if f==1flag=0;break;endif dvex~=0ed(:,i)=[vexs(1,i) dvex];vexs(1,i+1)=dvex;matr(vexs(1,i+1),vexs(1,i))=0;elsebreak;endendfunction [dvex f]=flecvexf(matr,i,vexs,eds,ed,temp) f=0;edd=find(matr(vexs(1,i),:)==1); dvex=0;dvex1=[];ded=[];if length(edd)==1dvex=edd;elsedd=1;dd1=0;kkk=0;for kk=1:length(edd)m1=find(vexs==edd(kk));if sum(m1)==0dvex1(dd)=edd(kk); dd=dd+1;dd1=1;elsekkk=kkk+1;endif kkk==length(edd)tem=vexs(1,i)*ones(1,kkk);edd1=[tem;edd];for l1=1:kkklt=0;ddd=1;for l2=1:edsif edd1(1:2,l1)==ed(1:2,l2) lt=lt+1;endendif lt==0ded(ddd)=edd(l1);ddd=ddd+1;endendif temp<=length(dvex1)dvex=dvex1(temp);elseif temp>length(dvex1) & temp<=length(ded)dvex=ded(temp);elsef=1;endend程序二:Hamilton改良圈算法(找出比较好的Hamilton路)function [C d1]= hamiltonglf(v)%d表示权值矩阵%C表示算法最终找到的Hamilton圈。
Matlab技术复杂网络分析与建模在当今信息爆炸的时代,我们生活在一个高度互联的世界中。
互联网连接着世界各地的人和机器,形成了复杂的网络系统。
这些网络系统包括社交媒体、云计算、交通网络等等。
理解和分析这些复杂网络是非常重要的,因为它们对我们的日常生活和社会发展产生了巨大的影响。
在这篇文章中,我将向大家介绍利用Matlab技术进行复杂网络分析与建模的方法与应用。
首先,让我们了解一下什么是复杂网络。
复杂网络是由大量的节点和连接组成的系统,这些节点和连接之间的关系是非线性和非随机的。
节点可以是个体、公司、城市等等,连接可以表示关系、交流或者交易。
复杂网络的特点是拥有高度的连通性和小世界现象,这意味着通过几条较短的路径就可以连接到网络中的任意两个节点。
此外,复杂网络还具有模块化和尺度无关性的特征。
接下来,我们将讨论如何使用Matlab进行复杂网络分析。
Matlab是一款功能强大的科学计算软件,它提供了丰富的工具箱和函数,用于网络分析和建模。
其中,Graph和Network工具箱是Matlab中常用的网络分析工具箱。
Matlab的Graph工具箱提供了用于图和网络分析的函数和类。
使用这些函数和类,我们可以方便地构建和操作网络,进行基本的网络分析,例如节点和边的计数、网络密度的计算、连通性分析等等。
此外,Graph工具箱还提供了用于可视化网络的函数,使我们可以直观地展示网络的结构和连接关系。
另一个常用的工具箱是Matlab的Network工具箱。
Network工具箱提供了更高级的网络分析和模型建立的功能。
使用Network工具箱,我们可以进行复杂网络的聚类分析、社团检测、节点中心度计算等等。
此外,Network工具箱还支持基于随机图模型的网络建模,例如随机图、ER模型、BA模型等等,使我们能够生成和研究特定类型的网络。
通过使用Matlab的Graph和Network工具箱,我们可以对复杂网络进行深入的分析和建模。
图论实验三个案例单源最短路径问题 1.1 Dijkstra 算法Dijkstra 算法是解单源最短路径问题的一个贪心算法。
其基本思想是,设置 一个顶点集合S 并不断地作贪心选择来扩充这个集合。
一个顶点属于集合S 当且 仅当从源到该顶点的最短路径长度已知。
设 v 是图中的一个顶点,记l(v)为顶点 v 到源点V 1的最短距离,V i,V jV ,若(V i,V j)E ,记“到百的权w 。
Dijkstra 算法:① S {V J I(V J 0 ; V V {可 1(V ) i i S V {V J ;J7JJJ7②S,停止,否则转③;l(v) min{ l(v) , d(V j ,v)}V j S④ 存在Vi 1,使l (V i l) min{l(V)},V S ;⑤SSU{v i 1}S S {v i 1}i i 1实际上,Dijkstra 算法也是最优化原理的应用:如果V 1V 2LV n1Vn是从V1到Vn的最短路径,贝UV 1V 2L Vn1也必然是从V1到Vn 1的最优路径。
在下面的MATLA 实现代码中,我们用到了距离矩阵,矩阵第 i 行第j 行元 素表示顶点Vi到Vj的权Wj,若v 到V j无边,则W ijrealmax,其中realmax 是 MATLA 常量,表示最大的实数(1.7977e+308)function re=Dijkstra(ma)%用Dijkstra 算法求单源最短路径%俞入参量ma是距离矩阵%输出参量是一个三行n 列矩阵,每列表示顶点号及顶点到源的最短距离和前顶点n=size(ma,1);% 得到距离矩阵的维数s=ones(1,n);s(1)=0;% 标记集合S和S 的补r=zeros(3,n);r(1,:)=1:n;r(2,2:end)=realmax;% 初始化for i=2:n;% 控制循环次数mm=realmax;for j=find(s==0);% 集合S中的顶点for k=find(s==1);% 集合S补中的顶点if(r(2,j)+ma(j,k)<r(2,k))r(2,k)=r(2,j)+ma(j,k);r(3,k)=j;endif(mm>r(2,k))mm=r(2,k);t=k;endendends(1,t)=0;%找到最小的顶点加入集合Send re=r;1.2动态规划求解最短路径动态规划是美国数学家 Richard Bellman 在1951年提出来的分析一类多阶 段决策过程的最优化方法,在工程技术、工业生产、经济管理、军事及现代化控 制工程等方面均有着广泛的应用。
Matlab中的复杂网络与图论分析方法在当今数字时代,数据网络正在成为各行各业的核心,这就给研究网络结构和分析网络行为提供了前所未有的机会。
而复杂网络和图论分析方法则成为了研究数据网络的一种重要手段。
本文将介绍在Matlab中应用的复杂网络和图论分析方法,探讨其原理和应用。
一、复杂网络:拓扑结构的研究复杂网络是指由大量节点和链接组成的网络,其中节点代表实体,链接代表实体之间的关系。
通过研究复杂网络的拓扑结构,我们可以揭示数据网络中的规律和性质,了解网络中节点的连接模式和信息传播机制。
1.1 网络拓扑结构的描述在复杂网络研究中,一种常用的描述方法是邻接矩阵和度矩阵。
邻接矩阵是一个由0和1组成的矩阵,其中的元素表示节点之间的连接关系,1表示连接,0表示未连接。
度矩阵是一个对角矩阵,用于描述每个节点的度数,即与该节点相连的链接数。
1.2 网络节点的度分布节点的度数是指与该节点相连的链接数,而节点的度分布则是指不同度数的节点在网络中的分布情况。
在复杂网络中,节点的度分布往往符合幂律分布,即少数节点的度数非常大,而大部分节点的度数相对较小。
通过分析节点的度分布,可以了解网络中的核心节点和边缘节点,以及网络的鲁棒性和可靠性。
1.3 网络中的社区结构社区结构是指网络中节点的聚集现象,即节点之间的连接更密集,而与其他社区的联系较弱。
通过识别和研究网络中的社区结构,可以帮助我们揭示网络中的隐含规律、发现重要节点和子网络,并理解网络的分层结构和功能。
二、图论分析:探索网络行为的机制图论是研究网络结构和图形模型的数学理论,主要关注网络中节点和链接之间的关系。
通过图论分析,我们可以量化和描述网络中的节点和链接的特性,揭示网络的演化机制和行为规律。
2.1 网络中的中心性度量中心性是衡量网络中节点重要性的指标,可以帮助我们识别重要节点和影响网络动态行为的因素。
在复杂网络中,常用的中心性度量包括度中心性、接近中心性和介数中心性等。
图论算法及其MATLAB 程序代码求赋权图G = (V , E , F )中任意两点间的最短路的Warshall-Floyd 算法:设A = (a ij )n ×n 为赋权图G = (V , E , F )的矩阵, 当v i v j ∈E 时a ij = F (v i v j ), 否则取a ii =0, a ij = +∞(i ≠j ), d ij 表示从v i 到v j 点的距离, r ij 表示从v i 到v j 点的最短路中一个点的编号.① 赋初值. 对所有i , j , d ij = a ij , r ij = j . k = 1. 转向②② 更新d ij , r ij . 对所有i , j , 若d ik + d k j <d ij , 则令d ij = d ik + d k j , r ij = k , 转向③.③ 终止判断. 若d ii <0, 则存在一条含有顶点v i 的负回路, 终止; 或者k = n 终止; 否则令k = k + 1, 转向②.最短路线可由r ij 得到.例1 求图6-4中任意两点间的最短路.解:用Warshall-Floyd 算法, MATLAB 程序代码如下:n=8;A=[0 2 8 1 Inf Inf Inf Inf2 0 6 Inf 1 Inf Inf Inf8 6 0 7 5 1 2 Inf1 Inf 7 0 Inf Inf 9 InfInf 1 5 Inf 0 3 Inf 8Inf Inf 1 Inf 3 0 4 6Inf Inf 2 9 Inf 4 0 3Inf Inf Inf Inf 8 6 3 0]; % MATLAB 中, Inf 表示∞D=A; %赋初值for (i=1:n)for (j=1:n)R(i,j)=j;end ;end %赋路径初值for (k=1:n)for (i=1:n)for (j=1:n)if (D(i,k)+D(k,j)<D(i,j))D(i,j)=D(i,k)+D(k,j); %更新dijR(i,j)=k;end ;end ;end %更新rijk %显示迭代步数D %显示每步迭代后的路长R %显示每步迭代后的路径pd=0;for i=1:n %含有负权时if (D(i,i)<0)pd=1;break ;end ;end %存在一条含有顶点vi 的负回路if (pd)break ;end %存在一条负回路, 终止程序end %程序结束图6-4Kruskal避圈法:将图G中的边按权数从小到大逐条考察, 按不构成圈的原则加入到T 中(若有选择时, 不同的选择可能会导致最后生成树的权数不同), 直到q (T ) = p (G ) − 1为止, 即T的边数= G的顶点数− 1为止.Kruskal避圈法的MATLAB程序代码如下:n=8;A=[0 2 8 1 0 0 0 02 0 6 0 1 0 0 08 6 0 7 5 1 2 01 0 7 0 0 0 9 00 1 5 0 0 3 0 80 0 1 0 3 0 4 60 0 2 9 0 4 0 30 0 0 0 8 6 3 0];k=1; %记录A中不同正数的个数for(i=1:n-1)for(j=i+1:n) %此循环是查找A中所有不同的正数if(A(i,j)>0)x(k)=A(i,j); %数组x记录A中不同的正数kk=1; %临时变量for(s=1:k-1)if(x(k)==x(s))kk=0;break;end;end%排除相同的正数k=k+kk;end;end;endk=k-1 %显示A中所有不同正数的个数for(i=1:k-1)for(j=i+1:k) %将x中不同的正数从小到大排序if(x(j)<x(i))xx=x(j);x(j)=x(i);x(i)=xx;end;end;endT(n,n)=0; %将矩阵T中所有的元素赋值为0q=0; %记录加入到树T中的边数for(s=1:k)if(q==n)break;end%获得最小生成树T, 算法终止for(i=1:n-1)for(j=i+1:n)if (A(i,j)==x(s))T(i,j)=x(s);T(j,i)=x(s); %加入边到树T中TT=T; %临时记录Twhile(1)pd=1;%砍掉TT中所有的树枝for(y=1:n)kk=0;for(z=1:n)if(TT(y,z)>0)kk=kk+1;zz=z;end;end%寻找TT中的树枝if(kk==1)TT(y,zz)=0;TT(zz,y)=0;pd=0;end;end%砍掉TT中的树枝if(pd)break;end;end%已砍掉了TT中所有的树枝pd=0;%判断TT中是否有圈for(y=1:n-1)for(z=y+1:n)if(TT(y,z)>0)pd=1;break;end;end;endif(pd)T(i,j)=0;T(j,i)=0;%假如TT中有圈else q=q+1;end;end;end;end;endT %显示近似最小生成树T, 程序结束求二部图G的最大匹配的算法(匈牙利算法), 其基本思想是:从G的任意匹配M开始, 对X中所有M的非饱和点, 寻找M−增广路. 若不存在M−增广路, 则M为最大匹配; 若存在M−增广路P, 则将P中M与非M的边互换得到比M多一边的匹配M1 , 再对M1重复上述过程.设G = ( X, Y, E )为二部图, 其中X = {x1, x2, … , x n }, Y = { y1, y2, … , y n}. 任取G的一初始匹配M (如任取e∈E, 则M = {e}是一个匹配).①令S = φ , T = φ , 转向②.②若M饱和X \S的所有点, 则M是二部图G的最大匹配. 否则, 任取M的非饱和点u∈X \ S , 令S = S ∪{ u }, 转向③.③记N (S ) = {v | u∈S, uv∈E}. 若N (S ) = T, 转向②. 否则取y∈N (S ) \T. 若y是M 的饱和点, 转向④, 否则转向⑤.④设x y∈M, 则令S = S ∪{ x }, T = T ∪{ y }, 转向③.⑤u −y路是M−增广路, 设为P, 并令M = M⊕P, 转向①. 这里M⊕P = M∪P \M∩P, 是对称差.由于计算M−增广路P比较麻烦, 因此将迭代步骤改为:①将X中M的所有非饱和点(不是M中某条边的端点)都给以标号0和标记*, 转向②.②若X中所有有标号的点都已去掉了标记*, 则M是G的最大匹配. 否则任取X中一个既有标号又有标记*的点x i , 去掉x i的标记*, 转向③.③找出在G中所有与x i邻接的点y j (即x i y j∈E ), 若所有这样的y j都已有标号, 则转向②, 否则转向④.④对与x i邻接且尚未给标号的y j都给定标号i. 若所有的y j都是M的饱和点, 则转向⑤, 否则逆向返回. 即由其中M的任一个非饱和点y j的标号i找到x i, 再由x i的标号k找到y k , … , 最后由y t的标号s找到标号为0的x s时结束, 获得M−增广路x s y t…x i y j, 记P = {x s y t, …, x i y j }, 重新记M为M⊕P, 转向①.⑤将y j在M中与之邻接的点x k (即x k y j∈M), 给以标号j和标记*, 转向②.例1求图6-9中所示的二部图G的最大匹配.图6-9匈牙利算法的MATLAB程序代码如下:m=5;n=5;A=[0 1 1 0 01 1 0 1 10 1 1 0 00 1 1 0 00 0 0 1 1];M(m,n)=0;for(i=1:m)for(j=1:n)if(A(i,j))M(i,j)=1;break;end;end%求初始匹配Mif(M(i,j))break;end;end%获得仅含一条边的初始匹配Mwhile(1)for(i=1:m)x(i)=0;end%将记录X中点的标号和标记*for(i=1:n)y(i)=0;end%将记录Y中点的标号和标记*for(i=1:m)pd=1;%寻找X中M的所有非饱和点for(j=1:n)if(M(i,j))pd=0;end;endif(pd)x(i)=-n-1;end;end%将X中M的所有非饱和点都给以标号0和标记*, 程序中用n+1表示0标号, 标号为负数时表示标记*pd=0;while(1)xi=0;for(i=1:m)if(x(i)<0)xi=i;break;end;end%假如X中存在一个既有标号又有标记*的点, 则任取X中一个既有标号又有标记*的点xiif(xi==0)pd=1;break;end%假如X中所有有标号的点都已去掉了标记*, 算法终止x(xi)=x(xi)*(-1); %去掉xi的标记*k=1;for(j=1:n)if(A(xi,j)&y(j)==0)y(j)=xi;yy(k)=j;k=k+1;end;end%对与xi邻接且尚未给标号的yj都给以标号iif(k>1)k=k-1;for(j=1:k)pdd=1;for(i=1:m)if(M(i,yy(j)))x(i)=-yy(j);pdd=0;break;end;end%将yj在M中与之邻接的点xk (即xkyj∈M), 给以标号j和标记*if(pdd)break;end;endif(pdd)k=1;j=yy(j); %yj不是M的饱和点while(1)P(k,2)=j;P(k,1)=y(j);j=abs(x(y(j))); %任取M的一个非饱和点yj, 逆向返回if(j==n+1)break;end%找到X中标号为0的点时结束, 获得M-增广路Pk=k+1;endfor(i=1:k)if(M(P(i,1),P(i,2)))M(P(i,1),P(i,2))=0; %将匹配M在增广路P中出现的边去掉else M(P(i,1),P(i,2))=1;end;end%将增广路P中没有在匹配M中出现的边加入到匹配M中break;end;end;endif(pd)break;end;end%假如X中所有有标号的点都已去掉了标记*, 算法终止M %显示最大匹配M, 程序结束利用可行点标记求最佳匹配的算法步骤如下:设G = ( X , Y , E , F )为完备的二部赋权图, L 是其一个初始可行点标记, 通常取.,,0)(},|)(max{)(Y y X x y L Y y xy F x L ∈∈ =∈= M 是G L 的一个匹配. ① 若X 的每个点都是M 的饱和点, 则M 是最佳匹配. 否则取M 的非饱和点u ∈X , 令S = {u }, T = φ , 转向②.② 记N L (S ) = {v | u ∈S , uv ∈E L }. 若N L ( S ) = T , 则G L 没有完美匹配, 转向③. 否则转向④.③ 调整可行点标记, 计算a L = min { L ( x ) + L ( y ) − F (x y ) | x ∈S , y ∈Y \T }.由此得新的可行顶点标记H (v ) =,,),(,)(,)(T v S v v L a v L a v L L L ∈∈+−令L = H , G L = G H , 重新给出G L 的一个匹配M , 转向①.④ 取y ∈N L ( S ) \T , 若y 是M 的饱和点, 转向⑤. 否则, 转向⑥.⑤ 设x y ∈M , 则令S = S ∪{ x }, T = T ∪{ y }, 转向②.⑥ 在G L 中的u − y 路是M −增广路, 记为P , 并令 M = M ⊕P , 转向①.利用可行点标记求最佳匹配算法的MATLAB 程序代码如下:n=4;A=[4 5 5 12 2 4 64 2 3 35 0 2 1];for (i=1:n)L(i,1)=0;L(i,2)=0;endfor (i=1:n)for (j=1:n)if (L(i,1)<A(i,j))L(i,1)=A(i,j);end ; %初始可行点标记LM(i,j)=0;end ;endfor (i=1:n)for (j=1:n) %生成子图Glif (L(i,1)+L(j,2)==A(i,j))Gl(i,j)=1;else Gl(i,j)=0;end ;end ;endii=0;jj=0;for (i=1:n)for (j=1:n)if (Gl(i,j))ii=i;jj=j;break ;end ;endif (ii)break ;end ;end %获得仅含Gl 的一条边的初始匹配MM(ii,jj)=1;for (i=1:n)S(i)=0;T(i)=0;NlS(i)=0;endwhile (1)for (i=1:n)k=1;否则.for(j=1:n)if(M(i,j))k=0;break;end;endif(k)break;end;endif(k==0)break;end%获得最佳匹配M, 算法终止S(1)=i;jss=1;jst=0;%S={xi}, T=φwhile(1)jsn=0;for(i=1:jss)for(j=1:n)if(Gl(S(i),j))jsn=jsn+1;NlS(jsn)=j;%NL(S)={v|u∈S,uv∈EL}for(k=1:jsn-1)if(NlS(k)==j)jsn=jsn-1;end;end;end;end;endif(jsn==jst)pd=1; %判断NL(S)=T?for(j=1:jsn)if(NlS(j)~=T(j))pd=0;break;end;end;endif(jsn==jst&pd)al=Inf; %如果NL(S)=T, 计算al, Inf为∞for(i=1:jss)for(j=1:n)pd=1;for(k=1:jst)if(T(k)==j)pd=0;break;end;endif(pd&al>L(S(i),1)+L(j,2)-A(S(i),j))al=L(S(i),1)+L(j,2)-A(S(i),j);end;end;end for(i=1:jss)L(S(i),1)=L(S(i),1)-al;end%调整可行点标记for(j=1:jst)L(T(j),2)=L(T(j),2)+al;end%调整可行点标记for(i=1:n)for(j=1:n) %生成子图GLif(L(i,1)+L(j,2)==A(i,j))Gl(i,j)=1;else Gl(i,j)=0;endM(i,j)=0;k=0;end;endii=0;jj=0;for(i=1:n)for(j=1:n)if(Gl(i,j))ii=i;jj=j;break;end;endif(ii)break;end;end%获得仅含Gl的一条边的初始匹配MM(ii,jj)=1;breakelse%NL(S)≠Tfor(j=1:jsn)pd=1;%取y∈NL(S)\Tfor(k=1:jst)if(T(k)==NlS(j))pd=0;break;end;endif(pd)jj=j;break;end;endpd=0;%判断y是否为M的饱和点for(i=1:n)if(M(i,NlS(jj)))pd=1;ii=i;break;end;endif(pd)jss=jss+1;S(jss)=ii;jst=jst+1;T(jst)=NlS(jj); %S=S∪{x}, T=T∪{y}else%获得Gl的一条M-增广路, 调整匹配Mfor(k=1:jst)M(S(k),T(k))=1;M(S(k+1),T(k))=0;endif(jst==0)k=0;endM(S(k+1),NlS(jj))=1;break;end;end;end;endMaxZjpp=0;for(i=1:n)for(j=1:n)if(M(i,j))MaxZjpp=MaxZjpp+A(i,j);end;end;endM %显示最佳匹配MMaxZjpp %显示最佳匹配M的权, 程序结束从一个可行流f 开始, 求最大流的Ford--Fulkerson 标号算法的基本步骤:⑴ 标号过程① 给发点v s 以标号(+, +∞) , δ s = +∞.② 选择一个已标号的点x , 对于x 的所有未给标号的邻接点y , 按下列规则处理:当yx ∈E , 且f yx >0时, 令δ y = min { f yx , δ x }, 并给y 以标号 ( x − , δ y ).当xy ∈E , 且f xy <C xy 时, 令δ y = min {C xy − f xy , δ x }, 并给y 以标号 ( x + , δ y ). ③ 重复②直到收点v t 被标号或不再有点可标号时为止. 若v t 得到标号, 说明存在一条可增广链, 转⑵调整过程; 若v t 未得到标号, 标号过程已无法进行时, 说明f 已经是最大流.⑵ 调整过程④ 决定调整量δ =δ vt , 令u = v t .⑤ 若u 点标号为( v +, δ u ), 则以f vu + δ 代替f vu ; 若u 点标号为( v −, δ u ), 则以 f vu − δ 代替f vu .⑥ 若v = v s , 则去掉所有标号转⑴重新标号; 否则令u = v , 转⑤.算法终止后, 令已有标号的点集为S , 则割集(S , S c )为最小割, 从而W f = C (S , S c ). 例1 求图6-19所示网络的最大流.利用Ford--Fulkerson 标号法求最大流算法的MATLAB 程序代码如下:n=8;C=[0 5 4 3 0 0 0 00 0 0 0 5 3 0 00 0 0 0 0 3 2 00 0 0 0 0 0 2 00 0 0 0 0 0 0 40 0 0 0 0 0 0 30 0 0 0 0 0 0 50 0 0 0 0 0 0 0]; %弧容量for (i=1:n)for (j=1:n)f(i,j)=0;end ;end %取初始可行流f 为零流for (i=1:n)No(i)=0;d(i)=0;end %No,d 记录标号图6-19while(1)No(1)=n+1;d(1)=Inf; %给发点vs标号while(1)pd=1;%标号过程for(i=1:n)if(No(i)) %选择一个已标号的点vifor(j=1:n)if(No(j)==0&f(i,j)<C(i,j)) %对于未给标号的点vj, 当vivj为非饱和弧时No(j)=i;d(j)=C(i,j)-f(i,j);pd=0;if(d(j)>d(i))d(j)=d(i);endelseif(No(j)==0&f(j,i)>0) %对于未给标号的点vj, 当vjvi为非零流弧时No(j)=-i;d(j)=f(j,i);pd=0;if(d(j)>d(i))d(j)=d(i);end;end;end;end;endif(No(n)|pd)break;end;end%若收点vt得到标号或者无法标号, 终止标号过程if(pd)break;end%vt未得到标号, f已是最大流, 算法终止dvt=d(n);t=n; %进入调整过程, dvt表示调整量while(1)if(No(t)>0)f(No(t),t)=f(No(t),t)+dvt; %前向弧调整elseif(No(t)<0)f(No(t),t)=f(No(t),t)-dvt;end%后向弧调整if(No(t)==1)for(i=1:n)No(i)=0;d(i)=0; end;break;end%当t的标号为vs时, 终止调整过程t=No(t);end;end; %继续调整前一段弧上的流fwf=0;for(j=1:n)wf=wf+f(1,j);end%计算最大流量f %显示最大流wf %显示最大流量No %显示标号, 由此可得最小割, 程序结束设网络G = ( V , E , C ), 取初始可行流 f 为零流, 求解最小费用流问题的迭代步骤: ① 构造有向赋权图 G f = ( V , E f , F ), 对于任意的v i v j ∈E , E f , F 的定义如下:当f ij = 0时, v i v j ∈E f , F ( v i v j ) = b ij ;当f ij = C ij 时, v j v i ∈E f , F ( v j v i ) = −b ij ;当0< f ij <C ij 时, v i v j ∈E f , F ( v i v j ) = b ij , v j v i ∈E f , F ( v j v i ) = −b ij .转向②.② 求出有向赋权图G f = (V , E f , F )中发点v s 到收点v t 的最短路µ , 若最短路µ存在转向③; 否则f 是所求的最小费用最大流, 停止.③ 增流. 同求最大流的方法一样, 重述如下:令.,,,−+∈∈ −=µµδj i j i ij ij ij ij v v v v f f C δ = min {δ ij | v i v j ∈µ}, 重新定义流f = { f ij }为 f ij =,,,,−+∈∈ −+µµδδj i j i ijij ij v v v v f f f如果W f 大于或等于预定的流量值, 则适当减少δ 值, 使W f 等于预定的流量值, 那么 f 是所求的最小费用流, 停止; 否则转向①.求解含有负权的有向赋权图G = ( V , E , F )中某一点到其它各点最短路的Ford 算法. 当v i v j ∈E 时记w ij = F (v i v j ), 否则取w ii =0, w ij = +∞(i ≠j ). v 1到v i 的最短路长记为π ( i ), v 1到v i 的最短路中v i 的前一个点记为θ ( i ). Ford 算法的迭代步骤:① 赋初值π (1) = 0, π ( i ) = +∞, θ ( i ) = i , i = 2, 3, … , n .② 更新π ( i ), θ ( i ). 对于i = 2, 3, … , n 和j = 1, 2, … , n , 如果π ( i )<π ( j ) + w ji , 则令π ( i ) = π ( j ) , θ ( i ) = j . ③ 终止判断:若所有的π ( i )都无变化, 停止; 否则转向②. 在算法的每一步中, π ( i )都是从v 1到v i 的最短路长度的上界. 若不存在负长回路, 则从v 1到v i 的最短路长度是π ( i )的下界, 经过n −1次迭代后π ( i )将保持不变. 若在第n 次迭代后π ( i )仍在变化时, 说明存在负长回路.其它.例2 在图6-22所示运输网络上, 求s 到t 的最小费用最大流, 括号内为(C ij , b ij ).求最小费用最大流算法的MATLAB 程序代码如下:n=5;C=[0 15 16 0 00 0 0 13 140 11 0 17 00 0 0 0 80 0 0 0 0]; %弧容量b=[0 4 1 0 00 0 0 6 10 2 0 3 00 0 0 0 20 0 0 0 0]; %弧上单位流量的费用wf=0;wf0=Inf; %wf 表示最大流量, wf0表示预定的流量值for (i=1:n)for (j=1:n)f(i,j)=0;end ;end %取初始可行流f 为零流while (1)for (i=1:n)for (j=1:n)if (j~=i)a(i,j)=Inf;end ;end ;end %构造有向赋权图for (i=1:n)for (j=1:n)if (C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j);elseif (C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j);elseif (C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end ;end ;endfor (i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值for (k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路for (i=2:n)for (j=1:n)if (p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end ;end ;endif (pd)break ;end ;end %求最短路的Ford 算法结束if (p(n)==Inf)break ;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有向赋权图中不会含负权回路, 所以不会出现k=ndvt=Inf;t=n; %进入调整过程, dvt 表示调整量while (1) %计算调整量if (a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量elseif (a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量if (dvt>dvtt)dvt=dvtt;endif (s(t)==1)break ;end %当t 的标号为vs 时, 终止计算调整量t=s(t);end %继续调整前一段弧上的流fpd=0;if (wf+dvt>=wf0)dvt=wf0-wf;pd=1;end %如果最大流量大于或等于预定的流量值t=n;while (1) %调整过程if (a(s(t),t)>0)f(s(t),t)=f(s(t),t)+dvt; %前向弧调整elseif (a(s(t),t)<0)f(t,s(t))=f(t,s(t))-dvt;end %后向弧调整if (s(t)==1)break ;end %当t 的标号为vs 时, 终止调整过程t=s(t);endif (pd)break ;end %如果最大流量达到预定的流量值wf=0; for (j=1:n)wf=wf+f(1,j);end ;end %计算最大流量zwf=0;for (i=1:n)for (j=1:n)zwf=zwf+b(i,j)*f(i,j);end ;end %计算最小费用f %显示最小费用最大流图6-22wf %显示最小费用最大流量zwf %显示最小费用, 程序结束。
Matlab中的网络分析与图论算法
在现代社会中,网络分析和图论算法正变得越来越重要。
随着信息技术的迅猛
发展,人们对网络的研究也日益深入。
而Matlab作为一种强大的科学计算软件,
其网络分析和图论算法的应用也越来越广泛。
I. 网络分析的概述
网络分析是指通过研究网络中的节点(节点可以代表人、物或其他实体)之间
的关系,来理解和分析网络的结构和特征。
网络分析方法主要包括节点度数分布、社区结构、中心性指标等。
1. 节点度数分布
网络中的节点度数指的是与该节点相连接的其他节点的数量。
在网络分析中,
研究节点度数分布可以帮助我们了解网络中节点的连接情况,进而揭示网络的结构特征。
Matlab中有丰富的函数可以用来计算节点度数分布,如hist函数和bar函数。
2. 社区结构
社区结构是指网络中的节点按某种规则或特征被划分为多个聚类的情况。
社区
结构分析可以帮助我们发现网络中的子群体,进一步研究节点的集聚性和节点之间的相似性。
Matlab中的图论工具箱中提供了多种算法,如谱聚类算法(Spectral Clustering)和模块度优化算法(Modularity Optimization),可以用于社区结构的分析。
3. 中心性指标
中心性指标是用来衡量网络中节点的重要性程度。
常见的中心性指标有度中心
性(Degree Centrality),介数中心性(Betweenness Centrality)和接近中心性(Closeness Centrality)等。
这些指标可以帮助我们找出网络中的核心节点,并进行节点的排序
和权重的计算。
在Matlab中,我们可以使用centrality函数来计算节点的中心性指标。
II. 图论算法的应用
图论算法是一类数学算法,用于研究网络的图结构和图的性质。
在Matlab中,有许多图论算法可以帮助我们解决各种实际问题。
1. 最短路径算法
最短路径算法用于寻找网络中两个节点之间的最短路径。
其中一种常见的算法
是迪杰斯特拉算法(Dijkstra's algorithm),它可以在网络中找到起点到终点的最短路径,并计算路径的长度。
Matlab中的graphshortestpath函数可以帮助我们实现最短
路径的计算。
2. 连通性检测算法
连通性检测算法用于判断网络中的节点是否相互连通。
在某些情况下,我们需
要确保网络的所有节点都是相互连接的,以便信息传递的有效性。
Matlab中的graphconncomp函数可以帮助我们判断网络的连通性,并返回每个连通分量的节点
列表。
3. 社区发现算法
社区发现算法用于识别网络中的社区结构。
通过社区发现算法,我们可以将网
络中的节点划分为多个独立的社区,而社区内的节点之间存在紧密的联系。
Matlab
中的community函数提供了一些常见的社区发现算法,如Louvain算法和GN算法。
III. 应用举例
网络分析和图论算法在许多领域中都有广泛的应用。
以下是一些实际问题的应
用举例:
1. 社交网络分析
社交网络分析可以通过研究社交网络中的节点之间的关系,了解人际关系、信息传播和社区结构等方面。
例如,我们可以使用网络分析和图论算法来分析推特(Twitter)或微博(Weibo)等社交媒体平台上的用户关系和信息传播。
2. 交通网络优化
交通网络优化是指通过分析交通网络的结构和特征,提高交通流量和效率。
通过网络分析和图论算法,我们可以寻找最佳的路线和交通节点,优化交通网络的运行和规划。
3. 生物网络分析
生物网络分析可以通过研究蛋白质相互作用网络或基因调控网络等,了解生物体内的相互关系和调控机制。
通过网络分析和图论算法,我们可以找出关键的蛋白质或基因,并进一步研究其功能和相互作用。
总结:
Matlab作为一种强大的科学计算软件,提供了丰富的函数和工具箱,帮助我们进行网络分析和图论算法的研究。
通过对网络的结构和特征的深入分析,我们可以更好地理解和解决实际问题。
网络分析和图论算法在各种领域中都有广泛的应用,为我们提供了研究和解决实际问题的有力工具。